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Optimization of the thermoelectric properties in self-substituted Fe2VAl
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Thermoelectric properties were determined in self-substituted Fe2VAl Heusler alloys (Fe2V1+xAl1−x , −0.1 <

x < 0.1), pursuing the goal of their optimization. A parabolic band model fitted to experimental plots of Seebeck
coefficient versus charge carrier concentration at 220 K yielded values of the density of states (DOS) effective
mass, m∗

v = 3.2me and m∗
c = 13.7me for the holes and electrons, respectively (me is the bare electron mass). The

measured Sommerfeld coefficient of the electronic specific heat is consistently smaller in p-type Fe2V0.92Al1.08

(γp = 7.8 mJ mol−1 K−2) than in n-type Fe2V1.07Al0.93 (γn = 11.5 mJ mol−1 K−2). First-principles calculations
of the DOS lead to the theoretical values m∗

v = 2.4me, m∗
c = 13.0me, and γn

γp
= 1.9, in good agreement with

the experimental values. These direct comparisons of calculations with experiments unambiguously show that
the heavy electrons arise from flat Fe eg conduction bands. Calculations of the optimum thermoelectric power
factor (PF ) show that it is nearly reached experimentally in n-type Fe2V1.03Al0.97 (PF = 6.6 mW m−1 K−2 for
n = 1.4 × 1021 cm−3) whereas p-type Fe2V0.985Al1.015 (PF = 2.7 mW m−1 K−2 at p = 6.7 × 1020 cm−3) is not
yet optimum. The easier optimization of the thermoelectric properties in n-type self-substituted Fe2VAl can be
traced back to the larger effective DOS mass of its electrons.

DOI: 10.1103/PhysRevMaterials.7.075403

I. INTRODUCTION

Thermoelectric devices can convert heat into electricity
(Seebeck effect) or transfer heat under the influence of an
electrical current (Peltier effect). These devices currently dis-
play a fairly small conversion efficiency (<10%), which is
compensated by their very high reliability (no moving parts)
and compactness. They are commercialized as refrigerators
or envisaged as localized electric generators to power wire-
less sensors or to recycle the waste heat lost in industrial
processes [1,2]. Their efficiency varies like the dimensionless
figure of merit ZT of their constituting materials. ZT is defined
by the expression ZT = α2T

ρλ
with α the Seebeck coefficient,

ρ the electrical resistivity, λ the thermal conductivity, and
T the absolute temperature. Bi2Te3 is the material currently
commercialized in thermoelectric refrigerators [3]. It displays
a dimensionless figure of merit ZT ∼ 1 at 300 K, which is
a landmark value rarely exceeded at this temperature [4,5].
Nevertheless, new thermoelectric materials should be devel-
oped because the scarcity and cost of tellurium prevent a
mass-market development based on Bi2Te3 in bulk form.

The Heusler alloy Fe2VAl could substitute Bi2Te3 if its
figure of merit was increased. It displays a power factor
(PF = α2

ρ
) at least as large as in Bi2Te3 (>5 mW m−1 K−2

at 300 K for n-type conduction), but its thermal conductiv-
ity is more than ten times larger in its pristine form (λ=
29 W m−1 K−1) [6]. Several research paths such as alloying
and nanostructuring [7] have been undertaken to decrease
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the lattice thermal conductivity and to increase the fig-
ure of merit. A maximum ZT = 0.2 at 400 K has been
obtained in micrograined Fe2VAl0.95Ta0.05 [8] and more re-
cently, ZT = 0.3 was reached between 300 and 500 K in
micrograined Fe2V0.95Ta0.05Al0.9Si0.1 [9] and in nanograined
Fe2VAl0.95Ta0.05 [10]. These achievements are already signifi-
cant, but further progress requires optimizing the power factor
in Fe2VAl for both types of conduction.

Large values of maximum power factor (PF ) are
indeed already obtained in n-type Fe2VAl: PFmax =
6.8 mW m−1 K−2 at 300 K in both Fe1.98V1.02Al0.9Si0.1

[11] and Fe2V0.95Ta0.05Al0.95V0.05 [8], very recently
PFmax = 7.5 mW m−1 K−2 in quenched Fe2VAl [12] or
PFmax = 10.3 mW m−1 K−2 in Fe2V0.95Ta0.05Al0.9Si0.1 [13].
But p-type Fe2VAl, for instance Fe2V0.985Al1.015 [14] displays
a smaller PFmax = 3.2 mW m−1 K−2 at 300 K. These values
of power factors are not very well understood, and it is
unknown yet if they are fully optimized. Recently, Anand
et al. [15] reported in n- and p-type Fe2VAl large effective
masses, favorable to high power factors. However, their
determinations were not based on measured charge carrier
concentrations. They rather assumed that the charge carrier
concentrations can be derived from valence electron counts
and that the transport parameters are independent of the nature
of the dopant. Indeed, based on measured Seebeck coefficient
and charge carrier concentration values, Garmroudi et al.
very recently reported a large effective mass (m∗

c = 12.8me)
in n-type doped Fe2V1−xTixAl1−ySiy [16]. However, no
hole effective mass, no optimization of the thermoelectric
properties and more importantly, no direct comparison
with first-principles calculations is reported in the previous
study.
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We hence focused our attention on the off-stoichiometric
or “self-substituted” Fe2V1+xAl1−x (−0.1 � x � 0.1) series
due to its chemical simplicity and because a large power fac-
tor PFmax = 6.8 mW m−1 K−2 at 300 K has been reported in
n-type Fe2V1+xAl1−x (0 � x � 0.1) [14,17]. It is a better de-
scription of the actual crystal structure to write Fe2V1+xAl1−x

as Fe2V(Al1−xVx ) or Fe2(V1−xAlx )Al, underlining the occur-
rence of VAl or AlV antisite defects. We recently extended this
work by investigating the microstructural and thermoelectric
properties of the Fe2+xVAl1−x, and Fe2−xV1+xAl (−0.1 �
x � 0.1) series [14], which also behave as solid solutions in
this portion of the ternary phase diagram. However, the ther-
moelectric properties of the last two series were inferior to the
former one. We thus hereby report a detailed investigation of
the electronic transport properties of Fe2V1+xAl1−x (−0.1 <

x < 0.1) by combining resistivity, Seebeck coefficient, and
Hall effect measurements, firstly in a broad range of tempera-
tures [100 − 600 K] and secondly focusing on the T = 220 K
temperature, as latter explained. This yields well-established
values of Hall mobility and effective mass for both electrons
and holes in Fe2VAl. These effective masses are confirmed
by specific heat measurements and directly compared to the-
oretical values obtained by first-principles calculations. The
knowledge of these parameters allows a better understanding
of the electronic transport in n- and p-type Fe2VAl, of its
relationships with the electronic structure, as well as deter-
mining newly and well-optimized values of charge carrier
concentration and power factor for both types of conduction.

II. EXPERIMENTAL AND THEORETICAL DETAILS

Fe2V1+xAl1−x, (x =-0.07, -0.05, -0.03, -0.015, 0.02, 0.03,
0.05, 0.08), Fe2+xV1−xAl (x = 0.04, 0.08) and Fe2+xVAl1−x

(x =-0.08, 0.08) samples were synthesized by melting the
required amounts of iron (99.97%), vanadium (99.9%), and
aluminum (99.98%) in an arc furnace under argon atmo-
sphere. The resulting 2.5 g ingots were melted and flipped
over at least four times to ensure homogeneity. Weight losses
were less than 0.3%. This was followed by annealing in a
quartz ampoule under vacuum at 900 °C for 72 h. Characteri-
zation by x-ray diffraction and electron probe microanalysis
showed that these samples are fully single-phase and dis-
play an effective composition equal to the nominal one.
More details on these characterizations of the microstruc-
ture can be found in Ref. [14]. Using a c-BN wheel saw,
∼ 1−mm − thick disks were cut in the ingots (button-shaped)
for resistivity measurements in the van der Pauw geometry.
Constant thickness across the disk was reached by polishing.
Bar-shaped samples were cut in the same disks for Seebeck
coefficient and Hall effect measurements. Samples were sys-
tematically annealed again at 900 °C for 2 h to remove any
cold-work effect arising from the cutting or polishing [18].
High and low-temperature resistivity and Seebeck coefficient
measurements were carried out using two home-made setups
[19,20]. Hall effect measurements were performed with a
Physical Properties Measurement System (PPMS, Quantum
Design) in AC mode by varying the magnetic field between
-3 T and +3 T. The Hall electron or hole concentration and
Hall electron mobility were defined by n or p = − 1

eRH
and

μe = RH
ρ

, respectively, with RH the Hall coefficient and e the
elementary charge. Specific heat was measured also with a
PPMS in the temperature range 2 − 25 K.

Calculations of the electronic structure were performed
in the frame of the density functional theory (DFT) us-
ing the Vienna ab initio simulation package (VASP) [21,22]
and the projector augmented waves (PAW) technique [23,24]
within the generalized gradient approximation. The Perdew-
Burke-Ernzerhof parameterization was applied [25,26] and
standard versions of the PAW potentials for Fe (3p6 3d6 4s2),
V (3s2 3p6 3d3 4s2) and Al (3s2 3p1) were used. The first
Brillouin zone was sampled using a tight 15 × 15 × 15
Monkhorst-Pack k-point mesh [27] for the calculation of the
density of states (DOS). The cutoff energy was set to 500
eV for the whole study. Both cell parameters and atomic
positions were relaxed within an energy accuracy of 1 μeV
and 10−5 eV/Å for the forces before the calculation of the
DOS. A 3 × 3 × 3 (108 atoms) supercell of the primitive
unit cell of Fe2VAl was used in this study. In this supercell,
we considered either one or two antisites defects for each
type (VAl or AlV) leading to concentrations of 1.04 or 1.07
for the supernumerary element. Concerning the charge q of
these defects, a systematic study of their formation energy for
−6 � q � +6, similarly to what has been done in Ref. [28],
showed not surprisingly that a VAl antisite bears a charge
q = +2 whereas an AlV antisite has a charge q = −2. A study
of the most stable configuration of the supercells containing
two antisites showed that a random distribution of the defects
is favored (see Ref. [29] for more details on the methodology).

To determine the density of states effective mass m∗ we
have used the same procedure as the one described in detail in
Ref. [30]. The DOS D(E) has been fitted to

D(E ) = AV B(EV B − E )0.5 (1)

for the valence band (VB) and

D(E ) = ACB(E − ECB)0.5 (2)

for the conduction band (CB). As will be later discussed,
EV B = 0 and ECB ∼ 0.4 eV. Since m∗ can be written as

m∗ = h̄2

me

3
√

π4D(E )D′(E )/V 2, (3)

we obtain, by combining Eqs. (3) and (1) or (2):

m∗ = h̄2

me

3
√

π4 A2/2V 2, (4)

where V is the volume of the supercell and A is either AV B or
ACB.

III. RESULTS AND DISCUSSION

A. Transport as a function of temperature

Seebeck coefficient, resistivity and power factor measured
as a function of temperature in the Fe2V1+xAl1−x series
(−0.1 < x < 0.1) are displayed in Fig. 1. The electrical resis-
tivity [Fig. 1(b)] goes through a maximum in the temperature
range 300 − 600 K in both p-type or n-type compounds. It
is a behavior typical of degenerate semiconductors entering
the intrinsic regime at elevated temperature: at temperatures
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FIG. 1. (a) Seebeck coefficient (α), (b) electrical resistivity
(ρ) and (c) power factor (PF ) as a function of temperature in
Fe2V1+xAl1−x (−0.1 < x < +0.1).

lower than the maximum, the numerous majority charge car-
riers dominate the transport which is “metal-like” whereas
at temperatures larger than the maximum, both majority and
minority carriers contribute to the transport, decreasing the re-
sistivity. Similarly, the Seebeck coefficient versus temperature
[Fig. 1(a)] displays in the range [270 − 520 K] a maximum
or a minimum in p- or n-type Fe2V1+xAl1−x compositions
respectively. Again, these variations are typical of degenerate
semiconductors entering the intrinsic regime at high tempera-
ture.

As already discussed in the literature [14,17], it can easily
be noticed that the V-rich samples display an electron-type
conduction while the Al-rich samples display a hole-type
conduction. For both types, the Seebeck coefficient varies
according to the sample composition: those with the com-
positions the closest to the stoichiometry display the largest
absolute value of Seebeck coefficient, whereas the most off-
stoichiometric samples display the smallest values. This is in
line with the electron acceptor and donor character of AlV and
VAl defects, respectively [31], which control the charge carrier
concentration in these samples. The p-type off-stoichiometric
samples display maximum values close to 90 µV K−1, while
the n-type off-stoichiometric samples display absolute max-
imum values larger than 155 µV K−1. Overall, the resistivity
values [Fig. 1(b)] are remarkably small: they are lower than
∼ 5 µ � m and they are even smaller than ∼ 2 µ � m in the
p-type off-stoichiometric samples. This leads to maximum
power factor values of PF = 3.2 mW m−1 K−2 at 325 K and
PF = 6.7 mW m−1 K−2 at 250 K in the p- and n-type sam-

FIG. 2. (a) Charge carrier concentration and (b) Hall mobility
(μe) as a function of temperature in Fe2V1+xAl1−x (−0.1 < x <

+0.1).

ples, respectively [Fig. 1(c)], in agreement with the literature
[17]. Nonetheless, the smaller values of the resistivity in the
p-type samples do not compensate the larger Seebeck coeffi-
cient in the n-type samples. This point will be related to the
differing density of states effective masses in p- and n-type
Fe2V1+xAl1−x.

B. Seebeck coefficient at 220 K

To better understand the origin of these asymmetrical
performances, we investigated the valence and conduction
density of states effective mass (m∗) by combining Seebeck
coefficient and charge carrier concentration data in a single
parabolic band model. Prior to this modeling, it is necessary
to determine the energy dependence of the relaxation time by
plotting the electronic mobility (μe) as a function of temper-
ature. As can be noticed in Fig. 2(b), μe is systematically
larger in p-type compositions than in n-type compositions:
this point will be further discussed. Between 10 and 50 K, μe

weakly depends on temperature for both conduction types, as
expected in the case of holes / electrons predominantly scat-
tered by impurities in a degenerate semiconductor [32,33]. In
this last temperature range, the electronic relaxation time does
not depend on energy and can be described by the following
equation (Ref. [32]):

τi = τ 0
i

ci
, (5)

where ci is the impurity concentration in mol / mol Fe2VAl
and τ 0

i is a time coefficient in seconds, describing the relax-
ation time dependence on the impurity concentration. In the
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200 − 300 K temperature range for n-type samples and above
250 K for the p-type samples, μe displays the well-known
T−3/2 behavior, characteristic of charge carriers predomi-
nantly scattered by acoustic phonons [34]. The relaxation time
(τ ) dependence on the energy (ε) is hence well described for
n- and for p-type conduction in these previously mentioned
temperature ranges by the following relation [32,34]:

τp = τ 0
pε−1/2. (6)

For p-type samples between 200 and 250 K, μe displays a
thermal behavior intermediate between T 0 and T −3/2, charac-
teristic of hole scattering by both the impurities and acoustic
phonons. In this case, the electronic relaxation time is a
Matthiesen combination of the two scattering processes:

1

τ
= 1

τi
+ 1

τp
(7)

It is incorrect to implement a single parabolic band model
at 300 K for these compounds because some of them are
already in the intrinsic regime, with two kinds of carriers
contributing to the electronic transport at this temperature
[Figs. 1(a) and 1(b)]. A better temperature to implement
such a simple model in this Fe2V1+xAl1−x series is a lower
temperature. Indeed, transport dominated by a single type of
carriers is confirmed for several samples with (−0.1 < x <

0.1) in the [10; 250 K] temperature range by the temperature-
independent character of the charge carrier concentration
displayed in Fig. 2(a). Similarly, Seebeck coefficient versus
temperature [Fig. 1(a)] shows no slope change that would
have been characteristic of bipolar transport in the [120–270
K] temperature range, for none of the samples. We hence
chose T = 220 K to implement a single-band model because
at this temperature, a single type of carrier dominates the
electronic transport for both types of conduction.

For n-type compositions at T = 220 K, electrons are
predominantly scattered by [34,35] the phonons. Seebeck
coefficient (α), the electron density (n), the electrical con-
ductivity (σ ) and the electronic mobility (μe) are thus related
to the reduced chemical potential (η = μ

kBT ) by the following
equations [35]:

αn = −kB

e

(
2

F1(η)

F0(η)
− η

)
, (8)

n or p = 4π

(
2m∗kBT

h2

) 3
2

F1
2
(η), (9)

σ = 8πe2τ 0
p (T )

3

(
2

h2

) 3
2

(m∗)
1
2 kBT F0(η), (10)

μe = 2eτ 0
p (T )

3m∗(kBT )1/2

F0(η)

F1
2
(η)

, (11)

where the Fq are Fermi integrals, kB the Boltzmann’s constant,
e the elementary charge, h the Planck’s constant. The Fermi
integrals are defined by the expression:

Fq(η) =
∫ ∞

0

xq

[1 + e(x−η)]
dx, (12)

where x = ε
kBT is the reduced energy.

For p-type compositions at 220 K, both impurities and
phonons scatter the holes. The Seebeck coefficient is thus

given by the following expression [36]:

αp = ∫∞
0 (ε − μ)ε3/2τ (ε)

(− ∂ f0

∂ε

)
dε

eT ∫∞
0 ε3/2τ (ε)

(− ∂ f0

∂ε

)
dε

(13)

After some algebra, it can be transformed into

αp = kB

e

(
G5/2(η)

G3/2(η)
− η

)
, (14)

where Gq are integrals defined by

Gq(η) =
∫ ∞

0

xqe(x−η)

[1 + e(x−η)]2[ ci

τ 0
i

+ (kBT )1/2x1/2

τ 0
p

]dx. (15)

At 10 K, as already stated, electrons or holes are pre-
dominantly scattered by the impurities and the mobility can

be expressed as μe = eτ 0
i

m∗ci
[35]. A linear fit to 1/μe (values

extracted from Fig. 2) versus ci = x(Al) (plot not shown)

yields eτ 0
i

m∗ = 4.85 cm2 V−1s−1 and a reliability factor of 0.998,
validating Eq. (5). At high temperature, electrons are predom-
inantly scattered by the phonons and the mobility is given by
Eq. (11). Taking the ratio of mobility at 10 K and temperature
T eliminates m∗ and leads to

μe(10 K )

μe(T )
= 3τ 0

i

2ci

(kBT )1/2

τ 0
p (T )

F1
2
(η)

F0(η)
(16)

and to

R(T, η) = ci

τ 0
i

τ 0
p (T )

(kBT )1/2 = 3μe(T )

2μe(10 K )

F1/2(η)

F0(η)
. (17)

Equation (17) can be used to approximate R(T,η) at 220 K
by the expression

R(220 K, η) ≈ 3μe(220K )

2μe(10 K )

F1
2
(η)

F0(η)
. (18)

Substituting Eq. (18) in Eqs. (14) and (15) gives

αp(220 K ) ≈ kB

e

(
H5/2(η)

H3/2(η)
− η

)
(19)

with

Hq(η) =
∫ ∞

0

xqe(x−η)

[1 + e(x−η)]2[ 3μe(220 K)
2μe(10 K)

F1
2

(η)x
1
2

F0(η)

]dx. (20)

For both Fe2V0.93Al1.07 and Fe2V0.95Al1.05 displayed in
Fig. 2(b), μe(220 K )

μe(10 K ) = 0.48 experimentally.
Using the same formalism for σ and μe leads to

σ = 8πe2τ 0
p (T )

3

(
2

h2

) 3
2

(m∗)
1
2 kBT H3/2(η), (21)

μe = 2eτ 0
p (T )

3m∗(kBT )1/2

H3/2(η)

F1
2
(η)

. (22)

For p-type and n-type conduction, a value of the density of
states effective mass can be derived from a fit of Eqs. (9) and
(19) and (9) and (8), respectively, to a plot of the experimental
Seebeck coefficient versus charge carrier’s density data (the
so-called Ioffe-Pisarenko plot) as shown in Figs. 3(a) and
4(a). Not only the data (gathered in Table I) for the p- and
n-type Fe2V1+xAl1−x compositions are plotted but also those
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FIG. 3. (a) Seebeck coefficient (α) as a function of the hole
concentration, at 220 K. Red solid circles: experimental data for
Fe2V1−xAl1+x (x > 0.0); red open circles: experimental data for
Fe2.08V0.92Al, Fe2.04V0.96Al and Fe1.92VAl1.08; continuous black line:
fit with a single parabolic band and “two t” model and an effective
mass m∗ = 3.2me. (b) Power factor (PF ) at 220 K as a function
of the hole concentration. Solid symbols: experimental data; solid
line: fit with single parabolic band model and an effective DOS mass
m∗ = 3.2me and a relaxation time parameter τ 0

p = 1.7 × 1023 J1/2 s.

for some compositions of the Fe2−xV1+xAl and Fe2+xVAl1−x

series (see Table II) since FeV(VFe) and AlFe(FeAl) are
electron acceptor (donor) antisite defects, as well as n-type
Fe2VAl0.9Si0.1. and Fe2V0.95Ta0.05Al0.9Si0.1 extracted from
Ref. [13]. Other compositions reported in Ref. [14] were
discarded because their Hall coefficient changed sign in the
100 − 300 K temperature range, evidencing the dual nature
of their carriers.

On the one hand, an initial fit (not shown) of the less
accurate “single τ” model [Eq. (8)] yielded m∗ = 3.7me ±
0.3me. (me is the bare electron mass) for the p-type sam-
ples (Fe2V1+xAl1−x x < 0.0, Fe2.08V0.92Al, Fe2.04V0.96Al and

FIG. 4. (a) Seebeck coefficient (α) as a function of the elec-
tron concentration, at 220 K. Blue solid circles: experimental data
for Fe2V1+xAl1−x (x > 0.0); blue open circles: experimental data
for Fe2VAl0.9Si0.1 (Ref. [13]) and Fe2.08VAl0.92; green solid circle:
experimental data for Fe2V0.95Ta0.05Al0.9Si0.1 (Ref. [13]); lines: fits
with a single parabolic band model and an effective DOS mass
m∗ = 11.5me (dashed black), m∗ = 13.7me (continuous black) and
m∗ = 16.4me (dashed red line). (b) Power factor (PF ) at 220 K as a
function of the hole concentration. Solid symbols: experimental data;
solid line: fit with a single parabolic band model, an effective mass
m∗ =13.7me and a relaxation time parameter τ 0

p = 1.0 × 1023 J1/2 s.

Fe1.92VAl1.08). Nonetheless, as previously discussed, p-type
samples are more rigorously represented by a m∗ = 3.2me ±
0.3me theoretical curve derived from the “two τ” model
[Eq. (19)], regardless of the nature of their off-stoichiometry
[Fig. 3(a)]. This last value is significantly smaller than the
m∗ = 4.7me value derived by Anand et al. [15] based on
assumed values of hole concentrations. On the other hand, the
n-type samples [Fig. 4(a)] cannot be represented by a single
density of states effective mass. The n-type Fe2V1+xAl1−x

TABLE I. Electronic transport coefficients measured at 220 K in Fe2V1+xAl1−x (−0.1 < x < +0.1). Hole concentrations are positive
whereas electron concentrations are negative.

Compositions p/n (1020 cm−3) α(µV K−1) σ (S m−1) PF (mW m−1 K−2) μe(cm2 V−1 s−1)

Fe2V0.93Al1.07 23 32.5 12.2 105 1.3 33.4
Fe2V0.95Al1.05 15 40.1 10.8 105 1.8 45.6
Fe2V0.97Al1.03 12 45.8 9.7 105 2.1 50.6
Fe2V0.985Al1.015 6.7 80.4 4.1 105 2.7 38.4
Fe2V1.02Al0.98 −8.6 −151.2 2.5 105 5.8 18.3
Fe2V1.03Al0.97 −14 −143.9 3.2 105 6.6 14.3
Fe2V1.08Al0.92 −36 −91.8 6.03 105 5.0 10
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TABLE II. Charge carrier concentration, Seebeck coefficient and
Hall mobility at 220 K in chosen Fe2−xV1+xAl and Fe2+xVAl1−x

compositions, in Fe2VAl0.9Si0.1 and Fe2V0.95Ta0.05Al0.9Si0.1. The
data for these two last composition are extracted from Ref. [13]

p/n α µe

Compositions (1020 cm−3) (µV K−1) (cm2 V−1 s−1)

Fe2.04V0.96Al 4.4 96.2 23.3
Fe2.08V0.92Al 6.3 79.2 12.7
Fe1.92VAl1.08 6.8 76.4 8.0
Fe2.08VAl0.92 −18.6 −110.1 3.9
Fe2VAl0.9Si0.1 −21.0 −97.3 19.2
Fe2V0.95Ta0.05Al0.9Si0.1 −16.6 −151 16.0

x = 0.03 and 0.05 samples are well represented by a m∗ =
13.7me ± 0.3me theoretical curve whereas the Fe2V1.02Al0.98,
Fe2.08VAl0.92 and Fe2VAl0.9Si0.1 samples are represented
by m∗ = 11.5me ± 0.3me, a value significantly smaller. This
implies that the effective mass increases with the electron
concentration and that probably, VAl defects also increase
the effective mass. This qualitatively agrees with past DFT
calculations [31] and to photoemission spectroscopy exper-
iments [37], which indicated that VAl defects increase the
band gap and modify the relative position of the conduc-
tion bands. This increase of the effective mass upon VAl

self-doping thus probably arises from relative band displace-
ments or “band convergence”. This scenario has also been
invoked in Ref. [13] to explain the increase of power factor
in Fe2V1−xTaxAl1−ySiy. An effective mass m∗ = 16.4me ±
0.3me, even larger than in Fe2V1+xAl1−x, can be estimated
from the Fe2V0.95Ta0.05Al0.9Si0.1 datum extracted from the
former reference, confirming a change in the structure of the
conduction bands in Fe2V1−xTaxAl1−ySiy upon Ta substitu-
tion.

These values of conduction band effective mass are larger
than what is commonly observed in typical thermoelectric ma-
terials (m∗ = 3.2me for n-type CoSb3 [38,39] or m∗ = 2.9me

for ZrNiSn [40]) but it is not so unusual since m∗ = 10me

was reported in the p-type half-Heusler alloy FeNbSb [41].
It also agrees well with the value m∗ = 12.8me derived in
Refs. [15,16] and to a lesser extent with m∗ = 10me reported
in Ref. [13] for the Fe2VAl CBs. It is thus noteworthy that
the effective mass depends on the nature of the dopant in
n-type Fe2VAl, whereas p-type Fe2VAl seems to be less sen-
sitive. Finally, the plots of Seebeck coefficient versus valence
electron count found in various references [15,42] for various
dopants have often been considered as generic for Fe2VAl.
This assertion should be revised for the n-type portion of these
plots, given the dependence of the effective mass with the
nature of the dopants in the CB.

As mentioned in Sec. II, we tried to corroborate these
experimental effective masses with DFT calculations. The
results for the Al-rich or p-type compound are reported in
Figs. 5(a) and 6(a), where the DOS and band structure cal-
culated for Fe2V0.96Al1.04 are plotted. Close to the Fermi
energy (EF ) the DOS arising from the V 3d (eg) dominated
conduction band which crosses EF around the X point, is
small compared to the DOS arising from the two Fe valence

FIG. 5. DFT-calculated density of states (DOS) as a function of
energy (E) in Fe2V0.96Al1.04 (a) and in Fe2V1.04Al0.96 (b). The red and
blue lines are fits with a parabolic DOS (see text) to the DFT results
for the Al-rich and V-rich composition, respectively.

bands (3d t2g − 4p mixture), which cross the Fermi energy
around the �-point in the Brillouin zone. Indeed, after fit-
ting parabolic DOS to the valence and conduction bands and
integrating from their edges to the Fermi energy leads to
0.05 ± 0.01 holes / supercell and to 0.04 ± 0.01 electrons /
supercell, respectively. This slight imbalance in the number of
holes and electrons combined with the larger hole mobility
leads to Fe2V0.96Al1.04 being p type. At E − EF ∼ 0.4 eV,
the conduction DOS steeply increases due to nondispersing
Fe 3d-bands (nonbonding eg) whereas the valence DOS also
increases at E − EF ∼ −0.25 eV because of a less dispersing
Fe 3d-band (t2g), which peaks at the X point. The valence
DOS in Fig. 5(a) is fitted to Eq. (1). The experimental hole
concentration of 1.5 × 1021 cm−3 (Table I) leads to an energy
region for the fit of the valence band directly below the Fermi
energy (EF ) and this fit gives a value of Avb equal to 30 eV−3/2.
This results in an effective mass for the p-type compound
of 2.4me, which differs slightly from the experimental value
(3.2me). This small discrepancy could arise from two differ-
ent reasons: (i) an inaccurate calculation of the dispersion
of the two Fe valence bands culminating slightly above EF

at � in Fig. 6; (ii) a misestimation of the calculated posi-
tion of the less dispersing bands (∼−0.2 −0.3 eV below the
Fermi energy) (Fig. 6). In assumption (ii), the contribution
of the bands to the transport would increase with increasing
hole concentration. This would lead to an increase of the
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FIG. 6. Panel (a) band structure of Fe2V0.96Al1.04, the arrow indi-
cates the two hole pockets at �. (b) band structure of Fe2V1.04Al0.96.
In both panels, the RedGreenBlue (RGB) index of the color (RGB
color model, Ref. [50]) of the closed circle is generated by adding
the weighted atomic contribution to the band. 100% Fe is “bright
blue” (0,0,255), 100% V is “bright red” (255,0,0) and 100% Al is
“bright green” (0,255,0). Purple bands correspond to nearly 50%
Fe + 50% V; dark blue bands correspond to approximately 80%
Fe + 15% V + 5% Al. There is no green symbol due to the weak
Al contribution at these energies.

effective mass with this last parameter. However, a slight
decrease is noticeable in Fig. 3(a), which is compatible with
calculations of the DOS effective mass in Fe2V0.93Al1.07 with
a larger concentration of holes (exp. p = 2.3 × 1021 cm−3):
m∗

v = 2.0me. Assumption (i), e.g., inaccurate calculated dis-
persion is thus the most probable explanation for the slight
effective mass discrepancy. It also suggests that the less dis-
persing bands (∼−0.2 eV below the Fermi energy) do not take
part in the electronic transport of these p-type Fe2V1+xAl1−x

compositions.
The results for the V-rich or n-type compound are reported

in Figs. 5(b) and 6(b). Compared to p-type Fe2V0.96Al1.04,
the DOS in n-type Fe2V1.04Al0.96 weakly changes [Fig. 5(b)].
Going more into the details by examining the band structure,
the Fe-valence bands do not cross anymore the Fermi energy
whereas the conduction bands (V 3d-eg and Fe 3d-eg) are
slightly shifted upward, in agreement with Ref. [28]. We ad-
justed the energy region of the fit to the experimental charge
carrier concentration of 1.5 × 1021 cm−3 (Table I), e.g. for
E − EF � 0.4 eV where the DOS steeply increases, lead-
ing to ECB = +0.4 eV as shown in Fig. 5(b). For the same
carrier concentration, the fitted VB DOS is found directly

FIG. 7. Specific heat (Cp) divided by T plotted as a function of
T 2 for Fe2V0.93Al1.07 and Fe2V1.08Al0.92. Open triangles and circles:
our measured values. Continuous lines: fit with the equation Cp =
γ T + βT 3 + δT 5 of the present measurements. Open squares and
black line: measurements extracted from Lue et al. [45].

below EF = EV B = 0 eV. This difference arises because the
VB DOS is larger than the CB DOS in the close vicinity of
EF (Fig. 5). The value fitted for ACB is 414 eV−3/2 [Eq. (2)],
which yields a value of m∗ equal to 13me [Eq. (4)], in very
good agreement with the experimental results. This high value
of the effective mass for the n-type compound can be traced
back to the flat Fe-bands (Fe eg character) that can be seen
at 0.4 eV in the band structure displayed in Fig. 6. The DOS
effective mass has also been calculated in Fe2V1.07Al0.93 with
a larger electron concentration (exp. N = 3.6 × 1021 cm−3): a
larger value m∗

v = 14.2me was obtained. This slight increase
for the calculated electron mass indeed agrees with the exper-
imental data, which points towards an increase of the effective
mass with both electrons and VAl defects concentrations.

C. Specific heat

Since the Seebeck coefficient is a measure of the entropy
per charge carrier in a conductor [43], it is related to the
electronic specific heat. They are both related to the density of
states at the Fermi energy and in the “effective mass picture”
already implemented for the Seebeck coefficient, the specific
heat also depends on the effective mass [44]. It can be derived
from the Sommerfeld coefficient (γ ) of the electronic contri-
bution (γ T) to the specific heat at constant volume, very well
approximated in a solid by the specific heat at constant pres-
sure (Cp), more easily measured. Usually, Cp is approximated
by the classical relation [44]:

Cp = γ T + βT 3, (23)

where the second term arises from the phonon contribution.
β is related to the Debye temperature (θD) by θD = ( 234R

β
)
1/3

.
Both γ and β can thus be determined by a plot of Cp(T )/T
versus T 2 as shown in Fig. 7 for the p-type Fe2V0.92Al1.08
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TABLE III. Values of the coefficients of the equation Cp = γ T + βT 3 + δT 5 fitted to the measurements displayed in Fig. 5.

Compositions γ (mJ/mol−1 K−2) β (mJ/mol−1 K−4) θD (K ) δ (mJ/mol−1 K−6)

p-type Fe2V0.92Al1.08 7.8 0.026 406 1.48 × 10−5

n-type Fe2V1.07Al0.93 11.5 0.029 421 1.81 × 10−5

and n-type Fe2V1.07Al0.93 samples. In both samples below
7 K, Cp(T )/T shows an upturn, which is, as can be noticed in
Fig. 7, very similar to the one previously observed in Fe2VAl
(Ref. [45]). In the previous reference, it has been ascribed to a
magnetic contribution, most probably arising from magnetic
defects, and modeled by a two-level Schottky anomaly. In
Fig. 7, for temperatures larger than T 2 ∼ 64 K or T � 8 K
it is negligible, and the specific heat can hence be modeled by
the equation given in Ref. [45]:

Cp = γ T + βT 3 + δT 5, (24)

which is more accurate than Eq. (23) since it incorporates
a T 5 term that is a correction to the main T 3 phonon con-
tribution. The fits to the data displayed in Fig. 7 yield the
values compiled in Table III. On the one hand, the fit-
ted Debye temperatures are both close to the value θD =
450 K reported in Ref. [45] for Fe2VAl. On the other hand,
the fitted Sommerfeld coefficients are significantly larger
in the present off-stoichiometric samples than in pristine
Fe2VAl (γ= 1.5 mJ mol−1 K−2) [45], reflecting the larger
charge carrier concentration. A larger γ value is found in
the n-type composition (11.5 mJ mol−1 K−2) than in the p-
type one (7.8 mJ mol−1 K−2). But it cannot be concluded
straightforwardly that the effective mass is larger in n-type
Fe2V1.07Al0.93 since D(EF ) not only depends on the effective
mass but also on the position of the Fermi energy EF in the
band. The Sommerfeld coefficient is indeed related [46,47] to
the density of states by the equation:

γ = (1 + λ)
π2

3
k2

BD(EF ), (25)

where λ is the electron-phonon and / or electron - electron
interaction parameter. Assuming that the electron-phonon and
/ or electron - electron interaction parameter is the same
in both n-type and p-type samples, the ratio of Sommer-
feld coefficients γn

γp
is given by the simple expression γn

γp
=

Dn(EFn )
Dp(EF p) , where Dp and Dn are the densities of states and EF p

and EFn are the positions of the Fermi energy in p-type
Fe2V0.92Al1.08 and n-type Fe2V1.07Al0.93 respectively. Both
these quantities can be estimated from the DOS calculated
by DFT in Fe2V0.96Al1.04 and Fe2V1.04Al0.96 (Fig. 5). By
integrating the DOS up to the energy E and dividing by the
supercell volume (Vsc = 1250.05 Å3), one obtains the num-
ber of charge carriers per unit of volume at 0 K with an
energy smaller than E (N(E)). Since the Hall charge car-
rier concentrations measured below 220 K does not depend
on temperature, N(E) can be equated to these concentra-
tions in p-type Fe2V0.92Al1.08 and n-type Fe2V1.07Al0.93 (p =
2.2 × 1021 cm−3 and n = 3.6 × 1021 cm−3, respectively) and
the corresponding Fermi energies EF p, EFn and densities
of states Dp(EF p) and Dn(EFn) can thus be derived. In
p-type Fe2V0.92Al1.08, EF p = −0.26 ± 0.02 eV, being in
the DOS region where m∗

v = 2.4me and Dp(EF p) = 27 ±

5 states eV−1supercell−1. In n-type Fe2V1.07Al0.93, EFn =
+0.47 ± 0.02 eV is in the DOS region where m∗

c = 13.0me

and Dn(EF p) = 52 ± 5 states eV−1supercell−1, leading to
Dn(EFn )
Dp(EF p) = 1.9 ± 0.5, in fair agreement with the experimental

value of 1.5 for γn

γp
. This calculation strongly suggests that

γn > γp does not arise from the relative position of the Fermi
energy in the n- and p-type samples but from the DOS and
effective mass being larger in n- than in p-type Fe2VAl, in
agreement with the transport measurements.

D. Electronic mobility and power factor at 220 K

The values of m∗ are now used to calculate the elec-
trical conductivity [Eq. (10)] and power factor PF = α2 σ

at 220 K for both type of conductions in the entire range
of hole and electron densities. The samples from the other
Fe2+xV1−xAl and Fe2+xVAl1−x series, which had been pre-
viously used in the Ioffe - Pisarenko plots [Figs. 3(a) and
4(a)] were discarded because, as already noticed in Ref. [14],
they display electronic mobility values smaller than the main
Fe2V1+xAl1−x series. In the former reference, this differ-
ence in electronic mobility between series has been ascribed
to electron scattering by magnetic and / or new in-gap
states arising from antisite defects (FeV or FeAl for in-
stance). In p-type Fe2VAl, to adjust the calculations to μe =
33.4 cm2 V−1s−1 when p = 2.3 × 1021 cm−3, the experimen-
tal value of electronic mobility found in Fe2V0.97Al1.03, the
parameter τ 0

p was set to the value τ 0
p = 1.7 × 10−23 J1/2 s.

The calculated and experimental power factors are presented
in Fig. 3(b), highlighting a good agreement between them.
A noticeable maximum PFmax = 4.4 mW m−1 K−2 at 220 K
would be reached if the hole density were popt = 1.3 ± 0.3 ×
1020 cm−3. Fe2V0.985Al1.015 is our best p-type sample, which
displays PFmax = 2.7 mW m−1 K−2 for p = 6.7 × 1020 holes
cm−3 whereas a similar value of 2.5 mW m−1 K−2 at 220 K is
reported in the literature in p-type Fe2V0.97Al1.03 [17]. The
optimization of PF in p-type Fe2VAl is thus difficult and
has not yet been achieved, despite larger values of electronic
mobility for this conduction type (Table I). This is due to
the occurrence of intrinsic defects such as pairs of AlV and
VAl defects [29]. These electron acceptors and donors respec-
tively, can easily produce in stoichiometric Fe2VAl samples a
hole density pint ∼ 3 × 1020 holes cm−3 at 300 K [13,48],
which is twice larger than the optimum value. In n-type
Fe2VAl, the PF (n) data shown in Fig. 4(b) are well adjusted
by the τ 0

p = 1.0 × 10−23 J1/2 s value. Before discussing the
optimized PF , this last value of the relaxation time parame-
ter permits us to calculate the ratio of the electron mobility
in p-type and n-type Fe2VAl. Starting from Eqs. (11) and
(22), at a fixed temperature and chemical potential, the the-
oretical mobility ratio (holes over electrons) is simply given

by μev

μec
= τ 0

pv

τ 0
pc

m∗
c

m∗
v

H 3
2

(η)

F0(η) . The ratio
H 3

2
(η)

F0(η) does not vary with η
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within the range of reduced chemical potentials (4.5 − 14)
corresponding to the range of charge carrier concentrations re-
ported in Table I (6.7 × 1020–3.6 × 1021 cm−3). In this range,

it is equal to
H 3

2
(η)

F0(η) = 0.67 and this leads to μev

μec
= 4.9 in

fair agreement with the experimental mobility ratio μep

μen
= 3.3

derived from Table I. This comparison underlines the strong
influence of the effective mass on the respective electronic
mobility in p- and n-type Fe2VAl. Finally, the calculated
PF(n) reaches a large PFmax = 6.8 mW m−1 K−2 at nopt =
1.0 ± 0.2 × 1021 cm−3 (Fig. 4(b)). This large value of the
optimum electron concentration when compared to other ther-
moelectric materials is directly related to the large density of
states effective mass for the conduction band: in n-type PbTe
m∗ = 0.5me and nopt = 4 × 1019 cm−3 [49], in n-type CoSb3

m∗ = 3.2me and nopt = 2 × 1020 cm−3 [38], and in p-type
FeNbSb m∗ = 10me and popt = 1021 cm−3. It is also approxi-
mately three times larger than the intrinsic hole concentration
pint and it thus makes the optimization of n-type Fe2VAl easier
than its p-type counterpart. The composition Fe2V1.03Al0.97 is
indeed nearly optimized in the present work since it displays
PF = 6.6 mW m−1 K−2 at 220 K for n = 1.4 × 1021 cm−3.
As already discussed in the introduction, such large values of
power factor have also been reported in Fe2V1.05Al0.95 [17]
and in Fe1.98V1.02Al0.9Si0.1 [11] but with no measurements of
the electron concentration. PF in n-type Fe2V1+xAl1−x is now
fully optimized.

IV. CONCLUSIONS

Maximum power factor values PF = 3.2 mW m−1 K−2

and PF = 6.7 mW m−1 K−2 are found at 325 and at 250 K

in p- and n-type Fe2V1+xAl1−x, respectively. The following
values of density of states effective mass are derived from
fits of a parabolic band model to experimental Ioffe-Pisarenko
plots for these compounds: m∗

v = 3.2me and m∗
c = 13.7me for

the holes and electrons, respectively. The values of DOS mass
in good agreement with the experimental ones are obtained
from DFT calculations in p-type Fe2V0.96Al1.04 and n-type
Fe2V1.04Al0.96: m∗

v = 2.4me and m∗
c = 13.0me. A larger Som-

merfeld coefficient of the electronic specific heat is measured
in n-type Fe2V1.07Al0.93 than in p-type Fe2V0.92Al1.08, con-
sistent with the respective charge carrier effective masses. On
the one hand, comparison of the parabolic band model with
experimental power factor data shows that optimization of
the latter in p-type Fe2V1+xAl1−x would require the synthe-
sis of a sample with a hole concentration popt = 1.3 ± 0.3 ×
1020 cm−3, a value two to three times smaller than the lowest
values experimentally achieved in the literature, due to too
large concentrations of antisite defects. On the other hand,
the same comparison shows that n-type Fe2V1.03Al0.97 which
displays PF = 6.6 mW m−1 K−2 for n = 1.4 × 1021 cm−3 is
optimized. This difference between p-type and n-type con-
duction in Fe2V1+xAl1−x is of course related to the different
effective mass of their charge carriers [50].
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