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Two-dimensional phase field crystal simulation of laser-induced recrystallization:
A mechanism of grain-boundary phonon scattering and softening
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In this article we present, as far as we know, the first numerical investigation of phonon relaxation in
two-dimensional polycrystalline systems simulated with a multitimescale phase field crystal model. We first
measure the phonon spectrum averaged over different polycrystalline configurations using thermal fluctuations
to capture the rapid processes. We find two main peaks in the spectrum attributable, respectively, to dampening
and softening of different wavelength phonons. In particular, it is shown that polycrystals have a phonon
caging regime, a signature of amorphous materials. Subsequently, we report on a mechanism of grain-boundary
melting resulting from the accumulation of phonon scattering. We find this behavior exhibited in both rapid
temperature annealing of polycrystalline samples and from input of kinetic energy representative of rapid laser
heating or hot-rolling. In the latter case, we theorize a rate relation between the maximally achieved liquid
fraction as a function of the initial kinetic energy, defining a metastable activation energy that can be measured
in experiments. We expect that the scattering mechanisms investigated in this work underpin grain-boundary
melting and recrystallization processes encountered in rapid solidification experiments.
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I. INTRODUCTION

Despite significant progress in understanding how the
microstructure controls the properties of many materials,
the dynamical mechanisms that govern nonequilibrium mi-
crostructure formation remain arcane. The challenge is tied
to the plethora of interaction pathways between competing
time- and length scales. In this sense, the behavior of a
metal is subject to the underlying atomic lattice structure that
sets a fundamental length scale. Depending on local avail-
able energy, the atoms can break their spatial symmetry to
form a melt, void, fracture, or nucleate a dislocation. These
metastable defect structures are linked to resultant changes in
macroscale properties, such as hardness or ductility. In addi-
tion to the length scale, vibration of atoms sets a fundamental
timescale. Phonons propagate through a material, transferring
energy that can precipitate defects, cause phase transfor-
mations, or recrystallization. The scattering of phonons off
metastable structures can also alter the transport properties,
such as thermal conductivity. To fabricate optimized materials
in rapid processes such as additive manufacturing or shock
peening, the study of dynamical defect formation and plastic-
ity is ergo imperative.

The preferential recrystallization at sites of high strain en-
ergy is well documented [1]. This idea is crucial in rolling,
where polycrystals are mechanically distorted [2]. Recent
experiments on stainless steels [3,4] have demonstrated that
energy input from a laser, or shock front [5], can have a similar
effect. With lower imparted energies, long-lived melt pools
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have been found that emanate from grain boundaries [6,7].
Liquid close to the solidification temperature has been mea-
sured with incoherent neutron scattering to capture the caging
regime of the dynamic structure factor [8], a feature that
has been recently reported in polycrystals [9]. Unfortunately,
some of these experiments rely on postmortem analyses. As a
result, the dynamical mechanisms at play remains elusive.

During material processing, phonons scatter and soften,
potentially increasing the local energy density through damp-
ening. Many studies have been conducted on the thermal
transport behavior in amorphous materials, where the lack
of long-range structure allows excessive phonon dampening
[10,11]. The energy absorption can be seen by frequency
peaks in the phonon density of states, amenable to Raman
scattering experiments. Meanwhile, dips in spectrum denote
regions of phonon depletion. A large band is often found in the
terahertz frequency range, termed the boson peak. In recent
literature, conflicting arguments have been given of the cause
of the boson peak [12–14]. Starting from a dampening process
in the dispersion relation, Bagglioli et al. demonstrated the
appearance of such a peak feature [15,16]. Often associated
to glassy materials, polycrystals have been shown to exhibit
similar caging properties as in glasses [9]. We thus expect
that polycrystals also exhibit a boson peak with suppressed
prominence, depending on the grain-boundary density. At
lower frequencies, Van Hove singularities can also appear in
polycrystalline materials, whose dispersion relation becomes
singular. Herein we show the existence of both types of peak
structures and their contributions from phonons of different
length scales.

Few simulation methods exist to complement experi-
ments in the study the late stage diffusion behavior resulting
from phononic propagation. Conventional phonon scattering

2475-9953/2023/7(8)/083402(11) 083402-1 ©2023 American Physical Society

https://orcid.org/0000-0002-0394-4117
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevMaterials.7.083402&domain=pdf&date_stamp=2023-08-14
https://doi.org/10.1103/PhysRevMaterials.7.083402


BURNS, PROVATAS, AND GRANT PHYSICAL REVIEW MATERIALS 7, 083402 (2023)

analyses at the atomistic scale can be carried out with molec-
ular dynamics. However, phonon coupling to the resultant
structure profile can be intractable to explore due to the
limiting numerical time step by vacancy hopping. For this
reason, we employ the phase field crystal (PFC) methodology
originally developed Elder et al., which simulates the tem-
porally averaged density field [17] of a material. Phase field
crystal methods have been systematically advanced since the
early 2000s and have already demonstrated their effectiveness
for investigating solidification of different crystal structures
[18–21] and topological plasticity in the solid state [22–26].
Although originally describing only diffusive growth, recent
progress has extended the hydrodynamic framework of the
PFC methodology to examine phonon scattering on subdiffu-
sive timescales but still longer than MD timescales [27–29].
These multitimescale models are often said to propagate
quasiphonons.

This article shows the results of a novel study on phonon-
triggered recrystallization in two spatial dimensions. First,
we provide a brief overview of the phase field crystal
(PFC) model and our simulation approach. Subsequently, we
illustrate three novel procedures in the context of PFC simu-
lations that allow measurements of the intermediate scattering
function, longitudinal density of states, and an approximation
of the input kinetic energy. We then detail new results on the
appearance of a boson peak and secondary grain-boundary
Van Hove singularity in polycrystaline materials. Finally, we
study the input of kinetic energy into polycrystalline sam-
ples, thus triggering melting and crystallization. We propose
a potential rate relation that describes the maximally achieved
metastable defect-fraction (e.g., melt pools, dislocations, etc.)
as a function of the input kinetic energy. We expect that the
resultant mechanism explored herein are of frequent occur-
rence in rapid solidification processing, including in additive
manufacturing, and may help elucidate current challenges
with these emerging methods.

II. INVESTIGATION OF POLYCRYSTALLINE
PHONON SCATTERING

A. Model

Phase field crystal models hearken back to the work of
Elder et al. [17]. Here the authors construct a pseudo–Landau-
Ginzburg theory for a time-averaged density field, which
implicitly subsumes contributions from thermal and phonon
vibrations. The model has been demonstrated to describe
dynamic plasticity on the atomic scale, both qualitatively
[18,22] and quantitatively [24,30]. The inherent anisotropy
further permits studies of interface driven diffusion [31] and
grain-boundary premelting. The technique has also exhibited
glassy behaviors [23,32,33], to which we shall later make
connections.

The model begins by construction of an effective free en-
ergy, F , as a functional of the density field, ρ. Expanding
about a uniform reference density near the transition point,
ρref , the free energy can be split into ideal gas and interac-
tion components [34], the latter of which takes the form of
a series of correlations of increasing order. Expanding the
ideal contribution near the reference density, and keeping only

contributions from the two-point correlation results in
Ref. [35],
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where the free energy has been recast into dimensionless units
by division through the Boltzmann energy scale kbT and the
reference density. Here � refers to the simulation domain. Bx,
Bl , and R, are components of the assumed two-point corre-
lation function, while Bl controls the liquid compressibility
and has some intrinsic temperature dependence. Meanwhile,
Bx controls the solid pressure and compressibility and has an
inherent temperature dependence as described in Appendix A.
Below a certain temperature, the correlation causes the hexag-
onal phase of atomic length R to be a minimum energy
configuration, while at higher temperatures the systems favors
the formation of a uniform density distribution. Appendix A
describes the thermodynamic phase diagram of the model for
liquid-solid coexistence. It is also noted that modifications of
the two-point correlation and inclusion of higher-order corre-
lations can allow for further crystallographic phases or vapor
phases [36,37]. Additional fields can also be added to allow
for description of multicomponent alloys [20].

The dynamics of the phase field crystal density field prop-
agate through a damped wavelike equation derived in detail in
our earlier work [29]. This is given by

∂2ρ

∂t2
+ β0
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− β2∇2

(
∂ρ
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)
= D∇2

(
δF

δρ

)
+ ∇ · η, (2)

where gradients in the chemical potential, μ = δF
δρ

, act as a
source of both diffusive and wavelike density propagation
in a solid. The mobility parameter, D, is assumed constant
here, though some thermal and dynamic dependencies may
already be embedded in the form of the free energy attained
after coarse-graining in time. The vector field η denotes a
noise current representative of fast processes on the order
the atomic vibrations and which have been averaged out in
the free-energy functional. The noise current is assumed to
obey, 〈ηi〉 = 0 and 〈ηiη j〉 = σδi j , where δi j is the Kronecker
delta between vector directions i and j. This relation is in
accordance with the fluctuation-dissipation theorem where σ

is on order of the thermal scale. As argued in our previous
work [29], dissipation arising from vacancy diffusion is at-
tributable to the β0 term. Meanwhile, as far as we know, the β2

term is a novel addition to previous PFC works with phonon
effects [27,28], affecting the dissipation based on the wave-
vector modes of the signal, thus allowing for a description of
phonon softening. The parameter β2 may also be viewed as a
phase-dependent modulation to the dissipation. The additional
dampening arises from temperature and phonon-phonon scat-
tering that are evidently important for our current work.
When the dissipation approaches infinity, the wave model re-
duces to the conventional local diffusive model. The inclusion
of the first, inertial, term provides a short timescale that is
important for rapid elastic relaxation in dynamics, a feature
that can significantly change dislocation dynamics and the
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TABLE I. List of parameters used during this investigation. L denotes the length of the square numeric grid. Qualitative units are reported,
which favor the hexagonal solid phase. The numerical spacings dx and dy were chosen such that the atomic spacing ao ≈ 10dx.

ρrefkbT Bl Bx R β0 β2 D dt dx dy L

1 1.0 0.98 1 0.1 0.1 → 1 1 0.01 0.8502 0.9817 512

growth morphology a solid-liquid front (e.g., from planar to
cellular). It is noteworthy that the full model of Ref. [29]
also included strain diffusion, which was argued to modify
dislocation climb and glide timescale. This effect was also
recently introduced effectively into an PFC amplitude model
framework [38].

For simulations reported in this work we use the set of
model parameters listed in Table I, which also includes the
numerical parameters used. We solve Eq. (2) through the
pseudospectral method that was developed previously [29].

B. Polycrystalline sample construction

We studied phonon scattering in polycrystalline samples
solidified in the phase space of the aforementioned PFC
model. The construction of a polycrystalline material whose
grain-boundary distribution matches experiments can be quite
challenging. In selective laser melting, grain structures resem-
ble those achieved in directional solidification experiments.
Depending on the rapidity of the process, grains may de-
velop as cellular fronts or dendritic networks that impinge. In
the former scenario when the characteristics Mullins-Sekerka
wavelength is large, grain sizes can be thousands of atoms
large. The plasticity of such configurations is believed to be
dominated by lone dislocations and geometrically necessary
dislocations near cell boundaries. Meanwhile, the grain struc-
ture of crystals comprising impinged dendritic networks can
be composed of many smaller high-angle nanograin bound-
aries. Nanocrystalline structure is generally accompanied by
vacancy clusters [39], whose local thermodynamics may favor
fracture or melt-pool formation. On recrystallization these
metastable defects may cause large misorientation gradients
[40]. We further note that unstable growth below the spinodal
can also generate a plethora of metastable structures. It is
noted that it is often difficult to gather ample statistics of such
structures from experiments. Furthermore, the nonequilibrium
extent of such structures can be challenging to ascertain.

In this work, we focus on reproducing a realistic statistical
distribution of grains, with an emphasis on different mis-
orientation grain boundaries. We constructed 50 simulation
samples that were initialized with normally distributed angles
and random initial seed sizes and number. To allow for crys-
tallization, the seeds were placed inside an undercooled liquid
melt, and the system was then allowed to grow according to
Eq. (2) until grain impingement. An illustration of a typical
polycrystalline sample during the growth phase is shown in
Fig. 1(a). The impingement criterion can be found by ob-
serving changes in the slope of the free energy in time. An
example of one of our fully solidified polycrystalline sam-
ples is shown in Fig. 1(b), where a strain map is provided
to highlight the dipolar character of individual dislocations
that emerge after impingement. Lines of jammed dislocations
separate the individual grains from another. We note that some

long-range strains are found within bulks that result from the
bending of slip lines. Our typical grain sizes range between 4
to 50 atoms in length. The resultant grains can subsequently

(a)

(b)

Initialization

Polycrystal Sample

FIG. 1. Illustration of the phase field crystal density field during
polycrystalline growth on a 10242 simulation domain. Panel (a) high-
lights the structure after 100 time steps with an initial distribution of
circular seeds. After 5000 time steps, the uniform liquid phase almost
fully crystallizes and individual grains impinge on each other. (b) The
resultant hydrostatic strain map of the impinged polycrystal, which
uses the density filter introduced in Appendix A. The inset magnifies
the density field of a grain-boundary region.
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FIG. 2. Illustrated is the dynamic structure factor, S(q∗, t ), measured at the reciprocal lattice wave vector q∗, as a function of time, t . Panel
(a) shows a comparison of S(q∗, t ) for four polycrystalline samples with different initial grain size distributions. The curves are supplemented
with a transparent bordered region denoting the standard error attained from averaging over 10 different realizations of thermal noise (σ = 0.2).
Panel (b) depicts the dependence of S(q∗, t ) with different model dissipation values. The decay behavior of an ideal crystal is also illustrated in
gray. The maps of | ∂ρ

∂t | highlight the dynamic behavior of samples at differing stages of evolution: initial sample, ballistic regime, β dissipation
(caging) regime, and α dissipation (diffusive) regime, respectively. An inset is provided in each map that highlights a subsection of the density
field, which was grain boundary in the initial impinged sample.

be characterized through their grain number, grain size, strain
distribution (〈∇ · u2〉), and energy distribution.

C. Intermediate scattering function

A metric often used in incoherent neutron scattering of
polycrystalline materials is the self-intermediate scattering
function, or dynamic structure factor, S(q, t ). This can be
evaluated by

S(q, t ) = 〈ρ̃−q,0ρ̃q,t 〉, (3)

where ρ̃q,t denotes the Fourier transform of the density field
at wave-vector magnitude q and time t . The average, 〈·〉, is
performed over realizations of the thermal noise and all radial
variations of wave vectors of magnitude (q). To compare with
experimental results, one would further average over crys-
talline configurations, though the main features are expected
to be self-averaging over large-enough samples.

The structure factor provides information about the nature
of the crystal evolution. Berry et al. have previously used this
metric in binary phase field crystal models to illustrate caging
in glassy undercooled melts [30] where a timescale competi-
tion exists between different atomic species. In such cases, the
intermediate scattering function exhibits multistage stretched
exponential relations, with additional stages resulting from the
timescale of heterogeneous escape. We have found similar

evidence in relation to the competition of mass and phonon
motions in polycrystalline samples, as will be shown below.
Namely, phonon caging results in an extension of a plateau
region between the ballistic and diffusive dynamic regimes,
which is often termed β relaxation in neutron scattering ex-
periments of glassy materials. Molecular dynamics studies
conducted by Zhang et al. originally showed that polycrystals
may share this glasslike feature [9]. We note that a dip prior to
the β-relaxation regime has been referred to in the studies of
glasses to be related to the so-called boson peak [41]. In the
context of polycrystalline materials, the extent of the plateau
may shed some light on the inherent amorphous structure of
grain boundaries and defects.

Thus we measured S(q, t ) for the evolution of the poly-
crystals that we created earlier. The evolution was simulated
in the presence of a large noise, σ = 0.2. This choice of noise
amplitude was chosen to represent the highly nonequilibrium
excitation strains that develop in a material during a large ad
hoc quench. The measured S(q, t ) is illustrated in Fig. 2(a)
for a number of polycrystalline samples exhibiting similar
two-timescale behavior. The crossover behavior between the
ballistic and caging regimes was found to be impacted by the
amount of high wave-vector dissipation, which is controlled
through β2. This is illustrated in Fig. 2(b) of the same figure,
which also includes the structure function evolution of an
idealized lattice that only contains a single decay timescale.
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Figures 2(c1)–2(c4) illustrate | ∂ρ

∂t | at different stages of the
structure evolution. Here an initial seed (c1) begins inacti-
vated, subsequently releasing elastic propagations that diffuse
(c2). This quasiphonon diffusion takes the density config-
uration away from the starting state. Although no plastic
deformation is associated with this early response, the time
averaged density field varies in local amplitude. The bal-
listic diffusion factor may then be deduced from the initial
exponential decay scale seen in Fig. 2(a). In an idealized
lattice only local amplitude fluctuations drive the system out
of the starting configuration as was observed in Fig. 2(b).
In polycrystalline materials however, a significant portion of
kinetic energy and activity is limited (caged) near to the grain
boundaries, while grain bulks remain relatively unchanged.
This behavior is observed in Fig. 2(c3) and constitutes the
crossover regime between quasiphonon diffusion and plas-
tic diffusion. As quasiphonons are depleted from the grain
bulks, large density regions remain unperturbed. As a result
the autocorrelation function plateaus. Meanwhile, phonons
scatter off and collect at sites of high energy. This allows
for the formation of metastable states. In multicomponent
alloys, intermetallic phases may form. In our pure material
system, recrystallization follows and the system grows and
coarsens through mass diffusion [Fig. 2(c4)]. Rough estimates
of required annealing times can be garnered from analyzing
the decay scale of the dynamic structure factor.

D. Longitudinal phonon density of states

The rapid imparting of laser energy into a lattice can cause
temperature pile-up, a property of phonon scattering and soft-
ening that contributes to the caging-regime described above.
This necessitates the investigation of the spectrum of phonon
frequencies and energies, which can be analyzed through the
phonon density of states, G(ω). Following molecular hydro-
dynamics [42], the density of states can be calculated through

G(ω) = Fω

[
N

∫
�

d2q〈−→g (q, 0) · −→g (q, t )〉S(q, t )

]
, (4)

where N is a normalization constant, −→g (q, t ) is the Fourier
transform of the local momentum density, and 〈·〉 is a thermal
average as performed in the calculation of the intermediate
scattering function S(q, t ). This metric is often probed in Ra-
man spectroscopy to understand which phonons frequencies
are the active energy carriers in a given process. In such stud-
ies the longitudinal and transverse momentum contributions
can be separated through use of the incident polarization. The
phonon density of states has remained a valuable metric in
thermal conductivity optimization. Moreover, the phonon den-
sity of states can differentiate between glassy structures and
pristine lattices, the reason for which is that glassy materials
exhibit additional scattering and dampening, hence resulting
in harmonic sets of peaks in the vibrational spectrum.

Even a qualitative assessment of the phonon density of
states has remained elusive in phase field crystal model-
ing, as the momentum has not been extractable. This has
made the study of phonon behaviours challenging to compare
to experiments. However, by making use of the Helmholtz

FIG. 3. Normalized longitudinal phonon density of states for two
values of β2 dissipation. The inset focuses on the high-frequency
broad peak exhibited by both data sets. The frequency, ω, is given
in units of the inverse of the time step, dt−1. As we have alluded
to earlier, the negative density of states should be interpreted as a
depletion of longitudinal modes. The transparent borders reflect the
standard error of the measured averaged of polycrystal samples.

decomposition a relation between the longitudinal momen-
tum, −→g l , and ∂ρ

∂t can be developed. Since hydrodynamics
constitutes the basis for the derivation of our dynamical
model, we exploit the mass continuity equation, writing it as

∂ρ

∂t
= ∇ · −→g = ∇ · (∇φ−→g + ∇ × H−→g ) = ∇2φ−→g . (5)

Here the momentum has been decomposed into longitudinal,−→g l = ∇φ−→g , and shear, −→g s = ∇ × H−→g , modes. Taking the
derivatives to Fourier space then permits a relation between
the longitudinal component and ∂ρ

∂t given by

−→g l = ∇F−1

[
∂ρ̃

∂t

−k2

]
, (6)

where ρ̃ is the Fourier transform of the PFC density field.
This expression can be self-consistently determined during
simulations. To avoid numerical divergence, we set the k = 0
component of −→g l to 0. The longitudinal momentum can be
interpreted as coming from shock fronts released or scattered
from stress sources within the bulk polycrystal. Substituting
Eq. (6) into Eq. (4) and Fourier transforming in time allows
for an approximate measure of the longitudinal density of
states, neglecting potential cross terms between −→g l and −→g s.
We expect these contributions to be quantitatively important
but unnecessary to provide a qualitative picture of the phonon
spectrum peaks.

The phonon density of states is intricate, with many fre-
quency peaks closely distributed from one another. In a
pristine lattice, Debye’s theory of phonon dispersion predicts
G(ω) ∝ ωd−1, where d is the spatial dimension. Thus it is
customary to report the ratio �(ω) = G(ω)

ωd−1 , which for a per-
fect crystal is expected to be constant. However, a realistic
material will always exhibit some defect or metastable struc-
tures that modify the dispersion relation. As a consequence,
additional peaks are found in �(ω), as illustrated in Fig. 3.
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This is also observed in the terahertz frequency range where
additional peaks are known to result. They are likely due to
the dominance of mechanisms such as caging, scattering, and
softening, although the precise cause of such peaks remains a
subject of debate. Some peaks may be attributed to Van Hove
singularities where the dispersion relation becomes singular
[14]. Alternatively, the Ioffe-Regel limit may be the cause of
maxima, wherein phonons with wavelengths less than their
mean free path experience additional dampening [43]. Near
1.5 THz (ω ≈ 22dt−1 in the PFC data of Fig. 3) a broad
asymmetric peak called the boson peak has also been reported
[12,13]. Originally documented in low-temperature glasses,
the boson peaks is believed to occur due to excessive phonon
softening [12,13,15] and has been found to occur in higher-
temperature systems.

E. Variation of input kinetic energy

The phonon spectrum allows a description of the shock
pulses that can be induced in a polycrystal during material
processing. In reference to selective laser melting, depending
on the energy imparted per area (fluence), recrystallization,
plastic deformation, or fracture will ensue. Here electrons
become excited, distributing their excitation energy to lat-
tice vibrations on femto- to picosecond timescale [6]. Local
energy densities may exceed various formation energies to
allow for corresponding transformations. Alternatively, shock
peening processes aim to increase dislocation density result-
ing from the interaction of the shock with material structure.
Furthermore, in rolling, shock deep within the bulk is pro-
duced from the pressure imposed by the rollers. In the context
of phase formations and phonon dampening, we view the
energy imparted in these various processes as instantaneous,
though we acknowledge that the early time behavior may play
a dominant role.

We thus model the energy imparted onto a lattice as a
kinetic energy, Tl , that can be related to the laser energy via
Elaser = γ Tl . Here γ denotes an effective absorptivity of the
crystal. This can be connected to the longitudinal momentum
we determined earlier as

Tl (t ) =
∫

�

dr
〈−→g l (r, t ) · −→g l (r, t )〉

2ρref
, (7)

where T is the effective temperature of the system and ρref is
the reference density.

As a first attempt to apply Eq. (7) to phase field crystal
models, we introduce momentum through a normal distribu-
tion of the initial ∂ρ

∂t field, with average 〈 ∂ρ

∂t 〉r = 0 everywhere.
For a given variance, 500 realizations of ∂ρ

∂t were constructed
on a numerical grid the same size as our simulation domain
in Table I (512 × 512). We subsequently found the momen-
tum components, −→g x and −→g y, to be approximately normally
distributed. The inset of Fig. 4 illustrates the histogram of
momenta, which when fitted and averaged over realizations
provides a measure of the variance 〈−→gl · −→gl 〉. The main part
of Fig. 4 plots the relation between input 〈( ∂ρ

∂t )2〉 and the
measured 〈−→gl · −→gl 〉 for three domain sizes. For the 512 × 512
system, we find the linear relation 〈−→gl · −→gl 〉 = 1.267〈( ∂ρ

∂t )2〉,
with reduced R2 = 1.00. Here the latter fit is applicable to
the simulations that we report below. The above procedure

FIG. 4. Linear relationship obtained between 〈−→g l · −→g l〉 and
〈( ∂ρ

∂t )2〉 for three different system sizes. The errorbars represent av-
eraging over 500 realizations of the initial ∂ρ

∂t . The inset shows the
distribution of momenta for the case of 〈( ∂ρ

∂t )2〉 = 0.5 (−→g x and −→g y

are blue and orange, respectively).

provides a simple connection through Eq. (7) between 〈( ∂ρ

∂t )2〉
and the input kinetic energy.

III. INTERPRETATION OF RESULTS

A. Phonon relaxation mechanisms

Our phase field crystal simulations of polycrystal relax-
ation revealed a ubiquitous caging regime in the intermediate
scattering function as seen in Fig. 2, that is, a multistage
stretched exponential-like curvature. This interpretation is
consistent with molecular dynamic simulations of Ni poly-
crystals, which found a similar two-timescale behavior [9].
This glassy caging behavior was lacking in simulations of an
idealized crystal (without grain boundaries) as is illustrated
in Fig. 2(b). Our results thus suggest that grain boundaries
are the cause of the two-timescale behavior. Thus we suspect
that increasing the defect density will result in materials that
further resemble their metallic glass counterparts in regards to
the phonon scattering spectrum. Our observations are mainly
qualitative and would thus require a careful treatment of grain-
boundary energy, such as in the work done by Mellenthin
et al. [44] to connect to an quantitative material. We leave
the study of how changing the polycrystal grain size and
grain-boundary energy affect the phonon spectrum to future
works.

In addition to the glassylike properties of polycrystals,
we further observe that phonon scattering results in liquid
pools that suppress further ballistic scattering and coarsen
after formation. Some example videos of this process for
different values of the dissipation constant (β2) can be found
in the Supplemental Material [45]. The liquid pools seem
to result in ringing (boson peak) of the dynamic structure
factor during the crossover from ballistic to diffusive mo-
tion. Here the density field has relaxed in the bulk grain,
but has high activity near defects and grain boundaries.
It is noted that in the limit of substantial low-wavelength
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dissipation, the ringing modes are suppressed as is shown
in Fig. 2(b) when comparing the results for β2 = 1 and
β2 = 0.1. Furthermore, the melt pool sizes are also found
to be suppressed as β2 was increased (see the Supplemental
videos [45]). The pool nucleation mechanism is likely in-
fluenced by local grain energies, which is different for each
polycrystalline sample studied. Here we have averaged over
different grain-boundary energies; however, further analysis
of the impact of grain-boundary energies may be conducted
in future works. While the melt pools appear to form on
grain boundaries, they can also form along slip planes of the
host lattice structure when two grain boundaries are close
to one another. These liquid pools recrystallize on longer
timescales than their formation, potentially annealing into
dislocations. It is noteworthy that the defected regions and
recrystallization zones resemble the necklace structures found
in dynamic recrystallization experiments [46] that can lead
to serrated grain boundaries. Importantly, energy is being
added to the system by external mechanical deformation.
The induced strain subsequently generates phonons propa-
gating through the lattice and carry the energy to the grain
boundaries. Typically, when a material is externally strained,
recrystallization takes place on the grain boundary within
the bulk. When the recrystallized grains are small relative
to their host, the morphology resembles a necklace. As the
input energy is increased, further heterogeneous nucleation
takes place. In certain scenarios, the liquid pools could
become highly depleted in density, where we suspect cav-
itation or fracture would commence. Additionally, we note
in multicomponent alloys, the high energetics may induce
concomitant precipitation similar to the work by Medina et al.
where energy is added through external strain loading [47].
These aforementioned processes thus describe a recrystalliza-
tion mechanism occurring as a result of phonon caging and
scattering.

Further analysis of the phonon scattering spectrum through
the longitudinal phonon density of states revealed the emer-
gence of resonance peaks. We note that the negative density
of states should be viewed as a depletion of available sites,
since we are only considering longitudinal components of
the velocity. In Fig. 3 we show the longitudinal density
of states averaged over 10 polycrystals for two values of
β2 that control the low-wavelength phonon dissipation. In
both cases, we see a peak at roughly ω ≈ 22 dt−1. An in-
set is provided expanding this region. In the case of the
lower dissipation (orange), we find additional peaks at lower
frequencies. In the latter case, phonons propagate further
between potential sites of scattering and softening. To this
extent, we believe the additional resonances are caused by
the phonon scattering or softening at boundaries. This inter-
pretation is consistent with dispersion relation calculations
that suggest softening as a culprit for low-frequency peaks.
Meanwhile, we suspect the high-frequency peak could be
a potential boson peak. We note, however, that this peak
may be an artifact of the approximations that went into
deriving Eq. (4). As result, further metrics to connect the
high-frequency peak may be necessary. In particular, low-
frequency shear waves may interact with the longitudinal
modes. Importantly, the features of the resonance peaks are
qualitatively consistent with experimental measurements of

laser irradiated thin films, which are measuring the pro-
cess at much shorted timescales [48,49]. Waldecker et al.
further highlight the dominant activity of the longitudinal
acoustic modes, such as those we have been able to mea-
sure [49]. More intricate hydrodynamic amplitude variants
of the phase field crystal model that explicitly track the ve-
locity vector field may also be able to elucidate the shear
contributions.

B. Laser melting

Our discussion thus far has dealt with polycrystalline lat-
tices subjected to large thermal noise. These investigations are
thus applicable to thermal annealing experiments. However,
in the rapid solidification encountered in processes such as
additive manufacturing, energy is transferred near instanta-
neously from a shock. Following the procedure described in
the previous section, we add an initial burst of kinetic energy,
Eo, in the form of a density distribution corresponding to
an initial 〈( ∂ρ

∂t )2〉. This addition represents the first attempt
at describing the energy embedded in shock fronts that are
found in both bulk material that are subjected to mechanical
deformation [46] and in laser melting systems [50]. Subse-
quently, we compare the defect fraction (in accordance with
the thresholding method described in Appendix B) over 10
simulations of different realizations of a fixed input energy.
Additionally, our simulations were repeated over different
polycrystalline configurations. The defect fraction composed
of structural defects, such as dislocations and melt pools.
The simulation is supplemented with a small noise, σ = 0.01,
which accounts for rapid dynamics below the coarse-graining
scale of the PFC model. Figure 5 illustrates that an increasing
input energy leads to an increasing maximal defect fraction,
as measured using the procedure in Appendix B. Figure 5(a)
demonstrates the tracked defect fraction as a function of
time for different input energies. Figures 5(c1)–5(c4) show
the typical density fields at t = 1500�t for different input
kinetic energies, with the insets showing the defect fraction
thresholding. Figure 5(b) highlights the maximally achieved
defect fraction as a function of the input energy. It is noted
that the defect fraction shown in the density maps as insets
in Fig. 5. This metric subsumes features such as grain bound-
aries, dislocations, and metastable liquid zones, all of which
are created due to the stress or strain imparted by the input
laser energy. We observe that these all serve as templates
from which subsequent recrystallization occurs in the sample.
In that sense, we are seeing both traditional mechanisms of
recrystallization caused by stress or strain in the solid state
[3] but also predicting, as far as we know, novel mechanisms
such as local recrystallization arising from metastable liquid
or amorphous pools. Such mechanisms are expected to be
ubiquitous in shocked materials, excited by laser irradiations
[50,51].

In analogy to the metastable Ostwald ripening curves [52],
we attempt to describe defect nucleation rate through rate
relation considerations. In this scenario, the energy dissipates
roughly exponentially in time, Ein(t ) ≈ Eoe−bt , with b depen-
dent on the dampening in Eq. (2). Once an energy threshold
has been reached, melt pools are found to form at defect sites
and along slip lines of the crystal in relation to our earlier
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FIG. 5. This figure highlights the response of a crystal to an initial input of kinetic energy. (a) The defect fraction measured as a function
of time for different input energies. The associated error bars are captured by transparent borders denoting the standard error, when averaged
over different polycrystal samples. (b) The maximal achieved defect fraction as a function of the input energy. Thereto we fit Eq. (8) (red line)
with adjusted R2 = 0.9985. Here a1 = 10.46, a2 = 0.1051, a3 = 0.6092, and a4 = −10.44. Error bars denote the standard error measured over
different polycrystal samples. (c1)–(c4) The density field at time 1500�t for different input kinetic energies for the same sample. The insets
represent a thresholding analysis to determine the defect fraction.

results. This qualitative morphology is in further corrobora-
tion with the necklace structures described above, We argue
that the liquid pools have a substantial amount of energy
buried in their solid-liquid interfaces. Thus we make the
approximation that the volume of a given melt pool is pro-
portional to boundary energy. We thus make the conjecture,

∂Eboundary

∂t
= �+ − �−

= e− EA
Eoe−bt Eboundary − �Thermodynamic, (8)

where �+ = e− EA
Ein Eboundary represents the energy absorption

rate expected to occur uniformly across the boundary. Here EA

denotes an effective activation energy for melt-pool growth.
As a result of the metastability of the melt pools, a thermo-
dynamic restoring force that disperses interfaces is introduced
through �−, which is taken here as a constant. Equation (8)
can be solved in the limit of b 	 1 to yield,

Eboundary(t ) ≈ C1ete
− EA

Ein + �Thermodynamice
EA
Ein . (9)

The integration factor C1 includes an energy dependence that
needs be determined. We then determine the time, tmax, at
which the boundary energy is maximized. This is achieved
by setting Eq. (8) to zero and performing a Taylor expansion
of Eq. (8) for small t . Recasting the Eq. (9) results in the

approximate form,

Eboundary(tmax, Eo) ≈ a1ea2e− a3
Eo + a4. (10)

Here ai are the coefficients of our kinetic theory. Note that a3

has dimensions of energy and may be viewed as an effective
activation energy to form metastable structures. The relation is
expected to be independent of spatial dimension. However, we
expect the boundary absorptivity to deviate as a result of the
dislocation dimensionality. We have only aim here to describe
the maximally achieved defect fraction subjected to an energy
burst in the sample. To further account for healing and coars-
ening, �Thermodynamics may be extended to include energy and
time dependence. We leave such a study for future work. We
also note that equation (10) only accounts for a single phase
transformation. In multiphase studies (e.g., precipitation and
void) Eq. (8) may be supplemented by additional activation-
energy terms.

We fit Eq. (10) to the maximal defect fraction extracted
from the data of Fig. 5(a). The results are shown in Fig. 5(b).
The results suggest are consistent with the above analytical
theory for low input energies. It is noted that Eq. (8) rep-
resents a rather crude approximation of the system, since
grain-boundary structure, density segregation, fracture nucle-
ation, and temperature effects can also impact the resultant
curve. In particular, our analytical theory poorly predicts the
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high-energy regime where a secondary defect peak is found
to emerge in the simulation data of Fig. 5(a), which we be-
lieve is a result of the thresholding used to determine the
defect fraction. In particular, this is because the high-energy
density fields [Fig. 5(c4)] are found to be highly amorphous
and not accounted for by the thresholding. We note that
phase field crystal models may breakdown at this high-energy
limit as other structures such as metallic glass or fracture
may form. To this end, future work may extend our study
to multicomponent materials following Ofori et al. [20]. Al-
ternatively, fracture may be treated through the introduction
of a vapor phase as in the work of Frick et al. [37]. We
expect that the trends reported here are expected to be true
independent of spatial dimension. However, a more quanti-
tative validation of our results with experiments may also
require the inclusion of latent heat to extend the theory to
account for consistent coarsening timescales. Nonetheless,
we have illustrated in this work that laser-induced recrystal-
lization should include a pathway involving heterogeneous
nucleation from nanoliquid pools found at high-energy grain
boundaries.

IV. SUMMARY

In this article we have used PFC modeling with two-
timescale dynamics to examine phonon excitation in poly-
crysatlline nanomaterials. In particular, we have investigated
the dynamic structure factor of a polycrystalline material
subjected to multitimescale dynamics. In comparison to the
single exponential decay of an idealized lattice, polycrystals
are found to exhibit a two-step decay process, commonly
exhibited by glasses. A caging regime is found that re-
sults from phonon softening and is affected by the amount
of high-wavelength dissipation. Phonon accumulation was
also found to result in the formation of metastable melt
pools. We have also performed the first analysis of the lon-
gitudinal phonon density of states with phase field crystal
models. Herein we uncovered multiple peaks that emerge
from phonon scattering and a broad peak, which is poten-
tially relatable to the boson peak. As we have described, a
more detailed investigation of the phonon scattering proper-
ties may be explored through use of hydrodynamic coupled
phase field crystal models that explicitly evolve a velocity
field.

Our phonon relaxation studies were then used to investi-
gate the rapid transfer of energy into polycrystalline materials
and their subsequent relaxation and recrystallization. We
found that increasing input energy resulted in an increase
of the defect density and the formation of liquid pools. We
developed a simple theory to describe the maximally achieved
defect fraction as a function of input energy. At low energies
our results are in a agreement with the theory. Thus our work
suggests that early stage shock-induced recrystallization is
dominated by the formation of melt pools. Future experimen-
tal work may be performed to assess the validity of our theory.
Owing to the density depleted pools, high input energies are
further expected to cause cavitation and fracture or nucleation
of other metastable structures. Such processes may be the top-
ics of future studies with the use of multicomponent models
or vapor phase models.

ACKNOWLEDGMENTS

We thank Prof. Bradley Siwick for stimulating discussions.
We thank Natural Sciences and Engineering Research Coun-
cil of Canada and le Fonds de recherche du Quebec-Nature
et technologies for funding support. Additionally, we thank
Calcul Québec and the Digital Research Alliance of Canada
for computing resources.

APPENDIX A: PHASE DIAGRAM

The phase field crystal model is built as an expansion of the
free energy about the liquidus for the study of solidification.
For the details, we refer the reader to the work of Provatas
et al. [35]. Here an effective temperature is varied through
the parameters Bl or Bx that enter into Eq. (1). To understand
the preferential selection of crystalline order versus uniform
liquid state, it is customary to make a one-mode expansion of
the density,

ρ(r) = ρ + �Gj A|Gj |e
iGj ·r . (A1)

The parameter ρ represents the uniform average density
adopted by the liquid phase. AGj are the amplitudes cen-
tered about the reciprocal lattice vectors Gj , which act as
order parameters of the crystal’s translational symmetry. Sub-
stitution of Eq. (A1) into (1) and subsequent integration
over a unit cell represents the approximate bulk free en-
ergy. All further free parameters, such as AGj and R, would
need to be minimized, the solutions of which enumerate the
bulk free energies of the thermodynamic phases. We empha-
size that this expansion is an ansatz of the minimal energy
states, which in generality should be verified through numeric
simulation.

One may then solve the condition of phase coexistence:

μ1 = μ2, (A2a)

ρ1μ1 = ρ2μ2. (A2b)

Here μi = δF
δρ

is the chemical potential and ρi coexistence
density associated to phase i. Although explicit calculation
of the above relations is possible, one can also make use of

FIG. 6. This figure illustrates the phase diagram obtained
through a one-mode ansatz of the equilibrium crystal structure. The
corresponding stable phase region is as denoted. The star denotes the
phase state used for our study.
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a convex hull algorithm of the free energy as detailed by
Seymour et al. in their thesis [53]. Repeating the calculation at
different temperatures results in a phase diagram as illustrated
in Fig. 6. The highlighted points denote the temperatures and
density used throughout this paper.

APPENDIX B: IMAGING METHODS

The density field carries large amounts of information in
the Fourier modes. One can analyze the deviations from the
mode expansion form of Eq. (A1) to extract specific informa-
tion about interface structures. As introduced in earlier work,
the strain field can be extracted from

∇ · u ≈F−1

[
k exp − k2

σ0
F

[
ρF−1

[
(k − |G|)

× exp
−(k − |G|)2

σ0
F[ρ]

]]]
, (B1)

where F denotes the Fourier transform operator. We use this
filter not only for visualization of dislocations but also as a
metric for the dislocation density of a given polycrystal. The
inset of Fig. 1 shows and example of this filter.

We also make use of

F−1
[
e− k2

σ0 F[|ρ|]] ≈ ρ2 + |AG|2, (B2)

which combined with thresholding allows for a rough char-
acterization of the local phase. Our studies of defect fraction
utilized a σ0 = 0.3. The thresholding entailed summing the
number of pixels with density values above 0.3 and subse-
quent division by the total pixel number. To our knowledge,
this type of approach was first described by Kocher et al. [54],
when attempting to coarse-grain the phase field crystal model
to a single order parameter.

APPENDIX C: FINITE-SIZE ANALYSIS

Since our simulations are performed on a two-dimensional
periodic domain, wave attenuation needs to be ensured to
occur on scales larger than the system size. To ensure
that peaks detected with the density of states were not
artifacts of finite-size effects, we performed additional sim-
ulations on numerical grids with lengths 256 and 1024 grid
points. We refer the reader to the Supplemental Material
for videos of the process [45]. We found that the system
size had negligible affect on the melting and recrystalliza-
tion behavior described throughout this work or on the
presence of phonon softening that resulted in two-timescale
dynamics.
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