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Accelerating microstructure modeling via machine learning: A method
combining Autoencoder and ConvLSTM
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Phase-field modeling is an elegant and versatile computation tool to predict microstructure evolution in
materials in the mesoscale regime. However, these simulations require rigorous numerical solutions of differ-
ential equations, which are accurate but computationally expensive. To overcome this difficulty, we combine two
popular machine-learning techniques, autoencoder and convolutional long short-term memory (ConvLSTM), to
accelerate the study of microstructural evolution without compromising the resolution of the microstructural
representation. After training with phase-field-generated microstructures of 10 known compositions, the model
can accurately predict the microstructure for the future nth frames based on the previous m frames for an
unknown composition. Replacing n phase-field steps with machine-learned microstructures can significantly
accelerate the in silico study of microstructure evolution.
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I. INTRODUCTION

In recent years, the rise of artificial intelligence (AI) in
science and technology has been phenomenal. With the de-
velopment of sophisticated machine-learning algorithms and
the availability of vast amounts of data, AI has become an
indispensable tool for solving complex problems in various
fields. AI has also demonstrated great promise in materials
science. One of the most active research domains is analyzing
vast amounts of data by machine-learning algorithms for the
accelerated discovery of materials [1,2]. AI algorithms have
been trained for microstructure analysis [3,4], additive man-
ufacturing [5], mapping materials properties to atomic-scale
imaging [6], and diagnosing materials failure before they oc-
cur to reduce downtime and increase productivity [7].

The phase-field method is a powerful computational tool
to model and study microstructure evolution and related
properties, including solidification [8–10], precipitate growth
[11,12], grain growth [13–15], coarsening [16], effect of exter-
nal field [17,18], and spinodal decomposition [19,20]. Apart
from materials science, it has applications in various domains
[21,22,23]. Since the microstructural images in phase-field
models are represented by a system of continuously evolv-
ing variables in the spatial and temporal domain, this kind
of fidelitous phase-field model demands a discretized spa-
tiotemporal representation by partial differential equations,
making their implementation computationally expensive and
cumbersome, which motivated researchers to minimize the
computational costs by primarily leveraging advanced numer-
ical methods [24–26] and high-performance computational
architectures [27–29].

As machine learning and deep learning have touched
every domain, microstructure evolution is no exception.

*bsomnath@iitk.ac.in

Researchers have already started leveraging the power of AI to
do faster simulations [30]. In this paper, we propose a method
for accelerated prediction of microstructure evolution via a
machine-learned surrogate model. Figure 1 summarizes the
workflow. Like the earlier works [30,31], initially, we generate
a dataset of 1000 images each for 10 different compositions,
ranging from cavg = 0.25 to 0.5 with the help of phase-field
calculations. The size of each frame is 256 × 256 × 3, where
the last digit represents the number of channels (red, green,
and blue) in the image. Since the dimensions are huge for
10 000 images (256 × 256 × 3, i.e., 196 608 per image),
the required computational resources are also very high and
time consuming. To overcome this problem, we need to apply
some dimensionality reduction techniques. In this paper, we
deploy the autoencoder method [32,33]. The encoder part
reduces the dimensions to 32 × 32 × 8 (i.e., 8192), and using
this transformed version of data in latent space, we train the
model to learn the spatial and temporal variation in the dataset.
For predicting time series image data, we create a model with
convolutional long short-time memory (ConvLSTM) [34].
The model can accurately predict the microstructure for the
future nth frames based on previous m frames for an unknown
composition. Finally, the decoder takes this predicted frame
(still in latent space) and projects it into its original dimen-
sions. Combined with the autoencoder, ConvLSTM proves to
be a very robust technique to learn the spatiotemporal varia-
tion of microstructure with a minimal dataset for the binary
phase. Our method is comparable with the ones carried out
using principal component analysis (PCA) with a recurrent
neural network and PCA with LSTM [30,31].

This paper is organized in the following manner: In Sec. II,
we describe the details of the phase-field model and data
generation. In Sec. III, we discuss the autoencoder method
for dimensionality reduction. In Sec. IV, we talk about spa-
tiotemporal prediction using ConvLSTM, then reconstructing
the microstructure using the decoder. In Sec. V, we discuss the
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FIG. 1. Workflow of training machine-learning model with phase-field-generated microstructures and building a machine-learned surrogate
model for accelerated prediction of microstructure evolution.

salient features of the method used in this paper and compare
it with other possible techniques. Finally, we conclude the
paper in Sec. VI.

II. PHASE-FIELD MODEL FOR SPINOIDAL
DECOMPOSITION IN A BINARY ALLOY

In this paper, we employ a phase-field model to generate
a training dataset of microstructure evolution during spinodal
decomposition in a A-B binary alloy. A schematic phase dia-
gram is shown in Fig. 2 (top left), which shows the chemical
spinodal lines (in blue) and the miscibility gap (in red), re-
spectively. The total free energy of the alloy is [35]

F =
∫

V
[ f (c) + κ (∇c)2]dV. (1)

The local composition of the system is denoted by a conserved
phase-field variable c(r, t ) (space: r, and time: t). The bulk
free energy density f (c) is schematically shown in Fig. 2 (top
right), represented by a double well potential, and is given by

f (c) = W c2(1 − c)2, (2)

where W is a constant determining the potential barrier height
between the two equilibrium phases corresponding to the
compositions c = 0 and 1, respectively. Spinodal decom-
position occurs in the composition range between the two
inflection points where ∂2 f /∂c2 < 0. The gradients in local
composition also contribute to the total free energy as given
by the term κ (∇c)2 in Eq. (1), where κ is the gradient energy
coefficient. The spatiotemporal evolution of the conserved
phase-field variable (composition c in this case) is governed
by the Cahn-Hilliard equation [36]:

∂c

∂t
= M[∇2g(c) − 2κ∇4c], (3)

where M is the atomic mobility (assumed to be a con-
stant), and g(c) = ∂ f /∂c. Further details about the phase-field
model and its numerical implementation are provided in the
Supplemental Material [37] (see also Ref. [38] therein).

Using Latin hypercube sampling, we generate 10 combi-
nations of phase fractions values φA and φB. Since we are
interested in studying the spinodal decomposition of a binary
system, the φA value should lie within a range of 0.25–0.75.
However, because of the symmetry of the potential, the min-
imum and maximum values of φA are set to 0.25 and 0.5,
respectively. The phase mobilities for both components are

set to 1. The simulations are performed on a two-dimensional
(2D) square domain, discretized with 256 × 256 grid points,
and the microstructure evolution and growth are allowed for
1000 time steps. Figure 2 shows the microstructure evolution
in two different alloys, having initial compositions 0.25 and
0.5, respectively. We save the information of the microstruc-
tural state every single time step, yielding a total of 1000
time frames per composition. Since there are 10 compositions,
we have a total of 10 000 microstructure evolution images
of 256 × 256 resolution. The initial compositional field is
distributed arbitrarily in space, and the microstructure has
no discernible features from frame t0 to t20. Thus, we dis-
card the initial part and initiate training at frame t20. The
subdomains develop rapidly between frames t20 and t100, fol-
lowed by a smooth and consistent agglomerating outgrowth
of the microstructure from frames t100 to t1000. We want our
machine-learning model to anticipate both the rapid develop-
ment and gradual growth phases of microstructure evolution.
We evaluate the model using 80-20 train-test splits and veri-
fied that the outcome is similar for 60-40 and 70-30.

III. DIMENSIONALITY REDUCTION WITH ENCODER
AND RECONSTRUCTION WITH DECODER

The enormous dimensionality of the phase-field data in
the format of the microstructural image is precisely where
the manifold hypothesis [39] can be leveraged to establish
an accelerated framework for studying the microstructural
evolution. However, for the microstructure-learning model to
operate effectively, one must transform the 256 × 256 × 3
phase-field data per frame via a dimensionality-reduction
procedure into a more compact and manageable dataset. A
dimensionality-reduction algorithm aims to describe the data
with fewer characteristics while retaining as much informa-
tion as possible. In this paper, we use the autoencoder for
dimensionality reduction and transforming phase-field mi-
crostructure data in a smaller latent space for the ConvLSTM
model to learn more efficiently. The performance of another
popular dimensionality reduction method, the PCA [40], is
compared with the autoencoder, and the latter is found to be
more accurate.

PCA is a linear transformation of the high-dimensional
data that discards the insignificant modes (eigen/singular)
with lower eigen/singular values, transforming the data into
a low-dimensional form. Due to the nonlinear nature of the
system, employing PCA to decrease the dimension of the
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FIG. 2. Phase diagram with miscibility gap (top left) and the
corresponding bulk free energy f (c) versus composition c diagram at
temperature T = T 1 (top right). The microstructures show the time
evolution (spinodal decomposition) during isothermal (T = T 1) ag-
ing of alloys with two different initial compositions 0.25 and 0.5,
respectively, at time t = 100, 700, and 1000. Red (circle) and blue
(diamond) points on the phase diagram show these two compositions,
respectively. Total 10 000 such images (10 different compositions,
1000 time frames per composition) are used as training set.

microstructure representation may result in the loss of vital
information if only a few appropriate principle components
are examined. We need a nonlinear mapping technique from
a high-dimensional spatial version to a low-dimensional la-
tent space while avoiding loss of information, as in the case
of PCA. An autoencoder does precisely this. The encoder
reduces the dimension to lower latent dimensions via a nonlin-
ear mapped version of high-dimensional microstructure data
(p, q, t) into a low-dimensional version but in latent space
represented by (r). At the same time, the decoder learns the

reverse mapping from low-dimensional latent space to high-
dimensional microstructure. Mathematically, we can write
this as

αθenc : φ(p, q, t) → φ̃(r), (4)

βθdec : φ̃(r) → φ(p, q, t). (5)

Here, α and β represent the mapped versions as transformed
by the encoder and the decoder, respectively. In Eq. (4), the
encoder takes φ (p,q,t) ∈ R256×256×3 as input and maps it to
a latent space φ̃(r) ∈ Rld with ld dimensions. The error Lae

given below is minimized while training the autoencoder:

Lae = min
θae=(θenc,θdec )

‖φ(p,q,t) − φ̃(p,q,t; θae)‖2
2. (6)

Here, θae represents the parameters for training the autoen-
coder. This transformed data in latent space is the training data
for the ConvLSTM model. We observe a faster convergence in
training ConvLSTM while feeding the dimensionally reduced
data than actual data. The predicted output from ConvLSTM
is then transformed back to its original dimensions (in the
form of a microstructure) with the decoder, the second part
of the autoencoder.

The optimization of the autoencoder (both encoder and
decoder) architecture is initially undertaken to preserve the
majority of the features in latent space. A series of tests are
conducted, starting with adding two cells (single cell refers to
a single layer of convolutional filters) and gradually increasing
to four. As depicted in Fig. 3, it is observed that architectures
featuring �3 encoder layers performed much better than �4
encoder layers. The transformed data lose their correlation
with the features in >3-layer encoders, and the decoder cannot
accurately reconstruct the data from the transformed features.
In the first row of Fig. 3, 2 cells are taken for encoding;
the reconstructed image is very close to the original image,
and the heat map shows tiny red regions, implying very little
difference between the original and reconstructed image. In
the second row, Fig. 3, 3 cells are taken for encoding; the
reconstructed image is close to the original image but not as
good as the case of 2 cells. As we increase the number of cells
to four in the third row of Fig. 3, the reconstructed image gets
distorted, and the difference in certain regions reaches yellow
in the heat map, implying a significant difference in actual
and reconstructed pixel values. Finally, we choose to use a
3-cell encoder, as it offers a higher dimensionality reduction
with minimal data loss. To quantify the difference be-
tween the original and reconstructed microstructure, we have
chosen mean point-wise error (MPE). It quantifies the average
discrepancy between corresponding points in the microstruc-
tures. MPE provides a measure of similarity or dissimilarity
by calculating the absolute difference between the values at
each point in the two microstructures and then averaging these
differences. This metric is used in various applications, such
as image registration, object recognition, and computer vision,
enabling effective comparison.

To optimize the speed of the model training, experimenta-
tion is conducted using a different number of images in the
dataset. The model is trained using datasets of 500, 1000,
2000, 3000, 4000, and 5000 images for 1000 epochs. The
results indicate that, while the architecture can learn the
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FIG. 3. Images are reduced in dimensions using the autoencoder. We find that 2000 images are sufficient for training the autoencoder; a
heat map comparison of the original (encoded) and reconstructed (decoded) images using (a) 2 cells (MPE = 0.06), (b) 3 cells (MPE = 0.08),
and (c) 4 cells (MPE = 0.4) autoencoders are presented. MPE stands for mean point-wise error (see text for further details). Reconstructed
images are comparable with the original ones when 2–3 cells are used.

microstructure evolution profile using 500 images, it struggles
to track the phases within that profile accurately. However,
as the number of images in the training dataset increases,
the model performs with an accuracy of 98%. However, its
performance in terms of loss and accuracy shows minimal
improvement after 2000 images.

IV. TRAINING CONVLSTM, PREDICTION AND
RECONSTRUCTING MICROSTRUCTURE WITH

DECODER

ConvLSTM is a neural network architecture that com-
bines the advantages of a convolutional neural network [41]
with LSTM networks [34]. The ConvLSTM architecture can
analyze and learn spatial information with its temporal de-
pendencies, such as in video or time series data. Inputs X1,
X2,...Xt , cell outputs C1, C2...Ct , hidden states H1, H2...Ht ,
and gates it , ft , ot , all of these in the case of ConvLSTM
are three-dimensional (3D) tensors, the last two dimensions

being spatial. This is the advantage of ConvLSTM over LSTM
because the spatial information is lost in the latter. The fol-
lowing equations represent the fundamental structure of a
ConvLSTM cell. Here, ∗ represents the convolution operator,
and ◦ represents the Hadamard product:

it = σ (Wxi ∗ Xt + Whi ∗ Ht−1 + Wci ◦ Ct−1 + bi ), (7)

ft = σ (Wx f ∗ Xt + Wh f ∗ Ht−1 + Wc f ◦ Ct−1 + b f ), (8)

Ct = ft ◦ C(t − 1) ∗ it ◦ tanh(Wxc ∗ Xt + Whc ∗ Ht−1 + bc),

(9)

ot = σ (Wxo ∗ Xt + Who ∗ Ht−1 + Wco ◦ Ct + bo), (10)

H = ot ◦ tanh(Ct ). (11)

Here, Wxi, Whi, Wci, Wx f , Wh f , Wc f , Wxc, Whc, Wxo, Who, and Wco

represent weights for respective variables while bi, b f , bc, and
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FIG. 4. The ConvLSTM model is trained with a compressed-
image dataset in latent space. The architecture of the ConvLSTM
model comprises 2, 4, 6, 8, and 10 cells. The illustration compares
training and validation loss for different ConvLSTM architectures in
log scale.

bo represent the bias for each gate. ConvLSTM predicts the fu-
ture state of a grid cell based on the inputs and previous states
of its immediate neighbors. Utilizing a convolution operator
for the state-to-state and with input-to-state transitions makes
this simple to implement. Before conducting the convolution
operation, padding is required to ensure that the output states
and the inputs have the same number of rows and columns.
Using the state of the outer environment for computational
purposes might be interpreted as padding for the hidden states
at the boundary points. Before the first input, we typically set
the LSTM states to zero, eliminating the dependency on the
future. If we set padding as zero on the hidden states, it would
set the state of the outside world to zero, assuming that it is
unaware of the outside world. As the microstructures can be
periodic, the padding has been set the same for this paper.

After reducing the microstructure dataset to latent dimen-
sions using the optimized autoencoder model, the ConvLSTM
architecture is applied to learn the changes in the microstruc-
ture with respect to time. In the process of optimizing the
ConvLSTM architecture, the number of cells is gradually
increased in steps of two as 2, 4, 6, 8, and 10. Figure 4 com-
pares the training loss and the validation loss for the different
numbers of cells. The loss for ConvLSTM training is defined
as the mean squared error (MSE):

MSEa j = 1

KN

K∑
k=1

N∑
i=1

[
â(k)

j (ti ) − ã(k)
j (ti )

]2
. (12)

FIG. 5. This graph compares the relative error between the actual
and predicted frame. For predicting the 20th frame, the number of
previous frames used are 5, 10, 15, 20, 25, 30, 35, and 40. The com-
parison is made at different stages of the microstructure evolution:
(a) 120th, (b) 320th, (c) 520th, and (d) 820th time steps.

Here, N is the number of time frames for which the error is
calculated, and K represents the total number of microstruc-
ture evolution predictions for which the error is calculated.
Also, â(k)

j and ã(k)
j represent the actual and predicted values

of the pixel in latent space, respectively. We find that 2 and
4 ConvLSTM cells outperform all other architectural config-
urations when trained and compared over 1000 epochs. Since
4 ConsLSTM cells offer minimum loss at the expense of
minimum computational cost, we use the same for the rest
of this paper. Though 100 epochs are sufficient for making the
predictions, we show up to 1000 epochs to illustrate that the
model stays stable over 1000 epochs.

The final optimization step for the ConvLSTM model
involves varying the number of previous frames used for pre-
dicting the next frame. The model is trained to predict the next
frame based on the previous 5, 10, 15, 20, 25, 30, 35, and 40
frames. The predicted frame from ConvLSTM is in the latent
space and is projected to its actual dimension with the decoder.
As explained previously, the decoder is the second half of the
autoencoder, the same model we optimized earlier for dimen-
sionality reduction. After reconstructing the predicted image
with the decoder, we compare it with the actual microstructure
(directly obtained from phase-field simulations). Panel (a) of
Fig. 5 compares the error in the 20th predicted frame based on
5, 10, and up to 40 preceding frames prior to the 100th time
step; it is evident that, as the number of frames grows, the
inaccuracy in the predicted frame reduces. Additionally, we
find that, after 25 frames, the error in the predicted frame does
not vary significantly. Similar conclusions can be drawn while
predicting the 300th, 500th, and 800th time steps, as shown
in panels (b), (c), and (d) of Fig. 5, respectively. Thus, one
can conclude that the absolute relative error produced in the
predicted frame decreases as the number of previous frames
used for prediction increases, and >25 frames would be a
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FIG. 6. A model trained on 40 previous frames to predict the next frame is used to make the final predictions. This figure illustrates the
difference between the actual and predicted frame at the 120th (MPE = 0.4), 320th (MPE = 0.09), 520th (MPE = 0.07), and 820th (MPE =
0.04) time step as a heat map.

safe choice for the method to predict the 20th frame with rea-
sonable accuracy. For the rest of the discussion, we consider
microstructures predicted with 40 preceding frames. Figure 5
also illustrates the error in predicted frames at different stages
of the microstructure evolution. Comparing the four panels of
Fig. 5, one can further conclude that error in predicted frames
is smaller in the later stages of the microstructure evolution
than initial stages.

V. DISCUSSION

So far, we have discussed a method that starts with mi-
crostructure generation using a phase-field model. Next, we
use the autoencoder, which has two parts. The encoder part
carries out the dimensionality reduction of the microstruc-
tures to a latent space, and the decoder part reconstructs the
original microstructure back from the latent space. Using the
data in latent space (obtained from the encoder), we train a
ConvLSTM model, which predicts spatiotemporal evolution
in latent space itself. Finally, using the predicted data in latent
space, the decoder reconstructs the predicted microstructure.

While the principle is straightforward, one must still op-
timize the parameters to obtain the highest accuracy at a
minimal computation cost. We need to optimize at two levels;
first, while training the autoencoder and, next, while training
the ConvLSTM. For example, 2000 images are sufficient to
train the autoencoder, and a 3-cell encoder offers maximum
dimensionality reduction at the expense of minimum data loss
(see Fig. 3). Next, ConvLSTM, trained with 4 cells and up
to 100 epochs, is sufficient for prediction (see Fig. 4). Since
the model is trained to predict the next frame based on the
previous frames, optimizing the number of previous frames
used for prediction is also essential. We find that the errors
between the actual and predicted frame can be minimized by
using ∼40 previous frames to predict the 20th frame, although
∼25 previous frames should be sufficient for this purpose (see
Fig. 5).

Interestingly, the prediction quality also depends on the
microstructure evolution stage, evident from heat maps shown

in Fig. 6. These are generated based on predictions using
the previous 40 frames. In each case of 100th, 300th, 500th,
and 800th time steps during the microstructure evolution, 40
previous frames are taken, and the subsequent 20 frames are
predicted, yielding the 120th, 320th, 520th, and 820th frames,
respectively. The pixel-by-pixel error heat map shows that, al-
though the model can capture the overall profile at any stage of
microstructure evolution, the error is higher during the initial
stage (at the 120th time step) and decreases significantly at
later stages. Thus, one needs to be cautious, particularly with
the predictions during the initial stage of the microstructure
evolution.

The autoencoder-ConvLSTM model can accelerate in
silico study of microstructure evolution, as it can predict the
nth frame based on the previous m frames. Essentially, we
are replacing n phase-field steps with machine-learned mi-
crostructures. To accelerate, one needs to maximize n and
minimize m, keeping the error within an acceptable limit.
For example, if the number of previous frames used is m =
40, how far can we predict before the errors blow up? A
comparison, in terms of the heat map and autocorrelation
[42], is shown in Fig. 7 for the 10th, 20th, 30th, and 40th
frames, predicted from the previous 40 frames. Evidently, the
predicted spatial domain starts to differ from the actual state
as we move further ahead in the time domain. Figure 7 also
presents errors in a predicted microstructure, where PCA is
used for the dimensionality reduction instead of the autoen-
coder. Even the 10th predicted frame has unacceptably high
errors.

The autoencoder has proven to be a more robust tech-
nique than PCA to learn the spatiotemporal variation of
microstructure with a minimal dataset for the binary phase.
PCA presumes the linear embedding of microstructure in
higher-dimensional space. The binary phase microstructure
evolution exhibits a nonlinear trajectory that PCA failed to
capture. Some researchers have already shown the advantage
of nonlinear dimensionality-reduction techniques such as iso-
metric feature mapping or Isomap [43], uniform manifold
approximation and projection or UMAP [44].
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FIG. 7. Comparative autocorrelation and heat map of the (a) 10th (MPE = 0.03), (b) 20th (MPE = 0.06), (c) 30th (MPE = 0.16), and
(d) 40th (MPE = 0.25) predicted frame after the model is trained on the preceding 40 frames. The final figure (e) is the 10th (MPE = 0.28)
frame predicted, using principal component analysis (PCA) as the dimensionality reduction technique. Comparing (a) and (e) reveals that the
autoencoder fares significantly better than PCA.

The calculations are carried out on a server utilizing an
Intel Xeon Gold 6226R CPU operating at 2.90 GHz. The
system is supported by 128 GB of RAM, allowing efficient
data management and processing. It takes 30 min to train
the autoencoder model, while the ConvLSTM model requires
60 min. These durations highlight the reasonable time taken
by the system to complete the training tasks, facilitating effec-
tive model development and analysis. We want to emphasize
that the machine-learning model needs to be trained only
once before it can be used to predict microstructure evolution
for an unknown composition without further retraining. Our
ML-assisted phase-field model is faster than standard numeri-
cal methods for solving the Cahn-Hilliard equation. While the
standard numerical method for phase-field calculation takes
1.8 s for evolving 20 steps, the ML-assisted approach requires
only 0.3 s for the same number of steps.

VI. CONCLUSIONS AND FUTURE SCOPE

In conclusion, the autoencoder-ConvLSTM model pro-
vides an accelerated framework for microstructure evolution
predictions. The performance depends on two parts of the
model. The first part is the autoencoder model, which
efficiently reduces dimensions to a compact dataset. The com-
putational cost of the autoencoder is relatively inexpensive.
The autoencoder can be trained for as small as 1000 images
for the microstructure evolution during spinodal decomposi-
tion in a binary system. It performs very well, both in terms of
moderate computational resource requirements and relatively
less time taken to reconstruct the image in the original spatial
dimension. The second part is the ability of the ConvLSTM
neural network to learn spatial information with its temporal

dependencies, which can predict the microstructure evolution.
The model can be further implemented for more complicated
cases, e.g., multiphase micorstructure evolution, microstruc-
ture evolution under the influence of external magnetic field,
and strain field.

Recently, several researchers studied distinct methods for
utilizing the underlying correlations between datasets derived
from diverse data sources with varying accuracy and obtained
optimal predictions [45]. One can consider implementing the
multifidelity implementation of the proposed method by in-
cluding experimental data derived from processes with similar
characteristics. In this perspective, data derived from phase-
field models using a numerical solver can be regarded as
comprising a low-fidelity dataset, while the experimental mi-
crostructures and imaging data from analogous processes can
be termed high-fidelity datasets.
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