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Development of a machine-learning-based ionic-force correction model for quantum molecular
dynamic simulations of warm dense matter
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In this paper � learning is used to map orbital-free density functional theory (DFT) ionic forces to the
corresponding Kohn-Sham (KS) DFT ionic forces. The development of the approximate force difference in
terms of the ion positions is constructed and serves as a stand-in for the ground truth force difference. Descriptor
vectors for ion configurations are constructed using all distances between ions in conjunction with an indexing
based on a nearest neighbor ranking. It is demonstrated that such a scheme of descriptors can uniquely describe
an ionic configuration up to a rotation and reflection when no ambiguity in the nearest neighbor ranking exists.
How to handle the case when an ambiguity exists in the nearest neighbor ranking is discussed. As a proof of
principle, the model is trained and tested on warm dense hydrogen at temperatures between 1 and 15 eV. Once
tested, the model was used to perform molecular dynamic simulations of warm dense hydrogen. The resulting
energies and pressures are within 1 and 2% of their respective target KS values.
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I. INTRODUCTION

In the warm-dense-matter (WDM) regime, ab initio
molecular-dynamic (MD) simulations have become an im-
portant tool in the investigation of material properties. These
simulations often rely upon density functional theory (DFT)
[1–3] calculations of the electronic ground state. This is due
to DFT’s ability to balance accuracy with computational cost.
However, the standard approach of finite-temperature Kohn-
Sham (KS) DFT [2,4] has a computational cost that scales
cubically with the number of thermally occupied orbitals
[5,6]. This limits KS-DFT based MD (KSMD) runs to only
a few thousand steps or less for temperatures approaching
(and above) the Fermi temperature (TF) of the system. As
an alternative approach, finite temperature orbital-free (OF)
DFT [7–9] is orders of magnitude faster than KS-DFT at
temperatures consistent with the WDM regime [5,6]. Unfor-
tunately, OF-DFT requires an approximate functional for the
noninteracting free energy in terms of electron density [5,6].
Even with the best approximate noninteracting free energy
functionals today [10,11], reliable accuracy of OF-DFT is
only achieved for temperatures above ≈5TF. For WDM simu-
lations with temperatures between ≈0.5TF and ≈5TF, it would
be advantageous to have a method that captures the best of
both KS and OF-DFT.

Over the past decade, approaches in machine learning
(ML) have provided such schemes capable of delivering KS-
level accuracy at an OF cost, or faster, for the calculation
of ionic forces needed to drive MD simulations [12–18].
These schemes fall into two categories, the first being the
direct interpolation of the Born-Oppenheimer potential energy
surface from which analytical derivatives of the model can
be taken with respect to the ion positions to generate ionic
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forces [12,15,19]. The second is a direct construction of force
fields [13,14]. The standard approach of both methods is to
create a description of the neighboring ions within a prede-
termined cutoff radius about a given reference ion for which
the prediction of the model is being made. The choice of
how this description of the local configuration of the reference
ion is constructed has important implications for the model’s
success and has been an active area of research [12–15,20–
24]. Furthermore, these ML approaches have been applied to
a variety of systems and problems including the simulation
of bulk [25,26] and amorphous solids [27], calculations of
melting points [28], investigation of solid-liquid interfaces
[29], and the prediction of liquid-liquid transitions [30,31], to
name a few. For a more comprehensive list, see the references
within the review articles of Refs. [16–18].

While the direct prediction of energies and forces is promi-
nent throughout the literature, a newly developed ML scheme
referred to as � learning [32–35] has emerged in recent years.
Within � learning, a cheaper, less accurate method is cor-
rected with a ML model in order to produce a more accurate
and expensive target quantity. Recent success of �-learning
models can be seen in the context of Refs. [34,35] that correct
DFT energies and forces to produce corresponding coupled
cluster quantities.

The goal of this paper is to utilize � learning to develop
a ML model that can correct OF-DFT ionic forces to produce
ionic forces that have a KS level accuracy with a near-OF cost.
The model will be applied to WDM simulations at tempera-
tures where KS-DFT limits a typical MD simulation to only a
few thousand steps and where OF-DFT has not achieved the
required accuracy. Moving forward, the paper is laid out as
follows: Sec. II contains the development of the approximate
force correction, details of the neural network (NN) used
in this paper, and the development of the set of descriptor
vectors. Section III contains the description of the reference
data. Section IV provides the results of the model’s accuracy.
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This includes the performance on the test set after training and
the resulting performance of the model in the context of MD
simulations. Finally, Sec. V provides a summary and outlook
on future work with the model.

II. MODEL DEVELOPMENT

The base assumption of � learning is that a correction to
an estimator of a quantity of interest is easier to learn than the
direct prediction of that quantity [32]. Here, the base estimator
will be the OF-DFT ionic force with the quantity of interest
being the corresponding KS-DFT ionic force. The force cor-
rection model will be tasked with predicting force differences
such that during MD simulations an OF calculation of the
ionic forces can be corrected to provide an equivalent KS-DFT
ionic force as illustrated in Eq. (1):

�F KS = �F OF + � �F ML. (1)

A two-step approach is taken to construct the force correc-
tion. First, the true analytical expression for the target ground
truth force difference [see Eq. (2) in the next subsection] will
be replaced by an approximate target force difference that is
dependent only on the ion positions. Second, a ML framework
will be introduced and used to learn a scalar quantity of
the new approximate target force difference. This procedure
is discussed below beginning with a discussion of the true
reference force difference.

A. Approximating the target force difference

All calculations throughout this paper are performed with
a classical treatment of the ions within the Born-Oppenheimer
approximation [36]. Within this context, the KS forces are cal-
culated by first determining the ground state electron density
nKS

0 and then applying the Hellman-Feynman theorem [37] to
the total free energy functional [5]. In the OF-DFT branch,
the ionic forces are determined by taking the gradients with
respect to the ion positions of the total free energy evaluated
at the ground state density nOF

0 [38] [see Eq. (7) in Ref. [38]
and discussion within Ref. [5]]. Together, the ion-ion contri-
butions to the ionic forces cancel and the resulting analytical
expression for reference force difference will have the form

� �F ref
i = kZiq

2
∫

d3r
�n0(r)

|�r − �Ri|3
(�r − �Ri ), (2)

where

� �F ref
i = �F KS

i − �F OF
i (3)

and

�n0(r) = nKS
0 (r) − nOF

0 (r) . (4)

Here, �Ri is the position of the ith ion with nuclear charge
Zi: k and q are the electrostatic constant and electronic charge,
respectively. Moving forward, the ion for which the forces are
calculated/predicted will be referred to as the reference ion
and will be strictly indexed by the letter i.

From the target ground truth force difference of Eq. (2)
an approximate target force difference is constructed. The
first step in this construction is to assume that the long range
interactions between the reference ion and the electron density
difference are negligibly small beyond a predetermined cutoff

(a) (b)

FIG. 1. (a) The neighboring ions shown as blue circles are used
to divide the volume around the red reference ion into subvolumes.
Each subvolume is constructed such that it contains exactly one
neighboring ion. When an ion is used to indicate a subvolume it
will be referred to as a first neighbor (FN). The choice of the sub-
volume boundaries, thin block line, was chosen arbitrarily for this
example. (b) During the construction of the force correction model
it is assumed that the electronic density difference within a given
subvolume can be determined by the neighboring ions. Therefore, the
contribution to the force difference of the ion in red from the shaded
blue subvolume, black arrow, will be determined by describing the
configuration of green ions (referred to as second neighbors) in
conjunction with the corresponding FN, blue circle. All other ions
within the cutoff radius, gray circles, do not contribute to the weight
of the subvolume being considered.

radius Rc. Mathematically this amounts to limiting the integra-
tion in Eq. (2) to a spherical volume defined by a cutoff radius.
Such an approximation has become commonplace throughout
the literature for both force [13,14] and energy [12,15] based
models and is needed to help control the computational cost
of the model. However, in this paper, long range interactions
still contribute to the final predicted KS force through the
underlying OF force [see Eq. (1)], a potential advantage of
using a correction model as opposed to directly predicting the
KS forces.

The second step towards constructing an approximate tar-
get force difference is to divide the volume within the cutoff
radius into a set of subvolumes. The set of subvolumes is
constructed such that it is in a one-to-one correspondence
with the set of neighboring ions within the cutoff radius. An
example is shown in Fig. 1(a). The purpose of the one-to-one
correspondence is to allow the ion positions to act as grid
points for resolving the electron charge difference around the
reference ion. Next, the approximation is made to treat the to-
tal electronic charge difference within a given subvolume as if
it were located at the position of the corresponding grid point,
i.e., neighboring ion position. The resulting approximate force
difference for the reference ion has the form

� �Fi ≈
∑

j

�Ri j

| �Ri j |3
kq2 Zi

∫
d3 r j�n0(r j ), (5)

where

�Ri j = �Rj − �Ri . (6)

Moving forward, when an ionic position is used to ref-
erence a particular subvolume the corresponding ion will be
referred to as a first neighbor (FN).
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The final step in the development of an approximate force
difference is to eliminate the need to work with the electron
densities in Eq. (5). This is done by assuming that the total
electronic charge difference within a given subvolume can be
determined by the local ions surrounding that subvolume. This
is illustrated in Fig. 1(b) where the assumption amounts to
replacing an integral over the electron density difference of
the blue shaded region with information about the surround-
ing configuration of ions in green and FN in blue. Moving
forward, ions used to describe the electron charge difference
of a subvolume will be referred to as second neighbors (SNs).
During the prediction of a reference ion’s force difference all
neighboring ions within the cutoff radius will play the role of
both a FN and SN (the reference ion will also play the role of
a SN for its nearest FNs, and ions just beyond the cutoff radius
may play the role of a SN).

The final form of the approximate force difference is

� �Fi ≈
∑

j

wi j

�Ri j

| �Ri j |
, (7)

where wi j is the magnitude of the contribution of the density
difference in the subvolume referenced by the jth FN to the

force difference of the reference ion. Note that a | �Ri j |2 term
has also been lumped into the definition of the weights [cf.
Eqs. (5) and (7)]. As such, to determine the weight of a
particular FN both information about the surrounding SNs and
information about how far the FN is from the reference ion
must be provided. This was done to add additional flexibility
to the model when the ML framework is introduced.

B. Introducing ML into the correction model

Within the context of the force difference of Eq. (7) ML
will be introduced. This is done by using a NN to predict the
FN weights:

wi j = NN( �di j ). (8)

Here, �di j is a vector containing relevant information needed
to predict the weight associated with the jth FN as discussed
at the end of the previous subsection. The details of how �di j

is constructed can be found in the next subsection. In the case
of a NN with a single hidden layer, the FN weights can be
written as

wi j = NN( �di j ) = W (2) f (W (1) �di j + �β ), (9)

where matrices W (1) and W (2) and vector �β consist of ad-
justable free parameters. The function f is the activation
function that acts in an elementwise manner and is set to the
rectified linear unit activation function [39] throughout this
paper.

The resulting predicted ML force difference has the form

�F ML
i =

∑
j

| �Ri j |<Rc

NN( �di j )
�Ri j

| �Ri j |
. (10)

It is important to note that an identical NN is used to
predict all FN weights. The resulting force correction model
will then be analogous to the energy model of Behler and

Parrinello (BP) [12]. Furthermore, the free parameters and
correspondingly the force differences of Eq. (10) are opti-
mized by minimizing the cost function:

C = 1

2NS

NS∑
i

{∣∣� �F ref
i − � �F ML

i

∣∣2 + A exp
(−a

∣∣� �F ML
i

∣∣2)}
.

(11)
Here, NS is the number of reference ions in the training

set. The reference force difference � �F ref
i will be calculated

according to Eq. (3). That is, both the KS and OF reference
forces are calculated in their entirety and then the difference
is taken. By using reference values for the exact force dif-
ferences and not the approximate force differences the NN
will be tasked with implicitly learning the boundaries for the
subvolumes associated with the FNs.

When the standard squared loss was used for the reference
data set described in the next section, instabilities in the train-
ing process would often result in a NN that would predict
all force differences as zero. To prevent this, the exponential
regularization [second term of Eq. (11)] was added to the cost.
The hyperparameters A and α in the regularization term are set
such that only force differences smaller than those observed
in the training set are penalized. This will leave the global
minimum of the square loss based cost unaffected.

For the force correction model to be useful in MD simu-
lations, an uncertainty for each predicted force difference is
necessary to ensure that the reliability of the prediction holds
[14,16,19,40,41]. To estimate the uncertainty an ensemble
approach, similar to the work of Ref. [40], is used. In this
paper, 15 different NNs will be trained to produce 15 different
force correction models. Each member of this ensemble will
be trained according to Eq. (11) with its own training data.
Once assembled, the average predicted force difference of the
ensemble will replace � �F ML of Eq. (1) for a given reference
ion. The standard deviation associated with this average will
then be used to gauge the level of uncertainty in the prediction.

C. The input descriptor vector

In the construction of the descriptor vectors it is important
that the same force difference be predicted for configurations
of FNs which differ by a translation or exchange of labels
of ions of the same species [12–15,21,23,25]. In the case of
rotations about the reference ion, the force difference and FN
position vectors, Eq. (6), must transform in the same manner.
Through inspection of Eq. (10) it is clear that these properties
will be satisfied as long as the descriptor vector for each FN
is invariant under translations, rotations, and label exchanges.
As such, these invariances will be directly incorporated into
the following construction of the descriptor vectors.

As discussed at the end of Sec. IIA, the weight of each FN
is determined by information about its surrounding configura-
tion of SNs as well as information about how far the particular
FN is from the reference ion. To incorporate both pieces of
information the descriptor vector will be constructed in two
parts. First, a vector �dT

SN( j) , j containing only information about

the FN’s SNs will be assembled. Second, the distance | �Ri j |
from the FN to the reference ion will be used as an element.
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The full input vector to the NN will then take the form

�di j = ( �dT
SN( j), j | �Ri j |

)T
. (12)

To construct �dT
SN( j) , j the first n nearest SNs around a given

FN will be considered. Each of the SNs will be indexed by
their nearest neighbor rank with respect to the corresponding
FN. By using the nearest neighbor ranking for the SN’s index
the indices of the SNs become independent from the label
given to the FN and any change in the labels of the SNs must
be accompanied by a change in the configuration of SNs. In
effect, the nearest neighbor ranking in conjunction with the
use of the FN distance in the construction of the full descriptor
vector, Eq. (12), automatically builds in the invariance under
label exchange. The downside however is the number of SNs
n must be set. This can be achieved by performing a series of
convergence tests similar to how RC would be set.

The next step in the construction of the descriptor vector is
to build in rotational and translational invariance. This will be
done simultaneously by using all distances between the ions
of the SN configuration. It is of note that using a distribution
of these distances will not provide a unique description of the
configuration of SNs [11,23]. In an attempt to avoid this issue,
the distances themselves will be directly used as the elements
of the SN descriptor vector. This requires that the distances be
strictly ordered so that the same input vector is formed each
time a given SN configuration is encountered. The ordering of
the distances can be achieved with the use of the nearest SN
ranking. More specifically, any distance which has reference
to the FN will come first in the SN descriptor, then distances
which reference the first SN come next, and so on. In the case
where two distances reference the same ion, it is the index
of the second ion referenced by the distance that determines
the ordering. For example, in the case of three SNs the SN
descriptor vector takes the form

�dT
SN( j), j = (| �RFN,SN1|| �RFN,SN2|| �RFN,SN3|| �RSN1,SN2||

× �RSN1,SN3|| �RSN2,SN3|). (13)

In the case where only one or two SNs are needed, it is clear
the SN descriptor uniquely describes the SN configuration.
For three or more SNs, with no ambiguity in the nearest SN
ranking, uniqueness can also be confirmed as follows.

Due to the translational and rotational invariances of the
distances, the SN configuration can be oriented such that the
FN is at the origin and the first SN is along the z axis. The
second SN can then be rotated into the xz plane such that it
has a positive x value. Note, here it is assumed the second SN
does not lie along the z axis after the initial rotation. In such
a case where this assumption is not true, the next SN in the
nearest neighbor ranking that does not lie on the z axis will
take the role of the second SN in the following discussion (the
discussion holds because all distances between ions are used).
When the distance between the kth SN, with 3 � k � n, and
FN is given, the kth SN must lie on the surface of a sphere
that is centered on the FN and has a radius corresponding
to the given distance. The same situation occurs when the
distance is given between the kth and first SN. Now when
both the kth SN–FN and kth SN–first SN distances are used
together, the kth SN must live at the intersection of the two

spherical surfaces, which is a circle about the z axis. Both the
z location and radius of this circle can be determined by the
known distances (see Ref. [42]).

When the distance kth SN–second SN is added to the two
previous distances, the circle of possible positions for the
kth SN is reduced to two possible points. This is because a
point in the xz plane (not on the z axis) is equidistant from
at most two possible points on a circle about the z axis [42].
Moreover, these two points will be reflections of one another
about the xz plane. More generally, the two points on the circle
that are equidistant to an arbitrary point in space (not at the
circle’s center) will be reflections of one another about the
plane with a normal vector in the direction �rx�nc, where �r is
the position of the arbitrary point and �nc is the normal vector
of the plane containing the circle. Since two points cannot be
reflections of one another about two different planes in three
dimensions, when the distance kth SN − mth SN is added
to the six distances that reduce the kth and mth SN to two
possible locations each (the mth SN is assumed to not be in
the xz plane), the four possible configurations of the kth and
mth SN are reduced to two unique configurations and their
corresponding reflections about the xz plane.

By the symmetry argument used above, if the distances
between all SNs located outside of the xz plane are used in
conjunction with the distances to the FN, first SN, and second
SN for each of these SNs, then the configuration of these SNs
is defined uniquely up to a reflection about the xz plane. For
any SN that lives in the xz plane the distances to the FN,
first SN, and second SN are sufficient to determine that SN’s
position. Therefore, when all distances between SNs and SNs-
FNs are used, the full configuration of SNs will be uniquely
defined up to a rotation and reflection. It is however likely that
using all distances between ions to form the input vector leads
to redundant information being passed to the NN. This might
be alleviated by using the distance to the FN and first SN in
conjunction with the distances to two predetermined points,
one in and one out of the xz plane, for each remaining SN.
This will be a focus of future work.

As discussed in Refs. [23,24], descriptors based on dis-
tances between arbitrarily indexed ions as well as angles
between pairs of ions will not be able to uniquely define the
configuration of ions if multiple ions are equidistant to the
target ion for which the prediction is being made. With the de-
scriptors developed here, there is a similar inability to properly
handle SN configurations if two or more SNs are equidistant
to the FN as there is an ambiguity in the nearest SN ranking.
In this case, the SN configuration lives on the boundary of
the domain of all physically achievable SN descriptor vectors.
During a MD simulation, as the configuration of SNs passes
through an instance where there is an ambiguity in the nearest
SN ranking, the SN descriptor vector will leave the domain
of possible SN descriptor vectors and simultaneously reenter
the domain at a new location. Over the course of this sudden
change in the nearest SN ranking, both the ion positions,
in Cartesian coordinates, and the underlying total electron
density around the FN will change continuously. This means
the two points on the boundary of the domain of possible SN
descriptors connected by the sudden change in the nearest
SN ranking have the same target FN weight. Therefore, any
perturbation of the equidistant SNs can be performed allowing
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for the configuration of SNs with an ambiguity in the nearest
SN ranking to be approximate by a new configuration of SNs
that is uniquely defined. A numerical check of this will be
presented in the results section.

III. REFERENCE DATA

As proof of principle, the force correction model will
be trained and tested for warm dense hydrogen at various
temperatures along the 1.0-g/cm3 isochore. The range of tem-
peratures for which the force correction model is applicable
is bounded at both ends. The upper bound on this tempera-
ture range will be determined by the convergence of the free
energies of OF-DFT and KS-DFT. Reference [43] showed
that for deuterium this convergence will have occurred by
200 kK. Above this temperature, the upfront cost of the force
correction model is not worth the minimal gain in accuracy
over OF-DFT. In the case of the lower-temperature bound,
it is expected that the base assumption of a correction being
easier to learn will begin to break down. An estimate of this
temperature will be determined by constructing models at
various temperatures between 10 and 150 kK.

For each of the temperatures considered, a single reference
data set will be constructed such that the ionic configura-
tions and corresponding forces are consistent to that particular
temperature. No mixing of ionic configurations and forces
generated at other temperatures will be allowed. To generate
the reference ionic configurations for a given temperature,
OF-DFT based MD (OFMD) is performed. This is done under
the assumption that due to the lack of ionic structure at the
given temperatures, OFMD will sample the domain of local
configurations consistent with KSMD. This assumption will
begin to break down at temperatures below 3 kK when molec-
ular hydrogen begins to form [44] (this is the motivation for
limiting the lowest temperature considered to 10 kK). Further-
more, by using OFMD to generate the local configurations the
upfront cost of collecting reference data for the model will be
significantly reduced.

All OFMD simulations are performed in a canonical
ensemble using an Andersen thermostat with a time step be-
tween 0.05 and 0.24 fs. To further reduce the upfront cost of
the model, a system of 20 hydrogen atoms in a periodic cubic
supercell is used. In total, each OFMD trajectory will consist
of 18 000 steps. From an OFMD trajectory, a snapshot will be
extracted every 30 steps to form a reference data set consisting
of 600 snapshots. Once extracted, a single point calculation
will be performed to generate the reference force differences
for each snapshot. Of the 600 snapshots sampled the first 500
snapshots are taken as the master training set. The remaining
100 are set aside as the testing set and will be used only once
all training processes are completed. It should be noted that
all 20 local configurations will be used from each snapshot,
giving the master training and test sets 10 000 (90 and 150 kK
have 5 000) and 2 000 local configurations, respectively.

All DFT calculations were performed with PROFESS@Q-
ESPRESSO [5], a coupling of the OF-DFT based PROFESS

package [45,46] with the KS-DFT based QUANTUM ESPRESSO

package [47,48]. KS calculations use a 6 × 6 × 6 automati-
cally generated Monkhorst-Pack k mesh with a plane wave
energy cutoff between 600 and 800 Ry and 40 to 150 bands,

depending on the system temperature. OF-DFT calculations
are carried out with a 64 × 64 × 64 real space grid. The nonin-
teracting free energy is treated with the LKTFγ TF functional
[49]. This is a convex combination of the finite temperature
Luo-Karasiev-Trickey (LKTF) [11] and finite temperature
Thomas-Fermi (TF) [7] noninteracting free-energy function-
als. The convex parameter γ was arbitrarily chosen to be 0.5.
Moreover, both OF and KS calculations employ the ground
state SCAN-L [50,51] exchange correlation functional and
utilize an equivalent local pseudopotential [9].

The force correction model has been written in PYTHON

using NUMPY [52] and parallelized with MPI4PY [53–56]. The
PYTHON code was then interfaced with QUANTUM ESPRESSO

[47,48]. At present, the interfacing of the force correction
model requires the reference data collection, training process,
and use in MD to be done in three separate steps. Work is
ongoing to implement the model in a way that enables on-the-
fly learning and predictions.

IV. RESULTS

A. Training the model

Each force correction model is constructed using a single
layer fully connected feedforward NN with a hidden layer
consisting of 40 to 100 nodes. The training run for an indi-
vidual model begins with a random initialization of the free
parameters in the range [−0.1, 0.1]. The cost of Eq. (11) is
then minimized using a gradient descent with a learning rate
on the order of 10−3. Details concerning the backpropagation
used to minimize Eq. (11) can be found in the Supplemental
Material [42]. Typical training runs require 50 000 to 100 000
epochs to optimize the NN. The hyperparameters A and α of
the regularization term are set to 300 and 108, respectively for
all training sets.

In order to produce a reliable model both the cutoff radius
and the number of SNs in the construction of the descriptor
vector must be optimized. The cutoff radius was chosen by
examining how the predicted FN weights behave as a function
of the FN distance to the reference ion. As can be seen in
Fig. 2(a) for the 90-kK data set with the use of three SNs,
when the cutoff radius is set to 3.78 bohrs the FNs near
the cutoff radius will have a weight that is three orders of
magnitude smaller than the weights of the FNs closest to the
reference ion. In effect, new ions passing into the volume
defined by the cutoff radius will cause a negligible jump in
the predicted force difference. Moreover, the decay of the FN
weight shown in Fig. 2(a) confirms the assumption that the
force difference, in the case of hydrogen, only depends on the
local configuration of neighboring ions.

To determine the number of SNs needed in the construction
of the descriptor vectors, a series of convergence tests of the
model’s accuracy were performed. When one or two SNs
are used for the 90-kK data set, the average relative error in
the predicted KS force magnitude is around 10% (Table I).
When three SNs are used the average relative error in the
predicted KS force magnitude drops to around 7%. Increasing
the number of SNs to six SNs can reduce the average relative
error in the predicted KS force magnitude to around 6%.
This additional gain in accuracy going from three to six SNs

083801-5



HINZ, KARASIEV, HU, AND MIHAYLOV PHYSICAL REVIEW MATERIALS 7, 083801 (2023)

10− 6 10− 5 10− 4 10− 3 10− 2 10− 110− 6

10− 5

10− 4

10− 3

10− 2

10− 1

FN
 w

ei
gh

t a
fte

r (
Ry

/b
oh

r)

FN weight  before (Ry/bohr)

0.76 - 1.13 bohr
1.13 - 1.51 bohr
1.51 - 1.89 bohr
1.89 - 2.27 bohr
2.27 - 2.65 bohr
2.65 - 3.02 bohr
3.02 - 3.40 bohr
3.40 - 3.78 bohr

0.5 1.0 1.5 2.0 2.5 3.0 3.5

10− 7

10− 6

10− 5

10− 4

10− 3

10− 2

10− 1

W
ei

gh
t (

Ry
/B

oh
r)

FN dist  (bohr)

bo
hr

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25

10− 2

10− 1

Re
f. 

fo
rc

e 
di

ff.
 (R

y/
bo

hr
)

nearest  FN dist .

dist .

(bohr)

(bohr)

(a)

(b)

(c)

FIG. 2. (a) Predicted FN weights as a function of the distance
between the FN and reference ion for the 90-kK model. These
predictions were performed with a force correction model that used
three SNs and a cutoff radius of 3.78 bohrs. (b) The predicted FN
weights after a sudden change in the nearest SN ranking as a function
of the predicted weights just before a sudden change in the SN
ranking. The colors of the points indicate the distance of the FN to the
reference ion. The black dotted line represents the target line if the
FN weights are continuous at an ambiguity in the nearest SN ranking.
All predictions are also with a model using three SNs and a cutoff
radius of 3.78 bohrs. (c) Reference force difference as a function of
the nearest FN.

primarily comes from improvement in the smallest predicted
KS forces which experience the largest relative errors. The
results of this convergence test were consistent for other tem-
peratures considered. Moving forward, three SNs will be used

to construct the force correction model at 60, 90, and 150 kK.
In the case of 10 and 30 kK five SNs are used in an attempt to
improve the predictions of the smallest KS forces.

With the cutoff radius and number of SNs set, the next
step is to produce the ensemble of models needed to obtain
an uncertainty measure for MD simulations. To train each
individual force correction model in the ensemble, a random
sampling of the master training set is performed such that
58% of all of the data forms the training set, 25% forms the
validation set, and the remaining 17% forms the pseudotest
set. The training set is used to determine the optimal free pa-
rameters. The validation set is used to monitor and terminate
the training process in an attempt to avoid overfitting. The
pseudotest set is used at the end of the training process to
obtain an estimate of the generalization error of the individual
model in the ensemble. Once all 15 force correction models
of the ensemble have been trained, the test set described in
Sec. III is used to determine the generalization error of the
ensemble.

At 90 kK, the predictions with the ensemble of models
are in good agreement with the target KS values and are
a significant improvement over the predictions of OF-DFT
(Fig. 3 row 2 column 1). In terms of the relative errors, 60%
of the predicted KS force magnitudes are within 5.2% of
the target KS value (a level of error that is consistent with
previous works [26,57,58]). Comparatively, only 5% of the
precorrected OF forces in the test set have magnitudes within
14% of their respective target KS values. When the relative
errors are examined further, the smallest relative errors of the
model occur for the largest target force magnitudes. As the
target force magnitude decreases, the accuracy of the model
worsens, leading to the smallest target forces being predicted
with a relative error of 20% or more. In terms of the angular
error, 60% of the precorrected OF forces in the test set deviate
from their corresponding reference KS force by less than 4.4◦.
While the OF force provides a good starting direction for
the predicted KS force, the force correction model is able to
further reduce the angular error to 2◦ error or less for 60%
of the predicted KS forces. For further discussion of other
temperatures see the Supplemental Material [42].

The last step before using the model in the context of MD
is to confirm that an ambiguity in the SN rankings can be
handled perturbatively so that a unique SN ranking can be
produced. To test this, SN configurations from the test set
at 90 kK were taken and the ion positions were modified
so that the configuration of SNs just before and just after
an ambiguity in the nearest SN ranking could be obtained.
For all configurations considered the nearly equidistant SNs
are offset by 0.002 bohr. The resulting predicted FN weights
before and after the change in the SN ranking are shown in
Fig. 2(b).

As can be seen in Fig. 2(b), the largest FN weights are
nearly consistent with one another before and after the change
in the SN ranking. More specifically, the difference in the
largest FN weights before and after the ambiguity in the
nearest SN ranking is around 1% of the FN weight just before
the ambiguity. For the smaller FN weights the consistency
between the FN weight before and after is significantly worse
and in many cases the difference can exceed 100% of the
before weight. This is likely the result of the FN weights being
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TABLE I. Result from the convergence tests used to determine the number of SNs needed in the construction of the descriptor vectors.
Column 1 indicates the number of SNs used. Column 2 is the average relative error in the predicted KS force magnitude. Columns 3 through
5 provide the values of three different percentiles of the relative error distribution. Column 6 is the average angular deviation of the predicted
KS force with respect to the target KS force. Columns 7 through 9 provide three different percentiles of the distribution of angular errors.

No. SNs Rel. err. (%) 25th (%) 50th (%) 75th (%) Ang. err. (deg) 25th (deg) 50th (deg) 75th (deg)

1 9.25 5.21 8.26 12.10 2.81 1.05 2.02 3.45
2 10.75 5.64 9.03 13.38 3.72 1.33 2.51 4.60
3 7.20 3.54 5.86 9.10 2.74 1.10 1.94 3.38
4 7.35 4.11 5.84 8.48 2.56 0.98 1.80 3.16
5 6.27 3.08 4.71 7.26 2.62 1.00 1.82 3.11
6 6.00 2.93 4.41 7.27 2.43 0.95 1.70 2.95
7 6.90 3.76 5.45 8.09 2.51 1.00 1.77 3.19

learned implicitly through the force differences causing the
largest FN weights to dominate the cost. While the consis-
tency of the FN weights before and after does not hold for
all predicted weights, the impact of the inconsistency of the
smallest FN weights during a perturbation to define a unique
nearest SN ranking will be inconsequential for the total pre-
dicted force difference as the largest FN weights correlate well
with FNs closest to the reference ion and the reference force
differences are well correlated to the nearest FN [Fig. 2(c)].

B. Model comparisons

Before moving on to MD simulations, the newly developed
force correction model is benchmarked against the BP model
[12]. For this benchmarking the BP model will be used to
predict both force differences and KS forces directly. The BP
model was directly implemented into our current code with all
descriptor derivatives being taken analytically. For each of the
following comparisons the same training and testing set at 90
kK described above in Sec. IVA is used. Further details about
the parameters of the BP models can be found in Ref. [42].

Test (1) The SN descriptors based on interionic distances
forming �dT

SN( j), j are swapped out for the BP descriptors
[Eqs. (4) and (5) of Ref. [12]] within the force correction
model developed here. After varying the number of descrip-
tors and cutoff radius for the SN description, the optimal
version of the model used six radial and four angular de-
scriptors and had a 3.78-bohr SN cutoff radius. The resulting
median relative error in the predicted KS force magnitudes is
6.82% and the median angular error of the predicted KS force
is 2.34◦ (Table II row 2). With respect to the force correction
model developed within this paper (row 1 of Table II), the use
of the BP descriptors results in comparable error distributions.

Test (2) The full BP model of Ref. [12] is used to predict
force differences. To maintain as fair of a comparison as
possible, only force data are used to train the model (inclusion
of energy data in the cost function diminished the accuracy of
the final predicted KS forces [42]). After testing multiple sets
of descriptors and cutoff radii [42] the optimal predicted KS
forces were found to be given by a model with a 3.78-bohr
cutoff radius that used two radial and four angular descriptors.
The resulting predicted KS forces (Table II row 3) have a
median relative error of the magnitude of 9.5% and a median
angular error of 2.9◦. Both errors are slightly higher than the
force correction model based on the developed framework.

Test (3) The full BP model of Ref. [12] is used to directly
predict the KS forces. Similar to comparison 2, only force
data are used in the training process. During the optimiza-
tion of the hyperparameters it was found that the accuracy
of the predicted KS forces did not change significantly for
cutoff radii between 5.6 and 17 bohrs and for 55 to 65 de-
scriptors [42]. For the comparison a BP model with a cutoff
radius of 9.45 bohrs with 30 radial and 24 angular descrip-
tors was used. Compared to the previous three models based
on force differences, the accuracy in the directly predicted
KS forces is significantly worse with errors in the KS force
magnitude of 70% or more and angular errors in excess of
70◦ (Table II row 4).

Overall, comparisons 1 and 2 demonstrate that within the
framework of force differences the model developed in this
paper is capable of delivering the same level of accuracy as
existing schemes. In comparison 3, the large errors are likely a
result of insufficient data as the number of local configurations
in the training set is significantly smaller than the typical
hundreds of thousands or more of local configurations needed
to train a model for the direct prediction of KS forces. This
result highlights the benefit of the �-learning approach as less
data are needed to achieve reasonable errors.

Comparing the BP model to the model developed in this
paper further, there are other clear tradeoffs. First, the BP
scheme requires a significant number of hyperparameters in
the construction of the descriptors, a number which increases
as the number of descriptors increases. In the model developed
here, the number of hyperparameters is always 2. This has
the potential of speeding up the training process by reducing
the size of the domain of hyperparameters that needs to be
searched for the optimal model. Second, the BP model has
the advantage that the forces are defined as the gradient of
a scalar quantity meaning the resulting force field is conser-
vative. Examination of the curl of the KS forces predicted
by the mode developed here indicates that the resulting force
field is in fact not conservative [42]. However, examining
the change in energy during a MD simulation [42] indicates
the nonconservative nature of the resulting force field will be
inconsequential when a thermostat is used. Nevertheless, the
impact of the nonconservative nature of the forces needs to be
investigated to ensure a reasonable distribution of energies is
predicted during MD simulations resulting in both an accurate
mean energy and an accurate standard deviation needed for
the calculation of specific heat.
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FIG. 3. Column 1 is the magnitude of an approximate force vs the magnitude of the target KS forces on the test set at each temperature.
The points indicate the values of the underlying OF forces and the blue points are the predicted KS forces. The black line is again the target that
the force correction model aims to achieve. Column 2 is the distribution of energies (without ideal gas contribution from ions) for molecular
dynamics performed with KS (red) and OF (green) DFT and the force correction model (blue). Column 3 is the corresponding distributions
for the pressures from MD simulations with the three methods (again with no contribution from ions). Each row corresponds to a different
temperature. The first row begins at 150 kK and each subsequent row descends in temperature starting from 90 to 60 to 30 and to 10 kK,
respectively. Note, all distributions in a given plot are binned on the same range with the same number of bins.
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TABLE II. Resulting errors in the predicted KS forces at 90 kK for the comparison with various Behler and Parrinello [12] models. Column
1 indicates the direct output of each model. Column 2 is the average relative error in the predicted KS force magnitude. Columns 3 through
5 provide the values of three different percentiles of the relative error distribution. Column 6 is the average angular deviation of the predicted
KS force with respect to the target KS force. Columns 7 through 9 provide three different percentiles of the distribution of angular deviations.

Model Rel. err. (%) 25th (%) 50th (%) 75th (%) Ang. err. (deg) 25th (deg) 50th (deg) 75th (deg)

� �F (this paper) 7.20 3.54 5.86 9.10 2.74 1.10 1.94 3.38
� �F (BP des.) 8.19 4.80 6.82 9.92 3.08 1.26 2.34 3.83
� �F (full BP) 12.23 5.75 9.52 15.88 4.07 1.48 2.90 5.04
�F KS(full BP) 154.52 82.52 120.73 187.98 75.46 42.78 70.85 110.08

C. Molecular dynamics

For the force correction model to be a useful tool in the
context of MD simulations, both the energy and pressure must
be obtainable. In the case of pressure, the standard approach
is to use the virial expression which utilizes the forces and
positions of the ions [59]. However, Ref. [59] showed that in
the case of periodic systems an additional correction associ-
ated with the change in energy with respect to the change in
simulation cell side length must be added to the standard virial
expression. This additional correction term was later shown
to involve partial forces associated with interactions between
an ion and image ions [60]. Since the force correction model
provides only the total force on an ion, an alternative approach
to obtaining the pressures is needed. [Note: initial attempts

to use the individual terms of Eq. (9) within the context of
Ref. [59] were unsuccessful; this is still an ongoing area of
work where the model can be improved.]

To determine equivalent KS pressures from the model the
corresponding OF pressures will be used. This can be done as
shown in Fig. 4. Here, the reference KS pressures are plotted
against the corresponding OF pressure for each snapshot that
comprises the full reference data set of the 90-kK system. As
can be seen there is a strong linear correlation between the KS
and OF pressures. This is also true of the corresponding ener-
gies [Fig. 4(b)]. Note, neither the energy nor pressure contains
the ideal gas contribution from the ions. These correlations
between OF and KS quantities weaken as the temperature of
the system is decreased but exist even at 10 kK [Figs. 4(c)
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FIG. 4. (a) KS pressure and (b) KS energy plotted as functions of the corresponding OF quantity for each snapshot in the reference data
set at 90 kK. (c) KS pressure and (d) KS energy plotted as functions of the corresponding OF quantity for each snapshot in the reference data
set at 10 kK. The red dashed line in each plot is the best fit line of the reference data marked by the blue circles. The light red region indicates
the area where 95% of the reference data falls around the best fit line.
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FIG. 5. (a) Relative error in the average pressure obtained from MD simulations. The blue circles are those from MD driven with the
force correction model and the green circles are from MD driven with OF-DFT. The dotted line connecting the points is a guide to the eye.
(b) Corresponding relative errors in the average pressures. Note, all relative errors are calculated with respect to the KS average quantities.
Furthermore, the blue region in each plot shows the effect the uncertainty from the fitting procedure shown in Fig. 4 has on the average energies
and pressure in the case of the force correction model.

and 4(d)]. As such, these linear correlations will be used to
generate the corresponding distribution of KS energies and
pressures when the force correction model is used to drive
MD simulations. Moreover, the spread in the reference data
in the plots of Fig. 4 will be used to define an uncertainty in
energy and pressure. This is done by shifting the best fit line
symmetrically up and down until the region containing 95%
of the reference data is found.

Shown in Fig. 3 are the resulting distributions of energies
and pressure at each temperature considered for MD simu-
lations driven by the force correction model, KS-DFT and
OF-DFT. Between 60 and 150 kK, the energy and pressure
distributions from the force correction model are in excellent
agreement with the corresponding distributions from KS-
DFT. As the temperature of the system decreases further to
30 and 10 kK, the distributions from the force correction
model begin to shift away from the target KS distribution
and develop longer tails. However, overall the distributions
of the model’s predicted pressure and energies are still in
good agreement with those of KS-DFT below 60 kK and are
significant improvements over the distribution obtained with
OF-DFT.

To further quantify the resulting energies and pressures
from the MD simulations, the average of each distribution
is compared to the corresponding average value obtained
from the KS distribution (Fig. 5). In the case of the energies
[Fig. 5(a)], the average from the force correction model is
consistently within 1% of the target KS energy for all temper-
atures. Even when the uncertainty associated with the fitting
procedure of Fig. 4 is accounted for, the relative errors in the
energies from the model do not exceed 1.2%. This is an im-
provement over OF-DFT, which has relative errors above 3%
for temperatures below 90 kK. For the pressures [Fig. 5(b)],
the relative errors from the force correction model are higher
than for the energies, but the relative error in pressure is
typically within 2% of the target KS values. Again this is an
improvement over OF-DFT, which has relative errors up to
7% at 10 kK.

Finally, the total computational cost of MD simulations
performed with the force correction model is determined and

compared to the cost of standard KS and OF-DFT based MD.
To provide a fair comparison, the computational cost of each
method is estimated using 64 CPUs. The resulting cost per
MD step for OF and KS DFT is shown in Table III. For the
calculation of the total cost of the force correction model the
upfront cost associated with training the ensemble of models
needs to be estimated. This upfront cost will be strongly
dependent on the size of the training set needed to maintain a
similar level of accuracy on each member of the ensemble. To
optimize the training set size a series of convergence tests was
performed using a single force correction model. The resulting
errors (Table IV) at 90 kK indicate that the training set size
can be reduced from the current size of 4500 reference ions
down to 1800 reference ions without significant loss in model
accuracy. A similar test for 30 kK also indicated the current
training set could be reduced by a factor of 2.

When the total costs of performing KS single point calcula-
tions, generating the reference ion configuration with OFMD,
and the training of all 15 members of the ensemble are ac-
counted for, the total upfront costs for the force correction
models at 30 and 90 kK are 1.16 × 106 and 1.18 × 106 s,
respectively. The breakeven points associated with the upfront
cost are equivalent to 4600 KSMD steps at 30 kK and 1900
KSMD steps at 90 kK. If the number of members in the
ensemble is cut from 15 to 7 the breakeven points shift to 2200
steps and 1100 KS MD steps for 30 and 90 kK, respectively.
While the total upfront cost of the force correction model is

TABLE III. Computational time needed to perform one MD step
with KS-DFT and OF-DFT. Note the costs of OF-DFT at 30 and 90
kK are the same. Also provided is the cost per training cycle for the
NN.

Calculation Time (s)

KS-DFT (at 90 kK) 632.32
KS-DFT (at 30 kK) 263.10
OF-DFT 7.89
Training NN (per epoch of training) 1.34
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TABLE IV. Errors in the predict KS force at 90 kK as a function of the training set size. Column 1 indicates the number of local
configurations in the training set. Column 2 is the average relative error in the predicted KS force magnitude. Columns 3 through 5 provide the
values of three difference percentiles of the relative error distribution. Column 6 is the average angular deviation the predicted KS force has
with respect to the target KS force. Columns 7 through 9 provide three different percentiles of the angular error distribution.

Training set size Rel. err. (%) 25th (%) 50th (%) 75th (%) Ang. err. (deg) 25th (deg) 50th (deg) 75th (deg)

125 19.41 7.22 13.17 23.01 8.01 2.71 5.50 10.01
375 10.43 4.72 8.55 13.04 4.23 1.66 2.88 5.22
625 10.23 5.33 9.37 13.23 3.48 1.35 2.44 4.21
1875 8.35 4.53 6.81 10.03 2.83 1.04 1.99 3.51
4500 7.20 3.54 5.86 9.10 2.74 1.10 1.94 3.38

still a significant portion of the cost of feasible KSMDs, once
this upfront cost is paid the remaining cost will be equal to that
of OFMD, making the force correction model a useful tool for
simulations of WDM systems.

V. SUMMARY

A ML based model has been constructed to correct OF-
DFT calculated ionic forces to produce corresponding KS
ionic forces. This was done by first constructing an ap-
proximate force difference in terms of the ionic positions.
Here the ionic positions were used in two ways. First, they
were used as a set of grid points used to resolve the un-
derlying electron density difference. Second, the distances
between all ions of the SN configuration were used to form
the input vector to a NN. It was discussed that by using
all distances in the SN configuration in conjunction with an
indexing scheme based on the nearest SN ranking, the SN
configuration could be uniquely determined up to a rotation
and reflection when no ambiguity in the ranking exists. In
the case of an ambiguity in the nearest SN ranking, tests
indicated that a perturbative approach can be taken to pro-
vide an approximate SN configuration that can be uniquely
defined.

The resulting model was trained and applied to warm dense
hydrogen between 10 and 150 kK at 1.0 g/cm3. An analysis
of the errors demonstrated the KS force magnitudes can be
learned within 5% and the direction can be learned within
5◦. Once trained and tested, MD simulations were performed
at various temperatures for warm dense hydrogen with the
force correction model. The resulting energies and pressure
are consistently within 1 and 2%, respectively, of their target
KS values down to 10 kK. Finally, once the number of training
samples was optimized the computational cost of the model
was estimated, suggesting the current breakeven point with
KSMD is around 1100 steps at 90 kK and 2200 steps at 30
kK.

As the main results of this paper are proofs of principle,
the goal of future works will be to explore avenues for fur-
ther improvements. This will include using the uncertainties
as an on-off switch for the model allowing for a controlled
extrapolation to bring a system back within the domain of
the descriptor vector space associated with the training set as

well as extending the descriptor to multicomponent systems.
Furthermore, while it was not shown here, the off diagonal
components of the stress tensor show similar correlations
between the KS and OF calculations. As such, it is expected
that the force correction model will be a useful tool for the
calculation of viscosities which are at the present time not
possible to obtain with standard ab initio MD simulations at
the temperatures considered.

All reference data used to train the models in this paper
along with the final parameters of the trained neural networks
have been made publicly available [61]. The code developed
in this paper is available upon request with the corresponding
author.
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