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Analytic elastic coefficients in molecular calculations: Finite strain, nonaffine displacements,
and many-body interatomic potentials
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Elastic moduli are among the most fundamental and important properties of solid materials, which is why
they are routinely characterized in both experiments and simulations. While conceptually simple, the treatment
of elastic coefficients is complicated by two factors not yet having been concurrently discussed: finite-strain
and nonaffine, internal displacements. Here, we revisit the theory behind zero-temperature, finite-strain elastic
moduli and extend it to explicitly consider nonaffine displacements. We further present analytical expressions
for second-order derivatives of the potential energy for two-body and generic many-body interatomic potentials,
such as cluster and empirical bond-order potentials. Specifically, we revisit the elastic constants of silicon, silicon
carbide, and silicon dioxide under hydrostatic compression and dilatation. Based on existing and recent results,
we outline the effect of multiaxial stress states as opposed to volumetric deformation on the limits of stability of
their crystalline lattices.
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I. INTRODUCTION

Elastic constants, also known by the better terms elastic
moduli or elastic coefficients, describe the stress needed to
reversibly strain a solid. If the solid is already strained, they
correspond to the extra stress needed to deform it further.
Elastic coefficients are among the most fundamental and im-
portant properties of solids and are hence routinely computed
in atomic-scale calculations. Unfortunately, a rigorous com-
putation of these deceivingly simple properties is complicated
by two factors. First, neither stress nor strain are uniquely
defined [1,2], except in the immediate vicinity of zero external
stress, so numerous definitions of elastic tensors exist. Which
of the various definitions of finite-strain elastic coefficients
matters depends on the property of interest. For example,
the elastic tensors used to deduce the generally polarization-
and direction-dependent sound velocity [3–6] are different
from those used to analyze lattice stability [6–15], which,
according to Born, necessitates the elastic tensor to be positive
definite. Second, atomic positions undergo nonaffine internal
relaxations in response to a macroscopic shape change, except
in the case of highly symmetric crystals for which all Wykoff
positions are fully determined by symmetry even in the de-
formed state [16]. An extreme case for solids with nonaffine
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internal relaxations are amorphous materials for which no
single atomic position can be deduced from symmetry.

While the effect of thermal fluctuations on elastic coeffi-
cients has become text-book material [17], we are not aware of
similarly comprehensive, let alone comprehensible works on
the interplay of elastic coefficients and finite stress. For exam-
ple, we do not know of any prior work clearly illustrating the
existence and uniqueness of the generalization of the enthalpy
or Gibb’s free energy when a nonisotropic external stress is
applied. Moreover, a fast and numerically stable evaluation of
elastic coefficients based on second-order derivatives of the
potential has so far been achieved only for a rather limited
class of potentials, see, e.g., Ref. [[17], Chap. 11.5.2] and
Refs. [18–24]. The derivations in these works pertain to fixed,
specific functional forms prohibiting results to be transferred
between different functional forms.

The purpose of this paper is to further finite-strain elasticity
in the presence of external stresses and nonaffine displace-
ments. To this end, we first revisit definitions of strain and
stress and their relation to thermodynamic potentials in Sec. II.
This includes a discussion of how the Gibbs free energy can
be properly generalized when the stress is not isotropic. More-
over, elastic tensors are introduced as second-order derivatives
of thermodynamic potentials and the Born-stability crite-
ria are reassessed, after the determination of finite-strain,
nonaffine displacements was generalized with a variational
formulation inspired by (continuum) stochastic homogeniza-
tion techniques. A unified treatment for calculating stress and
elastic tensor elements is derived in Sec. III. It exploits a
recently suggested generic functional form containing various
interaction potentials, such as the embedded-atom method,
Stillinger-Weber, Tersoff-Brenner, Axilrod-Teller-Muto, and
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cluster potentials [25]. The corresponding software imple-
mentation is available within the open-source MATSCIPY

library [26]. After introducing numerical methods in Sec. IV,
we explore the lattice stability of silicon, silicon carbide, and
silicon dioxide crystals under hydrostatic and multiaxial stress
in Sec. V and conclude in Sec. VII.

II. FINITE DEFORMATION AND
THERMODYNAMIC POTENTIALS

A. Finite strain

To arrive at a self-contained treatise, we begin by revisiting
and summarizing part of the pertinent literature on finite-strain
elasticity. A more detailed presentation is given in Ref. [17],
which will be referred to throughout this paper. We assume
a periodic simulation cell in D dimensions, which can also
serve as a representative volume element (RVE). Its geometry
is described by the h matrix [27], h ≡ (�a1, . . . , �aD), whose
D columns �ai are D-dimensional vectors spanning the simu-
lation cell. The volume of the simulation cell is then given
by V = det(h). Positions of atoms in the simulation cell can
be stated in terms of either true coordinates, �ri, or unitless,
scaled coordinates, �si. True and scaled coordinates of the
i = 1, . . . , N atoms in the simulation cell are related through
the equation �ri = h · �si.

Let us define one particular h matrix as the reference
h matrix and indicate its reference status with a circle as h̊.
Similarly, we assume reference scaled atomic coordinates,

�̊si. The effect of an affine deformation of the simulation cell
can be described by the deformation gradient F acting on
the reference cell according to h = F · h̊ while leaving the

�̊si unchanged, �si ≡ �̊si. In the affinely deformed cell, atomic
coordinates thus read

ri = F · �̊ri or riα = Fαβ r̊iβ, (1)

where �̊ri = h̊ · �̊si. We have written Eq. (1) in tensor and index
notation and use Einstein summation convention for repeated
indices in the latter. Atoms are identified by Roman indices,
directions by Greek indices. In tensor notation, there are no
Greek indices but an arrow indicates a D-vector and an un-
derline a D × D-matrix. We will switch between tensor and
index notation throughout this paper, using the notation that
we deem appropriate for each equation.

In the absence of external (magnetic, electric, or strong
gravitational) fields, the potential energy is translationally
and rotationally invariant, a property that is called objec-
tivity in the field of mechanics. The total potential energy
of a system can then only depend on the set of distances
ri j = |�ri − �r j | rather than on the absolute positions. This is
also true for potentials beyond the pair-potential approxi-
mation, since knowledge of all ri j defines the system up to
translation, rotation, and handedness.

It is important to note that absolute distances transform
as Ri j ≡ r2

i j = �̊ri j · F T · F · �̊ri j , with the right Cauchy–Green
deformation tensor F T · F . The strain in the system is often
characterized by how much this deformation tensor deviates
from the identity matrix, 1, giving the Green–Lagrange strain

tensor [28]:

η ≡ 1
2 (F T · F − 1). (2)

The Green–Lagrange strain is sometimes denoted by the sym-
bol E in the solid mechanics literature.

We can write the deformation gradient in terms of the h
matrix as

F = h · h̊
−1

.

The Green–Lagrange strain tensor then becomes

η = 1
2 (h̊

−T · hT · h · h̊
−1 − 1). (3)

The Green–Lagrange strain tensor is hence always defined
with respect to a reference h matrix. Moreover, the Green-
Lagrange strain tensor is independent of rotation, that is, η

remains unchanged upon rotation of the simulation cell. This
can be seen when rotating each vector spanning the h matrix
in Eq. (3) through the operation R · h, where R is a rotation
matrix fulfilling RT · R = 1.

Another measure for the deformation is the small–strain
tensor [28]

ε ≡ 1
2 (F + F T ) − 1, (4)

which does not remain unchanged under a rotation of the h
matrix. Finally, for symmetric F = 1 + ε,

ηαβ = εαβ + 1
2εαγ εγβ,

from which the partial derivative of ηαβ with respect to εμν

can be obtained as

∂ηαβ

∂εμν

= δαμδβν + 1

2
(δαμενβ + εαμδβν ).

Thus, for a second-order derivative of an arbitrary function f ,
the following chain-rule applies:

∂2 f

∂εαβ∂εμν

∣∣∣∣
ε=0

= ∂2 f

∂ηαβ∂ημν

∣∣∣∣
η=0

+ ∂ f

∂ηαμ

∣∣∣∣
η=0

δβν.

B. Internal and free energy

Assuming the initial structure to be fully relaxed mechani-
cally, we define a zero-temperature energy

U (N, h) = min
{�si}

u({�si}, h),

where U (N, h) is the internal energy. Here, the minimization
is meant to implicitly contain the instruction “next available
minimum” along an adiabatic change of the h matrix from h̊
to h. Unlike for a global minimum, this means that U (N, h)
depends on the atomic coordinates in the initial reference
configuration and on the path from h̊ to h.

In a thermal (equilibrium) system, the instantaneous energy
has to be replaced with the Helmholtz free energy A, which
would be the proper thermodynamic potential that the internal
coordinates would minimize in thermal equilibrium at the
fixed h matrix. For a classical, single-atomic system, it is
formally defined as

A(N, T, h) = −kBT ln Z (N, T, h),

073603-2



ANALYTIC ELASTIC COEFFICIENTS IN MOLECULAR … PHYSICAL REVIEW MATERIALS 7, 073603 (2023)

with

Z (N, T, h) = 1

N!

1

λ3N
B

∫
d�ce−u(�c,h)/(kBT ). (5)

General phase-space averages of an observable O are given by

〈O〉 = Z−1
∫

d�cO(�c, h)e−u(�c,h)/(kBT ). (6)

Here kBT is the thermal energy and λB the de Broglie wave-
length, while �c represents the configurational phase space
containing all Cartesian coordinates of the N atoms, which
are confined to the volume spanned by the h matrix.

When defining an elastic free energy of solids, it is gener-
ally necessary to constrain the phase-space integral in Eqs. (5)
and (6), since otherwise even macroscopic crystals would lose
their ability to withstand nonisotropic stress and consequently
fill any volume in a similar fashion as liquids do. This is be-
cause in true equilibrium, solids can release static stress over
long timescales, e.g., through the motion of lattice defects like
vacancies or dislocations. Thus, in the above definition of the
free energy, it is necessary to keep in mind the concept of
the separation of timescales and to restrict the integration over
phase space to only those configurations that can be reached
from the initial or reference configuration without having to
pass over (macroscopically) large energy barriers, as those
configurations are not reached by thermal fluctuations on an
experimental timescale. Alternatively, one could conduct the
phase-space integration within the harmonic approximation,
or restrict the integral to the configurations having fixed bond-
ing topography, or to basins in which the Hessian of the energy
with respect to (scaled) atomic coordinates is positive definite.
This then necessitates the introduction of additional collective
variables describing the current local minimum for which to
compute the free energy. Ultimately, a certain ambiguity for
the definition of a meaningful restricted free energy remains.
However, the supposedly justified hope is that final results do
not vary much between sensitive choices of the restriction.

To make the definition of an elastic free energy at finite
temperature more concrete, we constrain mean atomic posi-
tions of individual atoms, 〈�si〉 to �sc

i [29], and choose �sc
i such

that the constraint free energy, a({�sc
i }; h), is minimized. In a

purely harmonic solid, the �sc
i are the equilibrium positions

at zero temperature, but not generally in anharmonic solids.
At zero temperature, this free energy reduces to the internal
energy. In the following, we drop the explicit superscript
c from the equations, and implicitly refer to the constraint
variables when writing �si or �ri. To conclude, we assume not
only the internal but also the free energy to depend on some
(initial) reference configuration and provide definitions for
any arbitrary h matrix, including those where a given h matrix
is a strained configuration.

C. Stresses as conjugates to strain variables

Stresses can be defined as the first-order derivative of the
free energy with respect to a strain measure. This leaves differ-
ent stress tensors to be defined because different strain tensors
exist. Formally, the stress for an arbitrary structure is given by

ση ≡ 1

V

∂A({�si}, h)

∂η
, (7)

where the derivative is to be interpreted componentwise (i.e.,
it is the gradient). Internal relaxation of the atomic coordinates
during the small perturbation of the cell necessary to compute
the derivative do not matter if the �si minimize the free energy
for the cell h, which we will assume in the following. Relax-
ation only matters at second order and will affect the elastic
constants discussed below.

The stresses obtained from Eq. (7) differ for different strain
measures unless they are evaluated at zero strain. The nomen-
clature that was implicitly introduced uses upper indices to
indicate the definition of the stress, i.e., the strain tensor
with respect to which the first-order derivative of the free
energy was taken. At this point, we abstain from associating
pertinent expressions with the commonly used names, which
are Kirchhoff, nominal, first and second Piola–Kirchhoff, and
Biot stress [28].

D. Generalized Gibbs free energy

In thermodynamics, coupling a subsystem to an external
bath is commonly done such that at least one extrinsic ther-
modynamic variable associated with the subsystem, e.g., the
particle number N , is kept constant and at least one is relaxed,
such as volume V , while its conjugate variable, in this case the
hydrostatic pressure p, is constrained to a fixed value. In this
specific example, the extended Gibbs free energy,

g(N, p, T ;V ) = A(N,V, T ) + pV, (8)

would then be minimized with respect to the volume V yield-
ing the Gibbs free energy:

G(N, p, T ) = min
V

g(N, p, T ;V ). (9)

The value of V minimizing g(N, p, T ;V ), V eq, is the expecta-
tion or equilibrium value of the volume. Note that Eq. (9) has
formally the form of a Legendre transformation. Rather than
stating V eq as a function of p, it is common to express pressure
as a function of V eq, i.e.,

p ≡ p(V eq) = − ∂A

∂V

∣∣∣∣
V eq

,

which follows from the requirement that V minimizes the
extended Gibb’s free energy in Eq. (8) at V = V eq.

A physical realization of the just-described situation could
be a crystal—for the sake of simplicity described within the
harmonic approximation to avoid discussions related to bro-
ken ergodicity or separation of timescales—embedded into an
ideal gas, which acts as an infinitely large bath while exerting
the pressure p on the crystal. The term W = pV is the work
done on the gas to make room for the crystal or, alternatively,
the work done on the periodic boundary conditions imposed
in a molecular simulation. In the following, we will not dis-
tinguish between these two cases so the h matrix can be said
to span our subsystem, which thus is implicitly assumed to be
a parallelepiped.

The gas can freely flow around our crystal, thus imposing
purely hydrostatic conditions. Unfortunately, it is not possible
to construct a related expression for the work imposing a con-
stant nonisotropic stress (which cannot be realized by an ideal
gas as an embedding medium) that would be independent of
the current h matrix. A general path-independent work has to
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be a function of the h matrix so the most general extended
Gibbs free energy reads

g(h) = A(h) + W (h), (10)

with the hydrodynamic case leading to the special choice of
W (h) = p det(h). Before proceeding, we note that g(h) can
depend on many more variables than just N, T , which were
dropped in the discussion.

One (formally) possible dependence of the work on h
would be

W = −
11h11h̊22h̊33 − 
22h̊11h22h̊33 − 
33h̊11h̊22h33, (11)

and the parameters 
αβ could be associated with the coeffi-
cients of a target stress tensor. Minimizing Eq. (10) yields the
equilibrium h matrix heq. For h̊ = heq, 
 can be associated
with the externally imposed stress, which does not have to
be isotropic. Thus, to impose the three desired independent
stress-tensor eigenvalues of a symmetric stress tensor in a
molecular simulation using Eq. (11), it is necessary to know
ahead of time or, alternatively, to identify by recursion the
equilibrium h matrix [30]. Any deviation of h̊ from heq will
generally make the actual stress acting on the subsystem devi-
ate from the target stress. Note, however, that we can always
interpret 
 as the stress acting in some reference configura-
tion with h-matrix h. This type of stress is commonly called
the second Piola-Kirchhoff stress, as opposed to the true or
Cauchy stress that acts in the equilibrium configuration.

It can be helpful to realize that imposing a constant,
isotropic stress using Eq. (11) will lead to different thermal
fluctuations of the h matrix—and thus to different stability
conditions—than if the isotropic stress were imposed through
W = p det h. Both are determined by a second-order expan-
sion of g into h matrix elements. It may be concluded that
individual stress tensor elements cannot be used as indepen-
dent, intrinsic thermodynamic variables. The stress acting on
the surface of a subsystem embedded into an elastic medium
(the bath), say, an ideal, heterogeneous but anisotropic linearly
elastic manifold, is not necessarily identical to that asso-
ciated with a spatial average over the embedding medium.
Equilibrium merely requires ∇ · σ to vanish. In other words,
the (equilibrium) bath stress is not necessarily the one act-
ing on the surface of the subsystem. Even worse, in a real
subsystem/bath system, the subsystem would generally not
maintain the shape of a parallelepiped, due to stress singular-
ities near the edges and corners if subsystem and embedding
differ in their elastic properties. Any constant stress ensemble
must therefore make a simplifying assumption and rely on
a hypothetical stress boundary condition, which is unlikely
representative of the true situation.

To connect back to solid mechanics, we rewrite the ther-
modynamic potentials in terms of a strain and a reference
h matrix, h̊. Working with strain has the advantage that W
can be made objective. This eliminates degeneracy in the
thermodynamic potentials, but at the cost of introducing some
(artificial) reference h̊, which has no specific physical mean-
ing unless chosen at zero stress. A linear expansion of W in η

yields

W = −V̊ (
11η11 + 
22η22 + 
33η33), (12)

with V̊ = det h̊, but this expression only corresponds to
Eq. (11) to linear order.

E. Work on a hypothetical embedding medium

To generalize the above discussion to nonorthorhombic
deformation, described by some parameterized configuration
path h(s), or η(s), we adopt a continuum view on our RVE.
Specifically, our goal is to homogenize the response of the
molecular RVE to that of an equivalent homogeneous elastic
continuum. This implies that the deformation throughout the
homogenized RVE is affine. (For this discussion, it does not
matter that the deformation in our reference molecular RVE,
as discussed below, will be nonaffine.)

We now compute the work W performed on the embedding
medium along some parameterized path s at hypothetical con-
stant external stress τ . Note that s can be interpreted as a form
of time, in which case derivatives with respect to s becomes
rates and we will denote such derivatives with a dot, Ẇ =
dW/ds. As already discussed above, we call this embedding
medium “hypothetical”, because we ignore boundary effects
that may arise from a mismatch of elastic properties between
embedding medium and RVE. We also ignore stress gradients
that may be present in the embedding medium, depending on
the macroscopic (at infinity) boundary conditions. This hypo-
thetical embedding medium can be imagined as consisting of
infinitely repeated images of the RVE under perfectly matched
boundary conditions.

Assuming that the current configuration of the RVE has h
matrix h(s), the work W performed on the embedding medium
along an arbitrary path s is given by

W =
∫

dW =
∫

dsẆ (13)

where Ẇ is the power that is obtained by integrating the exter-
nal forces d �f (�r) = −τ · n̂(�r)d2r times the velocity �̇u over the
surface ∂h of our RVE. To simplify our notation we omit the
explicit dependency on �r for the remaining part of this section.
The rate of work Ẇ is

Ẇ =
∫

d �f · �̇u = −
∫

∂h(s)
d2r �̇u · τ · n̂,

where n̂ is the normal vector of the surface. The tensor τ is
symmetric because of conservation of angular momentum.

Let us now assume that we have a Cauchy stress field σ

throughout the RVE. On the boundary σ = τ . We remain at
mechanical equilibrium where ∇ · σ = 0 along the deforma-
tion path. To relate σ to the rate of work of external forces, we
use the divergence theorem:

Ẇ = −
∫

∂h(s)
d2r �̇u · σ · n̂ = −

∫
h(s)

d3r ∇ · [σ · �̇u].

Under mechanical equilibrium, this yields

Ẇ = −
∫

h(s)
d3r σ : ∇ �̇u = −

∫
h(s)

d3r σ : ε̇, (14)

where ε̇ is the strain-rate tensor. The colon indicates a double
contraction, that is, A : B = AαβBβα . The integral in Eq. (14)
is over the current configuration.
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The tensor ε̇ is defined with respect to the current h matrix
h(s) along the deformation path. We cannot directly evaluate
the integral Eq. (13), because the h matrix (which enters the
integration bounds) depends on s in Eq. (14). By introducing
a reference h matrix h̊ and reference coordinates �̊r, we can
express the velocity by �̇u(s) = Ḟ (s) · �̊r = Ḟ (s) · F−1(s) · �r(s),
where Ḟ is the rate of change of the deformation gradient F .
This yields

ε̇ = 1

2

⎡
⎣∂ �̇u

∂�r +
(

∂ �̇u
∂�r

)T
⎤
⎦ = 1

2
(Ḟ · F−1 + F−T · Ḟ

T ).

From Eq. (2), we get

η̇ = 1
2 (Ḟ T · F + F T · Ḟ ),

which we can use to write the power as a first-order expression
in s,

Ẇ = −
∫

h̊
d3r̊ 
 : η̇, (15)

where the integral is now over our (arbitrarily chosen) refer-
ence cell with h matrix h̊. Note we have identified


 ≡ JF−1 · σ · F−T , (16)

with J = det F . Equation (16), which is often referred to
as a pull-back operation [17,28,31,32], transforms the true
(or Cauchy) stress σ into the second Piola–Kirchhoff stress

. Identical expressions have been derived in the context
of lattice stability [13,14] and constant pressure molecular
dynamics simulations [30].

F. Finite-strain elastic coefficients

We now assume that the RVE can be described by an
equivalent homogeneous elastic continuum, which can only
deform affinely. Then η̇ is constant throughout the RVE and
equivalent to the applied macroscopic strain. This means we
can replace 
(�r) in Eq. (15) by its spatial average 
. Integra-
tion yields

W = −
∫ s1

s0

ds
∫

h̊
d3r̊ 
 : η̇ = −V̊ 
 : η,

where η is the total strain along path s0 → s1. This gives our
ad hoc Eq. (12) in the orthorhombic case. The Gibbs free
energy, in analogy to Eq. (9), for arbitrary cell deformation
is then

G(
; h̊) = min
η

g(
; h̊; η),

(17)
g(
; h̊; η) = A(h̊; η) − V̊ 
 : η,

where η = 0 is some reference configuration with h matrix
h [see Fig. 1(a)], which is not necessarily in mechanical equi-
librium [see Fig. 1(b)]. The quantity g(
; h̊; η) is the extended
Gibbs free energy of a (small) system at strain η.

We now strain the system against the constant external
stress 
 of a surrounding embedding medium [Fig. 1(c)]. The

FIG. 1. Thermodynamics of elastic deformation. The external
stress 
 is a property of a hypothetical ideal embedding medium.
Equilibrium is the case where embedding medium and system pres-
sure are equal, 
 = ση. (a) Our reference configuration is not
necessarily at equilibrium. (b) Equilibrium is obtained at some finite
strain ηeq where bath and system pressure are equal. (c) We make
small deformations around this equilibrium condition to probe the
elastic properties of the system at constant stress 
.

equilibrium condition for the strain yields

∂g

∂η

∣∣∣∣∣
ηeq

= 0 or 
 = 1

V̊

∂A

∂η

∣∣∣∣∣
ηeq

≡ ση(h̊; ηeq), (18)

which lets us identify 
 as the conjugate to the Green–
Lagrange strain η, so 
 has the properties of a second
Piola–Kirchhoff stress. It is important to emphasize that 


is a property of the embedding medium while ση is a prop-
erty of the system, and that equilibrium requires 
 = ση,
see Fig. 1(b). Eqs. (17) and (18) depend parametrically on
the reference configuration h̊, as the strain η is defined with
respect to this reference [see Figs. 1(a) and 1(b)]. Of course,
this equilibrium is constrained by the conditions described in
Sec. II D, in particular, that the cell remains a parallelepiped.

We can remove the choice of an arbitrary reference state
in Eq. (18) by choosing the h matrix that corresponds to ηeq

as our new reference h̊. For this choice, ηeq = 0. The explicit
dependence on ηeq in Eq. (18) then disappears, and we can
write


(h̊) = 1

V̊

∂A

∂η

∣∣∣∣∣
η=0

.

This corresponds to how we typically estimate stresses in
molecular calculations: We pick an h matrix h̊ and then per-
form small perturbations of the cell to determine the stress.

The derivative ∂g/∂η must be a monotonously increasing
function passing through zero at ηeq ≡ 0. Loss of monotonous
increase of this function means loss of convexity of the ex-
tended Gibbs free energy, and hence loss of (mechanical)
stability. We define the elastic coefficients c as the second
derivative of the extended Gibbs free energy

c
(
; h̊) ≡ 1

V̊

∂2g

∂η2

∣∣∣∣∣
η=0

,

where the superscript on the elastic coefficient tensor c indi-
cates the stress that was held constant. Evaluating the elastic
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coefficients at constant 
 yields

c
 = 1

V̊

∂2A

∂η2

∣∣∣∣∣
η=0

= ∂σ η

∂η

∣∣∣∣∣
η=0

.

This expression shows directly that the elastic coefficients are
the second derivative of the free energy – an expression that
we might have written down intuitively and that is often the
starting point in related works. Note that we can similarly
define

c′ = 1

V̊

∂2A

∂ε2

∣∣∣∣
ε=0

, (19)

but this elastic tensor does not equal c
. Eq. (4) can be used
to relate η and ε:

c′
αβμν = c


αβμν + σαμδβν.

Conceptually, we made small deformations of the equilib-
rium configuration and measure the resulting changes in stress
[see Fig. 1(c)] at constant second Piola–Kirchhoff stress 
.
We are often interested in an embedding medium that sustains
a constant Cauchy rather than Piola-Kirchhoff stress. We use
Eq. (15) and the pull-back Eq. (16) to write the deviation of
the extended Gibbs free energy from equilibrium as

δg = δA − V̊ J (F−1 · σ · F−T ) : δη. (20)

Unfortunately, this equation is not a differential, i.e., we can-
not write a potential g that yields Eq. (20) as a derivative. This
is most easily seen by computing the elastic coefficients at
constant Cauchy stress:

cσ
αβμν = 1

V̊

∂

∂ηαβ

δg

δημν

∣∣∣∣
η=0

= c

αβμν − σαβδμν + σβνδαμ + σανδβμ. (21)

Because η is symmetric, ηαβ ≡ ηβα for α �= β, we can
symmetrize Eq. (21) with respect to μ ↔ ν (it is already
symmetric in α ↔ β), yielding

cσ
αβμν = c


αβμν + 1
2 (σαμδβν + σανδβμ + σβμδαν

+ σβνδαμ − 2σαβδμν ). (22)

If the elastic coefficients were given as the second derivative
of a thermodynamic potential, then by virtue of the symmetry
of second derivatives (Schwarz theorem), they must fulfill
Voigt symmetry, namely,

cαβμν = cβαμν = cαβνμ = cμναβ.

Indeed, this symmetry is fulfilled by c
 and c′ but not by cσ .
The elastic tensors at constant Cauchy stress cσ , at constant

second Piola–Kirchhoff stress c
 and c′ hence differ by offsets
that explicitly depend on the Cauchy stress. The elements of
c
 are sometimes called the Birch coefficients [4,6,13,33,34].
The elements of c′ govern wave propagation [5,6].

The fact that we cannot write a thermodynamic potential
for constant Cauchy stress means that the work on the system
depends on the deformation path. This is illustrated in Fig. 2,
which compares the work at constant Cauchy stress with
a constant second-Piola-Kirchhoff-stress. As should become

FIG. 2. Mechanical work required to deform an RVE along a
simple, exemplary closed deformation path while maintaining either
the Cauchy stress σ or the Piola–Kirchhoff stress 
 constant. At
constant σ (blue), the work around this cycle is not zero while it
is zero at constant 
 (orange). The reason for this is that when
extending the area Å to A1, the effective force on this area increases
at constant σ but is constant at constant 
. This path dependence
implies that the state of the bath has changed after this cycle at
constant σ .

clear from this illustration, the reason for this path dependence
is that to maintain a constant Cauchy stress, the embedding
medium needs to adjust the force on the system to its shape,
e.g., by applying a constant stress on the yz plane and another
constant stress on the xz plane. In the context of molecular dy-
namics simulations, this means that extended system methods
for simulations at constant nonisotropic Cauchy stress cannot
be formulated [30]. The classical Parinello–Rahman method
[27] maintains constant 
 and controlling the Cauchy stress
requires nonconservative methods [30].

The Birch coefficients fulfill Voigt symmetry under purely
hydrostatic pressure P where σαβ = −Pδαβ [4]. This path
dependence hence disappears in the classical thermodynamic
treatment that only considers changes in volume, as outlined
in Sec. II D.

G. Non-affine displacements

The assumption that the deformation of an RVE is purely
homogeneous and affine cannot be generally transferred to
a (continuum) micromechanical or atomistic description of
solids. In most systems, atoms experience forces in the
affinely deformed state that drive them into a new equilib-
rium position [16,17,21,35]. To capture this effect, we modify
Eq. (1) and write the new equilibrium positions as

�ri = F · �̊ri + �χi,

where �χi describes the displacement from the affine posi-
tion of atom i and is called the nonaffine displacement. For
crystalline materials, a homogeneized continuum model that
includes nonaffine atomic displacements is called a Cauchy-
Born [[17], Chap. 11.2] model by some authors [35]. For
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convenience, we will work below with scaled coordinates �si,
defined such that

�ri = h · (�̊si + ��i ),

with the scaled nonaffine displacements ��i. This allows us to
decouple variation of (scaled) positions and variation of strain.

To understand the effect of nonaffine displacements,
we now turn to a variational formulation of the elastic
coefficients, as, for example, employed in stochastic microme-
chanical homogenization [36,37] seeking effective elastic
coefficients for an (elastically) heterogeneous medium. The
variational formulation requires a thermodynamic potential
and we can only carry it out at constant second Piola–
Kirchhoff stress 
. We search for the elastic coefficients C
,
such that

1
2V̊ ηαβC


αβμνημν = min
{ ��i}

g({ ��i},
; η) (23)

for suitably small η. Without nonaffine displacements ( ��i =
0), this immediately leads to the (affine) elastic coefficients c


given by Eq. (22).
We expand the extended Gibbs free energy, i.e., the right-

hand side of Eq. (23), to second order in both strain and
nonaffine displacements around the equilibrium positions
��i = 0. Note that ∂g/∂ ��i = 0 at equilibrium, otherwise the
atoms would move without perturbation of the RVE. This
yields

g({ ��i},
; η) = 1
2V̊ ηαβc


αβμνημν

+ 1
2� · H · � + � · �αβηαβ, (24)

with Hessian H = ∂2U/∂�∂� and nonaffine forces �αβ =
∂2U/∂�∂ηαβ . Boldface symbols (e.g., � or �) indicate DN
vectors that combine the individual D vectors ( ��i, ��i) for all
atoms and bold open symbols (e.g., H) indicate DN × DN
matrices containing the D × D matrices (Hi j) as blocks. Min-
imizing Eq. (24) with respect to � gives � = −H−1 · �αβηαβ

and inserting this solution into Eq. (24) yields

g({ ��i},
; η) = 1
2V̊ ηαβc


αβμνημν

− 1
2ηαβ�αβ · H−1 · �μνημν.

Comparing this with the left-hand side of Eq. (23), we see
that the finite stress elastic coefficients, including the effect of
nonaffine displacements, are given by

C

αβμν = c


αβμν − 1

V̊
�αβ · H−1 · �μν. (25)

Equation (25) is identical to what has been reported in the lit-
erature for the unstressed case, e.g., Ref. [[17], Chap. 11.3.5]
or Refs. [19,21,22,38]. Equation (25) with C
 replaced by Cσ

also holds for the Birch coefficients since the Cauchy stress is
not affected by nonaffine displacements.

H. Stability criteria

If a solid is subjected to mechanical load, it can become
unstable and undergo either a polymorphic phase transition
or, for crystals, transform into an amorphous state [39,40].

The RVE remains mechanically stable as long as small per-
turbations of either atomic positions or h matrix do not lead
to a decrease in energy. This is equivalent to stating that all
eigenvalues of the total Hessian of the RVE, given by the
matrix

H =
(
H �T

� c


)
(26)

of second derivatives of the extended Gibbs free energy
g(�, η), are nonnegative. This is equivalent to stating that the
quadratic form (

�

η

)
·
(
H �T

� c


)
·
(

�

η

)
(27)

must be nonnegative for small � and η. We can write a related
quadratic form in terms of the forces f and stresses σ ,(

f
σ

)
·
(
H �T

� c


)−1

·
(

f
σ

)
, (28)

which also must be nonnegative for small f and σ . Equation 28
has to be interpreted as the pseudoinverse, as the overall
Hessian is not formally invertible because of translational
invariance of the system.

The variety of stability criteria found in the literature are
most easily described using Eqs. (27) and (28). Assuming a
fixed cell (η = 0), the system remains stable as long as all
normal mode frequencies (given by the eigenvalues of H) are
positive. This is known as the dynamical [8,41,42] or phonon
stability [35]. Under fixed positions (� = 0), the system re-
mains stable as long as the eigenvalues of c
 are positive. This
is known as the Born [8,9,11,13,14,41,43] or homogeneized-
continuum stability criterion [35]. If we assume that the forces
on all atoms vanish (f = 0), the eigenvalues of the bottom
right block of H−1 must vanish. It is straightforward to show
that this block is given by Eq. (25), the elastic coefficients
tensor C
 that includes the effect of nonaffine displacements.
If nonaffine displacements are explicitly considered, the in-
stability is sometimes referred to as a Cauchy-Born instability
[35]. Violation of Born or Cauchy-Born stability is called an
elastic instability [11,13,14,42,43].

There are a few subtleties to consider. First, the limit of
stability (either mechanic or dynamic) depends on the sym-
metry of the crystal, the deformation mode and the crystal
orientation or the direction of deformation. Therefore, the
critical stress for an instability is best represented by a surface
in three-dimensional space. Second, dynamical or elastic sta-
bility are only necessary, not sufficient conditions for stability.
This is because stability is governed by H, while regarding
either dynamical or elastic stability considers only one of
the diagonal blocks H and c
. Those couple through �, and
this coupling will generally decrease the lowest individual
eigenvalue. Third, stability depends on the strain measure
that is used to describe cell deformation. For example, using
the small strain tensor ε in lieu of the Lagrange strain η for
constructing the global Hessian H will lead to the occurrence
of the elastic coefficients tensor c′ [defined in Eq. (19)] as the
bottom right block of Eq. (26). The stability of a molecular
calculation run with a Parinello-Rahman barostat, for exam-
ple, requires C
 to be positive definite. In general, stability
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therefore depends on the type of elastic embedding medium
used for the RVE and the boundary conditions on the bound-
ary of this medium. For example, stability of a solid near a
crack tip will be different from stability in a bending beam.

Fourth, stability at constant Cauchy stress needs to be
discussed separately. It does not emerge from a systematic
expansion of g, and as a consequence Cσ is not symmetric for
multiaxial stress. Elastic stability implies that the quadratic
form

ηαβCσ
αβμνημν

remains positive for nonzero η. We can decompose the
tensor Cσ

αβμν into its symmetric Csym
αβμν and antisymmetric

part Casym
αβμν , where Csym

αβμν = (Cσ
αβμν + Cσ

μναβ )/2 and Casym
αβμν =

(Cσ
αβμν − Cσ

μναβ )/2. This yields

ηαβCsym
αβμνημν + ηαβCasym

αβμνημν.

It is easy to see that the second expression is always zero,
since Casym

αβμν = −Casym
μναβ . The stability condition then requires

Csym
αβμν to be positive definite. For crystals, it is possible to

derive closed-form expressions for this condition. A summary
of necessary and sufficient conditions for common crystal
structures is given in Ref. [42].

Fifth, for solids in which the nonaffine contribution to the
elastic coefficients is not negligible, the dynamical and the
elastic stability criteria are not independent of each other. To
see this, we perform a diagonalization of the Hessian H =
SDS−1. Here, S = (e1, . . . , e3N ) is a square matrix whose pth
column is the eigenvector ep of H and D is a diagonal matrix
whose elements are the eigenvalues λp. The Hessian evaluated
at a local minimum is positive semidefinite, in particular,
λp > 0 (for p > D) while the first D eigenvalues are zero. We
can now express the inverse Hessian H−1 in Eq. (25) through
its eigenvectors and eigenvalues,

− 1

V̊
�αβ · H−1 · �μν = − 1

V̊

∑
p

�̂p,αβ�̂p,μν

λp
,

where we have implicitly excluded the translational degrees
of freedom from the sum. The quantity �̂p,αβ = �αβ · ep is
the projection of the nonaffine forces on the eigenvectors of
the Hessian. If one eigenvalue λ is small (but finite), the
nonaffine contribution of this mode will be a large negative
value, which may lead to at least one very small elastic tensor
element, unless the projected nonaffine forces disappear. In
crystals, most of the �̂p,αβ are zero because of symmetry.
Nonzero �̂p,αβ only occur for crystals which have more than
one nonequivalent Wyckoff position. This means in crys-
tals, elastic instabilities are largely decoupled from dynamical
instabilities. Conversely, in amorphous materials �̂p,αβ are
generally nonzero and the instabilities are closely coupled.

Nevertheless, this relation does not necessarily imply that
a dynamically unstable solid is also elastically unstable. Con-
sider, for example, a solid filled with gas molecules which
can move freely, such as a zeolite filled with air [44]. In
this case, the Hessian matrix H is certainly not positive defi-
nite, which implies that the system is not dynamically stable
(because the air molecules can move), yet the solid remains
elastically stable. In the context of random networks, stability

is explained by the concept of rigidity percolation, and rigid
networks can contain floppy regions without losing overall
stability [45–48].

III. MANY-BODY INTERATOMIC POTENTIALS

A. Specific functional forms

To compute the elastic coefficients using analytical expres-
sions, we need the second-order derivatives of the potential
energy with respect to strain and atomic positions. This yields
the Born elastic coefficients c
, the nonaffine forces �αβ ,
and the Hessian H of the underlying potential. We here out-
line these expressions for many-body interatomic potentials
[17,25,49] at zero temperature. Noise induced by thermal
[17,50] but also quantum-mechanical [51] fluctuations yields
additional contributions to the stiffness coefficients. They
must be added to those derived here for systems at finite
temperature.

While specific expressions for cluster potentials and em-
bedded atom method potentials can be found in the literature,
for example, in Ref. [[17], Chap. 11.5.2], we here present
a more general treatment, which applies for complex clus-
ter functionals (such as Tersoff-Brenner potentials [52–54])
through the generic functional form of [25]

U = 1

2

∑
i j

i �= j

[
U2
(
r2

i j

)+ Um
(
r2

i j, ξi j
)]

, (29)

with

ξi j =
∑

k
k �=i, j

�
(
r2

i j, r2
i k, r2

j k

)
. (30)

Here ri j = |�ri j | is the distance between atoms i and j. The
three-body term, Eq. (30), describes the triplet through the
three side lengths of the triangle that it forms. We express
everything in terms of the squares of the distances, which sim-
plifies derivatives with respect to the Green–Lagrange strain.
This mathematical trick has first been used by Born [8,9].

Our formulation trivially includes pair potentials V (ri j ):

U2
(
r2

i j

) = V (ri j ) and Um = 0.

Furthermore, we can represent potentials of the Abell–
Tersoff–Brenner [52–54] type. For example, the multicompo-
nent Tersoff potential [55] is given by

U2
(
r2

i j

) = fC(ri j )Ai j exp(−λi j ri j ),

Um
(
r2

i j, ξi j
) = − fC(ri j )bi j (ξi j )Bi j exp(−μi j ri j ),

and

�
(
r2

i j, r2
i k, r2

j k

) = fC(ri k )

[
1 + c2

i

d2
i

− c2
i

d2
i + (hi − cos θi jk )2

]
,

with

bi j (ξi j ) = χi j (1 + (βiξi j )
ni )−1/2ni

fC(r) =

⎧⎪⎨
⎪⎩

1, r � r1
1
2

(
1 + cos

(
π r−r1

r2−r1

))
, r1 < r < r2

0, r2 � r,
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where cos θi j k = (r2
i j + r2

i k − r2
j k )/(2ri jri k ) and fC is a cutoff

function that varies smoothly from unity to zero between two
distances. The quantities Ai j , Bi j , λi j , μi j , χi j , βi, ni, ci, di, hi,
r1, and r2 are parameters (see Ref. [55] for more information).

This generic functional form is also suitable for cluster
potentials which include interactions only up to three-body
terms. One frequently used example of this class of potentials
is the Stillinger–Weber potential, whose expressions in our
formulation read [56]

U2
(
r2

i j

) = fC1(ri j )Aε

[
B

(
σ

ri j

)p

−
(

σ

ri j

)q]
Um
(
r2

i j, ξi j
) = ελξi j

and

�
(
r2

i j, r2
i k, r2

jk

) = fC2(ri k ) fC2(ri j )
[
cos(θi jk ) − cos(θ0)

]2
,

with

fC1(r) = H (aσ − r) exp

(
σ

r − aσ

)
,

fC2(r) = H (aσ − r) exp

(
γ σ

r − aσ

)
,

where H is the Heaviside step function, cos(θ0) = −1/3 is
the tetrahedral angle, while σ , ε, A, B, p, q, a, λ, and γ are
parameters. The values for the original parametrization can be
found in Ref. [56].

B. Generic form of the first derivatives

In the following, we use the shorthand notation Ri j = r2
i j so

the square is not mistaken as a second-order derivative. Three
derivatives will appear repeatedly in the following. First, we
need the derivative of RX with respect to the atomic positions

∂RX

∂rn,β

= 2πX |nrX,β and
∂2RX

∂rm,α∂rn,β

= 2πX |nπX |mδαβ,

with X ∈ {i j, ik, jk} and πi j|n = δin − δ jn. Second, we need
the derivative of RX with respect to the Green–Lagrange strain
tensor η. Using RX = r̊X,α (δαβ + 2ηαβ )r̊X,β , we obtain

∂RX

∂ηαβ

= 2r̊X,α r̊X,β and
∂2RX

∂ηαβ∂ημν

= 0.

Finally, we consider the mixed derivative with respect to the
atomic positions and the Green–Lagrange strain, which reads

∂2RX

∂ r̊n,γ ∂ηαβ

= 2πX |n(r̊X,βδγα + r̊X,αδγβ ).

Using these derivatives, we can directly write down the ex-
pression for the forces

�fn ≡ −∂U

∂�rn
= −

∑
i j

i �= j

(
πi j|n

[
∂U2

∂Ri j
+ ∂Um

∂Ri j

]
�ri j

+
∑

k
k �=i, j

∑
X

πX |n
∂Um

∂ξi j

∂�

∂RX
�rX

)

and the stress tensor

σ
Uη

αβ ≡ 1

V̊

∂U

∂ηαβ

= 1

V̊

∑
i j

i �= j

([
∂U2

∂Ri j
+ ∂Um

∂Ri j

]
ri j,αri j,β

+
∑

k
k �=i, j

∑
X

∂Um

∂ξi j

∂�

∂RX
rX,αrX,β

)
.

C. Generic form of the second derivatives

We need general second-order derivatives of the form
∂2U/∂a∂b, where a and b can be components of the Green-
Lagrange strain η (yielding the Born elastic coefficients),
components of the position vector �r (yielding the Hessian), or
combinations of both (yielding the nonaffine forces). We now
write these for the generic form of the many-body potential
given by Eqs. (29) and (30). The potential-specific derivatives
of the functions U2, Um, and � appearing in the various ex-
pressions are left as exercises to the reader; they can also be
found in our implementation included in the software package
MATSCIPY [26]. Taking the second derivative of Eq. (29) yields

∂2U

∂a∂b
= 1

2

∑
i j

i �= j

{[
∂U2

∂Ri j
+ ∂Um

∂Ri j

]
∂2Ri j

∂a∂b︸ ︷︷ ︸
term 1

+
[

∂2U2

∂R2
i j

+ ∂2Um

∂R2
i j

]
∂Ri j

∂a

∂Ri j

∂b︸ ︷︷ ︸
term 2

+ ∂Um

∂ξi j

∂2ξi j

∂a∂b︸ ︷︷ ︸
term 3

+ ∂2Um

∂Ri j∂ξi j

(
∂Ri j

∂a

∂ξi j

∂b
+ ∂ξi j

∂a

∂Ri j

∂b

)
︸ ︷︷ ︸

term 4

+ ∂2Um

∂ξ 2
i j

∂ξi j

∂a

∂ξi j

∂b︸ ︷︷ ︸
term 5

}
. (31)

Furthermore, the first derivative of ξi j can be expressed as

∂ξi j

∂a
=
∑

k
k �=i, j

∑
X

∂�(Ri j, Ri k, Rjk )

∂RX

∂RX

∂a

and its second derivative is given by

∂2ξi j

∂a∂b
=
∑

k
k �=i, j

∑
XY

∂RX

∂a

∂2�(Ri j, Ri k, Rjk )

∂RX ∂RY

∂RY

∂b

+
∑

k
k �=i, j

∑
X

∂�(Ri j, Ri k, Rjk )

∂RX

∂2RX

∂b∂a
, (32)

with X,Y ∈ {i j, ik, jk}. In the following subsections, we pro-
vide analytic expressions for the Born elastic coefficients, the
nonaffine forces, and the Hessian. Each of these expressions
along with the interatomic potentials from Sec. III A were
tested for correctness against finite differences.
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D. Born elastic coefficients

For the calculation of the (Born) elastic coefficients, we need to evaluate V̊ c
η

αβμν = ∂2U/∂ηαβ∂ημν , hence both a and b are
components of the Green-Lagrange strain tensor η. It is then straightforward to evaluate the individual terms for the Born elastic
coefficients,

V̊ c
η(1)
αβμν = 0,

V̊ c
η(2)
αβμν = 2

∑
i j

i �= j

[
∂2U2

∂R2
i j

+ ∂2Um

∂R2
i j

]
r̊i j,α r̊i j,β r̊i j,μr̊i j,ν ,

V̊ c
η(3)
αβμν = 2

∑
i j

i �= j

∑
k

k �=i, j

∑
XY

∂Um

∂ξi j

∂2�

∂RX ∂RY
r̊X,α r̊X,β r̊Y,μr̊Y,ν ,

V̊ c
η(4)
αβμν = 2

∑
i j

i �= j

∑
k

k �=i, j

∑
X

∂2Um

∂Ri j∂ξi j

∂�

∂RX
(r̊i j,α r̊i j,β r̊X,μr̊X,ν + r̊X,α r̊X,β r̊i j,μr̊i j,ν ),

V̊ c
η(5)
αβμν = 2

∑
i j

i �= j

∂2Um

∂ξ 2
i j

⎛
⎜⎜⎝∑

k
k �=i, j

∑
X

∂�

∂RX
r̊X,α r̊X,β

⎞
⎟⎟⎠
⎛
⎜⎜⎝∑

l
l �=i, j

∑
Y

∂�

∂RY
r̊Y,μr̊Y,ν

⎞
⎟⎟⎠,

with X ∈ {i j, ik, jk} and with Y ∈ {i j, il, jl}.

E. Non-affine forces

For the nonaffine forces, b becomes a component of a reference atomic position r̊n,γ and a needs to be replaced with a
component of the strain tensor ηαβ . The five individual terms of Eq. (31) yield

�
(1)
nγ ,αβ =

∑
i j

i �= j

πi j|n

[
∂U2

∂Ri j
+ ∂Um

∂Ri j

]
(r̊i j,βδαγ + r̊i j,αδβγ ),

�
(2)
nγ ,αβ = 2

∑
i j

i �= j

πi j|n

[
∂2U2

∂R2
i j

+ ∂2Um

∂R2
i j

]
r̊i j,α r̊i j,β r̊i j,γ ,

�
(3)
nγ ,αβ = 2

∑
i j

i �= j

∑
k

k �=i j

∑
XY

πY |n
∂Um

∂ξi j

∂2�

∂RX ∂RY
r̊X,α r̊X,β r̊Y,γ

+
∑

i j
i �= j

∑
k

k �=i j

∑
X

∂Um

∂ξi j

∂�

∂RX
πX |n(r̊X,βδαγ + r̊X,αδβγ ),

�
(4)
nγ ,αβ = 2

∑
i j

i �= j

∑
k

k �=i j

∑
X

∂2Um

∂Ri j∂ξi j

∂�

∂RX
(πi j|nr̊X,α r̊X,β r̊i j,γ + πX |nr̊i j,α r̊i j,β r̊X,γ ),

�
(5)
nγ ,αβ = 2

∑
i j

i �= j

∂2Um

∂ξ 2
i j

⎛
⎜⎜⎝∑

k
k �=i j

∑
X

∂�

∂RX
r̊X,α r̊X,β

⎞
⎟⎟⎠
⎛
⎜⎜⎝∑

l
l �=i j

∑
Y

πY |n
∂�

∂RY
r̊Y,γ

⎞
⎟⎟⎠,

with X ∈ {i j, ik, jk} and Y ∈ {i j, il, jl}.

F. Hessian

Starting again from Eq. (31) and replacing a as well as b with components of current atomic positions rm,α and rn,β yields
the individual expressions for the off-diagonal components of the Hessian. Note that the expressions given here differ from the
components of H, which are the derivatives with respect to scaled positions. The (second) derivatives with respect to actual
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positions are given by

H (1)
mα,nβ =

∑
i j

i �= j

τi j,i j|mn

[
∂U2

∂Ri j
+ ∂Um

∂Ri j

]
δαβ,

H (2)
mα,nβ = 2

∑
i j

i �= j

τi j,i j|mn

[
∂2U2

∂R2
i j

+ ∂2Um

∂R2
i j

]
ri j,αri j,β ,

H (3)
mα,nβ = 2

∑
i j

i �= j

∑
k

k �=i j

∑
XY

τX,Y |mn
∂Um

∂ξi j

∂2�

∂RX ∂RY
rX,αrY,β

+
∑

i j
i �= j

∑
k

k �=i j

∑
X

τX,X |mn
∂Um

∂ξi j

∂�

∂RX
δαβ,

H (4)
mα,nβ = 2

∑
i j

i �= j

∑
k

k �=i j

∑
X

∂2Um

∂Ri j∂ξi j

∂�

∂RX
(τX,i j|mnrX,αri j,β + τi j,X |mnri j,αrX,β ),

H (5)
mα,nβ = 2

∑
i j

i �= j

∂2Um

∂ξ 2
i j

⎛
⎜⎜⎝∑

k
k �=i j

∑
X

πX |m
∂�

∂RX
rX,α

⎞
⎟⎟⎠
⎛
⎜⎜⎝∑

l
l �=i j

∑
Y

πY |n
∂�

∂RY
rY,β

⎞
⎟⎟⎠,

with X ∈ {i j, ik, jk} and Y ∈ {i j, il, jl}. Furthermore, we have introduced the shorthand notation τX,Y |mn = πX |mπY |n. We know
that, by virtue of the symmetry of second derivatives, the full Hessian must be symmetric:

Hmα,nβ = Hnβ,mα.

We can relate the diagonal and off-diagonal elements of the Hessian with translational invariance. For any translation vector dα ,
we have, defining the uniform vector am ≡ 1,

0 = ∂

∂dγ

U ({amdα}) = ∂

∂dγ

[
U (0) + fm,αamdα + 1

2
amdαHmα,nβandβ

]
= fm,γ am + amHmγ ,nβandβ = amHmγ ,nβandβ,

where we have assumed that conservation of linear momentum
∑

m fm,γ = 0 holds. The remaining condition is that am is an
eigenvector associated with a null eigenvalue of the Hessian, which translates to

Hmα,mβ = −
∑
n �=m

Hmα,nβ .

IV. METHODS

To compute elastic properties and analyze lattice stability,
it is necessary to first define materials, their specific poten-
tial parametrization, initial conditions, employed boundary
conditions, and further computational methodology. We have
chosen diamond cubic silicon, 3C silicon carbide, and the α-
quartz form of silicon dioxide because they are ubiquitous in
nature and have tremendous importance for technical applica-
tions in electronics, photonics, and photovoltaics [57–60]. In
the case of silicon, we consider bond-order potentials as well
as one cluster potential [25]. We denote Tersoff’s potential
[55] as TIII, the refitted version for pure silicon of Erhart
and Albe [61] as EAII, the cluster potential by Stillinger
and Weber [56] as SW, and the modified Tersoff potential
from Kumagai et al. [62] as KUM. The KUM potential differs
from the TIII potential by the angular-dependent term and a
modified cutoff function. We use the parametrization referred
to as MOD in the publication of Kumagai et al. [62]. Similarly,

for silicon carbide, we denote the original parametrization
of Tersoff [55] as TIII and its refitted version by Erhart and
Albe [61] as EA. For silicon dioxide, we employ the potential
by van Beest et al. [63], which we refer to as BKS. The
short-range interaction is truncated and shifted at a cutoff
distance of rc = 10 Å. Electrostatic interactions are treated
using traditional Ewald summation [64,65].

The initial crystalline configurations are set up using the
equilibrium lattice constant at zero temperature and pressure
for the specific interatomic potential. The simulation cells
contain N ≈ 1000 atoms with periodic boundary conditions
in all spatial directions. We first consider the case of hydro-
static pressure σ

η

αβ = −Pδαβ in the limit of zero temperature.
We follow the convention that a compressing force creates a
positive pressure P > 0 and causes a negative stress σ < 0.
Hydrostatic loading of the RVE is imposed by first applying
an affine transformation F = (1 + ε)1 with a prescribed strain
increment ε = 10−3 to the simulation cell and the atoms and
afterwards performing an energy minimization.
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FIG. 3. Numerical and analytical calculations of the elastic coef-
ficients of silicon carbide as a function of pressure. Results are shown
for the TIII interatomic potential with a fixed bonding topology.

We note that large hydrostatic compression or tension
can lead to nonphysical behavior for interatomic potentials
with a finite interaction range. The finite interaction range
is typically implemented through a cutoff function making
the potential energy and possibly its derivatives vanish at a
distance rc. The reason for this finite interaction is that many
potentials are constructed on the assumption of only nearest-
neighbor interactions, while further interactions are screened
[25,66–69]. The value of rc is then typically chosen to lie
between first and second neighbor shell in the ground-state
crystal. Volumetric deformation, however, does not change
nearest neighbor relationships, yet using a fixed finite interac-
tion range will lead to unphysical zero-energy configurations
at large volumetric strain. For crystalline structures that do not
change their bonding topology, a simple remedy is to retain
nearest-neighbor interactions up to arbitrary distances, effec-
tively replacing the cutoff-procedure by a fixed bond topology
[20,70]. In the following, we denote potentials where the bond
topology is determined for the ideal crystal and kept fixed
during deformation by appending +FT to the potential names
defined in the last paragraph, e.g., for Tersoff’s potential TIII
+ FT.

For all employed interatomic potentials, we checked con-
sistency of the analytical expressions from Sec. III with
numerical results obtained from finite difference computa-
tions. In Fig. 3, we show exemplarily a comparison between
numerical and analytical results for one interatomic potential
for silicon carbide. Due to the small strain increment and
the resulting large number of elastic coefficients, we replace
the discrete values of the analytic results by a line. From this
figure, it is evident that if proper parameters are chosen for
the finite difference computation, both approaches to compute
elastic coefficients lead to similar results.

V. RESULTS

A. Elastic coefficients at zero stress

We first compute the elastic coefficients at zero hydro-
static pressure. This serves as a validation for the analytical

expressions and enables us to determine, which interatomic
potential best describes the elastic properties of the mate-
rial under investigation. The different elastic coefficients are
only equivalent in the limiting case of zero external stress
[4]. We restrict our discussion to the Birch coefficients and
will omit in the following the superscripts of the elastic
coefficients even at nonzero external stress, Cαβμν ≡ Cσ

αβμν .
Table I shows a comparison of the equilibrium lattice con-
stants and the elastic coefficients. We compare experimental
results, density functional theory (DFT) calculations, results
from reference publications, and our values from analytical
calculations. When reporting values, we condense the four
indices of the elastic coefficients tensors to two using Voigt (or
Nye) notation [71,72]. Silicon and silicon carbide have a cubic
lattice symmetry with three independent elastic coefficients
C11, C12, and C44. In contrast, α-quartz has a trigonal crystal
structure with six independent elastic moduli C11, C12, C13,
C14, C33, and C44.

For silicon, the relative error of the lattice constant and
the elastic coefficients between our results and the reference
publications is smaller than 0.01% for the KUM and the TIII
potential. For the SW potential, we observe small relative
errors in the order of 0.1% for the elastic coefficients, which
include nonaffine displacements, and a large relative error of
7.32% for c44, which does not take nonaffine displacements
into account. This larger error for c44 is probably related to the
parameters of the finite difference approach in the Ref. [75].
For the EAII potential, we observe small relative errors of up
to 2.4% in the elastic coefficients with respect to the reference
values [61]. This is likely due to the discrepancy in the lattice
constant compared to the original publication. We repeated
our computation using the reference lattice constant of
a = 5.429 Å and obtained C11 = 169.24 GPa,C12 = 64.16 GPa,
C44 = 71.67 GPa and c44 = 110.99 GPa. Using the reference
lattice constant decreases the maximal relative error of the
elastic coefficients between our results and the reference
values to 1.34%. Based on our results, the relative error
between the elastic coefficients from experiments and DFT is
smallest for the KUM potential.

For silicon carbide, we observe a maximal relative error
between the reference values and our results of 0.46% for the
EA potential and 3.8% for the TIII potential. The largest error
relative to experiments is 6.8% and 20.4%, while the error
relative to the DFT values is at most 8.4% and 22.9% for
the EA and the TIII, respectively. Although EA and TIII are
based on the same functional form, the EA parametrization
improves the accuracy of the lattice constant and the elastic
coefficients with respect to the experimental and the DFT
results significantly.

For α-quartz, the errors between our results and the original
publication are less than 1.0%. Despite the comparatively
simple functional form of the BKS potential, the relative
errors of the structural and elastic properties with respect to
the reference data from experiments and DFT-LDA data are
below 28% and 56%, respectively. For the DFT-GGA data,
the maximal relative error is about 200% which appears for
the C12 value. Comparing experiments to the ab initio com-
putations, it is evident that the DFT-LDA results are in better
agreement with the experimental values [78]. We further note
that more complex potentials do not provide a significant
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TABLE I. Zero-stress lattice constants and elastic coefficients for silicon, silicon carbide, and silicon dioxide. a0, c0: Lattice constants. Ci j :
Elastic coefficients with nonaffine contribution. ci j : Elastic coefficients without nonaffine contribution.

Silicon

Expt. DFT-LDA TIII EA Si-II

Ref.b Ref.k Ref.c Ref.e This paper Ref.a This paper

a0 (Å) 5.431 5.400 5.406 5.432 5.432 5.429 5.432
C11 (GPa) 166 159 160 142.5 142.54 167 168.48
C12 (GPa) 64 61 63 75.4 75.38 65 63.47
C44 (GPa) 80 85 82 69 69.03 72 71.53
c44 (GPa) 111 112 118.8 118.81 111 110.44

KUM SW

Ref.f This paper Ref.l This paper

a0 (Å) 5.429 5.429 5.431 5.431
C11 (GPa) 166.4 166.37 151.4 151.42
C12 (GPa) 65.3 65.30 76.4 76.42
C44 (GPa) 77.1 77.11 56.4 56.45
c44 (GPa) 120.9 120.93 117.2 109.76

Silicon carbide

Expt. DFT-LDA TIII EA

Ref.m Ref.d Ref.c Ref.n This paper Ref.a This paper

a0 (Å) 4.3596 4.344 4.338 4.32 4.321 4.359 4.359
C11 (GPa) 390 390 405 420.0 436.63 382 383.78
C12 (GPa) 142 134 145 120.0 117.94 145 144.41
C44 (GPa) 256 253 247 260.0 256.60 240 239.75
c44 (GPa) 273 311.0 311.0 310.81 305 304.75

Silicon dioxide
Expt. DFT-LDA DFT-GGA BKS

Ref.g Ref.h Ref.i Ref.i Ref.j This paper

a0 (Å) 4.914 4.8701 5.0284 4.941 4.942

c0 (Å) 5.405 5.3626 5.5120 5.405 5.448

C11 (GPa) 85.9 86.6 76.6 87.1 90.5 90.59

C12 (GPa) 7.16 6.74 5.88 −7.82 8.1 8.06

C13 (GPa) 10.94 12.40 6.58 6.30 15.2 15.21

C14 (GPa) −17.66 −17.80 −17.8 −17.0 −17.6 −17.68

C33 (GPa) 89.59 106.40 95.9 87.1 107.0 106.94

C44 (GPa) 57.77 58.0 54.1 49.1 50.2 50.23

C66 (GPa) 39.4 35.3 47.5 41.26

aReference [61]; bReference [73]; cReference [68]; dReference [74]; eReference [75]; fReference [62]; gReference [76]; hReference [77];
iReference [78]; jReference [63]; kReference [79]; lReference [80]; mReference [81]; nReference [55].

improvement of the lattice constants and elastic properties of
α-quartz compared to the original BKS potential [78,82–84],
but defects, interfaces, phase boundaries, and other relevant
properties are significantly improved [85,86].

B. Elastic coefficients at finite hydrostatic pressure

After validation of our approach at zero stress, we investi-
gate the effect of hydrostatic pressure on the elastic properties.
In Fig. 4, we show the pressure-dependent elastic coeffi-
cients for all investigated materials and interatomic potentials.

The vertical dashed lines mark zero hydrostatic pressure. For
bond-order potentials under hydrostatic tension, we consider
only the range of pressures where the first-neighbor shell
is within the first cutoff distance, corresponding to Si–Si
bond distances of rSi,Si = 2.7 Å for KUM and TIII and rSi,Si =
2.75 Å for EAII. For silicon carbide, this happens when the
Si–C bond length exceeds rSi,C = 2.2 Å. Under compression,
we consider the full range of pressures to highlight the im-
pact of second-nearest neighbors on the elastic properties.
We first consider the elastic coefficients Ci j , which include
the contribution from nonaffine displacements. The qualitative
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FIG. 4. Pressure-dependent elastic coefficients at zero temperature for silicon (a)–(d), silicon carbide (e)–(h), and silicon dioxide (i)–(l).
DFT results for silicon are taken from Ref. [87], for silicon carbide from Ref. [88], and for silicon dioxide from Ref. [89]. Ci j : Elastic
coefficients with nonaffine contributions. ci j : Elastic coefficients without nonaffine contributions.

behavior of the elastic coefficients of pure silicon is similar
for all bond-order potentials. Upon compression, C11 and C12

increase monotonically while C44 initially increases, reaches
a maximum, and subsequently decreases. The location and
the absolute value of that maximum varies slightly between
the potentials. Under tension, all three elastic moduli decrease
rapidly. In contrast, the pressure dependence of the elastic
coefficients for the SW potential is qualitatively different from
the one observed for the bond-order potentials. Under com-
pression, all moduli increase up to a pressure of ≈24 GPa.
At this point, second-nearest neighbors enter the cutoff range
and are included in the interaction. Upon further compression,
the elastic moduli as a function of pressure drops towards
a local minimum before starting to increase rapidly. Under
tension, the elastic moduli decrease, although the decrease
is less rapid compared to the one seen for the bond-order
potentials. We note that the effect of second-nearest neighbors

on the elastic properties is a common problem for interatomic
potentials with a finite interaction range [25,69]. Nevertheless,
the large effect in SW-like potentials at comparatively small
compressive pressures has not been reported.

In the case of silicon dioxide, we present results only in
the pressure range −3 GPa � P � 23 GPa. For smaller/larger
pressures, the initial lattice becomes unstable and would un-
dergo a phase transformation (as discussed below in Sec. V C)
which results in a sudden change of the elastic coefficients.
In the region where the initial crystalline structure of silicon
dioxide is stable, the elastic coefficients, with the exception of
C44, increase with increasing compression. In contrast, during
tension all elastic moduli, except C14, decrease.

In Figs. 4(d), 4(h) and 4(l), we show the elastic modulus
c44 without the contribution from nonaffine displacements.
Due to symmetries in the lattice, the nonaffine contribution
in silicon and silicon carbide enters only in C44, while for
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FIG. 5. Effect of a fixed bonding topology versus a variable
topology on the pressure dependence of C44 for silicon (KUM) (a) and
silicon carbide (EA) (b). The results deviate in regions where neigh-
bors sit within the cutoff distance.

silicon dioxide the nonaffine contribution is nonzero for all
elastic moduli. If we neglect the nonaffine contribution, the
elastic modulus c44 increases continuously under compression
and decreases less rapidly under tension. This behavior is
independent of the material and the interatomic potential and
is related to the stiffening of the effective pair interactions.
In direct comparison with the C44 value, we observe that the
nonaffine part generally decreases the elastic coefficients.

In the preceding paragraphs, we saw that the inclusion
of second-nearest neighbors in some interatomic potentials
affects the pressure dependent elastic coefficients in such a
way that their behavior is no longer reliable. To check if this
is also true for the other potentials, e.g., KUM, we perform
additional simulations using the fixed topology approach de-
scribed in Sec. IV. In Fig. 5, we show calculations of C44

at fixed and variable topologies. The figure shows that at a
compressive pressure of ≈123 GPa, the elastic coefficient C44

for silicon [Fig. 5(a)] increases rapidly if a variable topology
is used. (Note that we excluded those extreme pressures in the
discussion above.) If we rather use a fixed bonding topology in
the KUM potential, this increase disappears and the C44 curve

continuously drops to zero, where the lattice looses stability
(as discussed in the next section). The reason for this sudden
increase is once again the inclusion of second-nearest neigh-
bors. The pressure for this to occur is a factor of five larger
than what is observed for the SW potential, and is related to
the smaller cutoff radius rKUM

c = 3.0 Å< rSW
c = 3.77 Å. The

inclusion of second nearest-neighbors therefore effectively
stabilizes the crystal lattice and the system avoids the elastic
instability.

Figure 5(b) shows once more the pressure dependence of
C44 for silicon carbide modeled using the EA potential. This
time, we also show the effect of second-nearest neighbors on
the pressure dependency of C44. At the pressure where second-
nearest neighbors enter the interaction range, C44 increases
instantaneously. Using a fixed topology in the EA potential
for silicon carbide does not change the pressure dependency
of C44 and enables us to investigate the elastic coefficients
for higher compressive pressures. In the following section,
which discusses lattice stability, we will only show results
for potentials with fixed topology since the lattices typically
mechanically collapse beyond the cutoff range.

C. Stability of the crystal lattice under hydrostatic pressure

So far, we have assumed the initial crystal structure to
remain stable under arbitrarily large deformation. However,
as already discussed in Sec. II H, instabilities related to the h
matrix or to atomic positions at fixed h matrix can occur. In
the literature [13,42], they are referred to elastic and dynamic
instability, respectively. We first focus on the elastic instabil-
ity, which for cubic lattice symmetry reduces to the conditions
[8,13,42],

M1 = C11 + 2C12 � 0,

M2 = C44 � 0,

M3 = C11 − C12 � 0,

on the elastic coefficients for the lattice to be stable. For
silicon dioxide with a trigonal lattice symmetry to become
unstable, one of the following criteria needs to be violated
[42]:

N1 = C11 − |C12| � 0,

N2 = C44 � 0,

N3 = C33(C11 + C12) − 2C2
13 � 0,

N4 = C44(C11 − C12) − 2C2
14 � 0.

Here, M1 to M3 and N1 to N4 are the unique values of the
eigenvalues of the tensor of elastic coefficients, some of which
are degenerate. In Fig. 6, we show these eigenvalues together
with the smallest eigenvalue of the Hessian.

In the following, we refer to the pressure at which one
of the eigenvalues Mi, Ni, or λi, vanishes as a critical pres-
sure, Pc. We first consider the behavior of pure silicon under
hydrostatic compression using bond-order potentials. With
increasing pressure, M1 increases continuously while M2 and
M3 decrease. Thereby, M3 is the vanishing eigenvalue for
the KUM+FT and the TIII+FT potential. M3 vanishes at a
critical pressure of Pc ≈ 125.7 GPa and Pc ≈ 78.3 GPa for
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FIG. 6. Eigenvalues of the elastic tensor C, denoted by M1, M2, M3 for cubic solids and N1, N2, N3, N4 for silicon dioxide, and smallest
eigenvalue λmin of the Hessian H as a function of pressure P. Shown are results for silicon (a)–(d), silicon carbide (e)–(h), and silicon dioxide
(i)–(l). The eigenvalues are normalized to their value at zero hydrostatic pressure. The systems lose mechanical stability when an eigenvalue
becomes negative.

the KUM+FT and the TIII+FT potential, respectively. Inter-
estingly, for the EAII+FT potential M2 vanishes first at a
critical pressure of Pc ≈ 175.9 GPa. TIII and EAII have the
same functional form but their difference in critical pressure
is significant. Using the SW potential, none of the stability cri-
teria are violated under compression, but the eigenvalues M1,
M2, and M3 all have a minimum at a pressure ≈35.72 GPa.
Under tension, M1 vanishes for all bond-order potentials at
an almost identical pressure of Pc ≈ −15 GPa. For the SW
potential, M2 vanishes at Pc ≈ −22.7 GPa. Comparing the
critical pressures from an elastic instability with the ones from
a dynamic instability, we observe that they occur at almost the
same pressure.

For silicon carbide, which also has a cubic crystal structure,
we observe that M3 vanishes first in all interaction potentials.
The critical pressures are Pc ≈ 949.4 GPa for TIII+FT and

Pc ≈ 383.64 GPa for EA+FT. Under dilatation, M1, vanishes
first at approximately Pc ≈ −38 GPa for both potentials. We
observe again that the critical pressure for the dynamic insta-
bility is in accordance with the one obtained from the elastic
stability analysis.

For α-quartz, we observe dynamic instabilities at criti-
cal pressures of Pc ≈ 23.3 GPa and Pc ≈ −2.94 GPa for
compression and tension. As a result of these dynamic in-
stabilities, the initial crystalline structure becomes unstable
and transforms to a new stable crystalline state. These phase
transformations lead to an instantaneous change in the elastic
coefficients for silicon dixoide and result in a sudden change
of the elastic stability moduli Ni. Since the elastic stability
conditions are finite Ni > 0 at the critical pressure for the
dynamic instability, we conclude that the dynamic instability
is responsible for these phase transformation.
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FIG. 7. Smallest eigenvalue γ min of the elastic tensor Csym and
smallest eigenvalue λmin of the Hessian H of diamond cubic silicon.
The multiaxial stress state is triaxial compression, σxx = σyy �= σzz,
and σxy = σxz = σyz = 0.

D. Stability of the crystal lattice at multiaxial stress

Deformation of solids in real-world applications is rarely
hydrostatic and instead complex multiaxial states of stress
may arise. Real-world scenarios even exhibit gradients of the
stress field, such as when contacting a surface with a sphere
[90]. We here consider as an example a homogeneous multi-
axial state of stress that may be representative for a volume
element directly underneath the apex of a contacting sphere.
Homogeneous multiaxial stresses are often used as models for
shock compression (Hugoniot) experiments [91–94].

We consider diamond cubic silicon subjected to a pre-
scribed stress tensor

σ =
⎛
⎝−P − σvM/3 0 0

0 −P − σvM/3 0
0 0 −P + 2σvM/3

⎞
⎠,

where σvM is the von Mises stress. The loading is in the 〈100〉
direction. Stability of the same crystal loaded in a rotated
frame will differ from the scenario presented in the following
section.

The interaction between atoms is modeled using the KUM

potential with a fixed cutoff for σvM �= 0 and the KUM+FT
potential for σvM = 0. To rule out the possible effects of the
finite interaction range described above, we checked that
the atoms interact only with nearest neighbors as long as the
initial crystalline structure remains stable. In contrast to the
previous subsections, the deformation of the box is induced
by prescribing the stress tensor σ and allowing the simulation
cell to fluctuate. The stability of the lattice is now determined
by the symmetric part of the tensor of Birch coefficients Csym

i j ,
which no longer has the original cubic symmetry because of
the multiaxial stress state. In Fig. 7, we show the smallest
eigenvalue γ min of Csym

i j together with the smallest eigenvalue

of the Hessian λmin for certain values of σvM. All eigenvalues
have been normalized to their value at the first step of defor-
mation, and we consider only the range of pressures until one
of the eigenvalues, λmin or γ min, becomes zero. We observe
that the values of γ min decrease with increasing compression,
but always remain finite. In contrast, the eigenvalues of the
Hessian become zero at some critical pressure Pc, marking
a phase transition induced by a dynamic instability. Thereby,
the critical pressure Pc for the phase transition decreases with
increasing σvM, i.e., with increasing deviation from the purely
hydrostatic stress state. Upon compressing the crystal above
the critical pressure for the dynamic instability, the atoms
instantaneously transform to a new stable crystalline structure,
which here is the β-Sn (or Si-II) phase of silicon. This change
in simulation cell and atomic position is accompanied by
sudden changes in the vibrational and elastic properties.

VI. DISCUSSION

This paper establishes a consistent framework for the
calculation of finite stress elastic coefficients in molecular
RVEs, including the effect of nonaffine atomic displace-
ments. It is important to reiterate that the elastic coefficients
sensitively depend on the type of embedding medium. The
literature [4–6,11–14,41,43,95,96] typically discussed elas-
tic coefficients at constant second Piola-Kirchhoff stress or
at constant Cauchy stress. The latter is also known as the
Birch coefficients. However, even these situations are highly
idealized as they ignore stress gradients in the embedding
medium that cannot be avoided unless this medium itself
is perfectly matched, i.e. it consists of repeated images of
the RVE. This means that mechanical stability of the RVE
depends on the type of embedding. Like most of the litera-
ture [13,14,70,87,89,97–101], we have restricted our example
calculations to stability at constant Cauchy stress, but to what
extend these calculations are representative of actual experi-
mental conditions depends on the specific experiment.

Numerically, Hessians of RVEs are typically computed
using finite differences. We have here also derived analytical
expressions for complex many-body potentials that allow an-
alytical computation of Hessians, vibrational modes, elastic
coefficients, and other linear response properties. This en-
ables calculation of these properties for large heterogeneous
systems, where finite differences become prohibitive or are
impossible, such as near an instability.

As example calculations, we applied this method to a set
of crystals. All crystals under investigation show finite ranges
of stability in experiments. For silicon, diamond anvil cell
experiments show a collapse of the diamond cubic lattice
into β-tin at 12.7 GPa [102]. This pressure roughly matches
the equilibrium transition pressure obtained from a tangent
construction to the pressure volume curves of the respective
phases in molecular calculations (12.7 GPa TIII [70] 9.8 GPa
KUM [103], 7.8 GPa DFT-LDA [70]). Our own calculations of
the equilibrium diamond cubic to β-Sn transition show tran-
sition pressures between 11.8 and 13 GPa for the investigated
interatomic potentials. The ultimate limit of lattice stability
occurs at much higher pressures (125.7 GPa KUM, 78.3 GPa
TIII, 175.9 GPa EAII).
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For silicon-carbide, diamond anvil cell experiments with a
pressure medium show an instability of 3C-SiC to a rocksalt
structure at roughly 100 GPa [104]. DFT computations predict
a slightly smaller critical pressure between Pc ≈ 58 GPa and
Pc ≈ 75 GPa for this phase transition [100,105]. Again, the
ultimate stability of 3C-SiC from our calculations is much
higher (949.4 GPa TIII, 383.4 GPa EA). Consistent with DFT
calculations [88], we find that a vanishing eigenvalue M3

(tetragonal shear) leads to this instability. This is in contrast
with results from Tang and Yip, who identified M2 (simple
shear) as the eigenvalue that vanishes first [97,98]. In gen-
eral, care has to be taken specifically for SiC, which has a
large number of polymorphs. Those polymorphs cannot be
discriminated by the simple potentials used here that only
consider nearest neighbor interactions. In addition, SiC shows
significant charge transfer. A consideration of Coulombic in-
teractions is likely necessary to capture the experimentally
observed collapse to rocksalt, which is a prototypical ionic
structure.

For silicon dioxide, a crystal-to-crystal phase transition
is observed in diamond anvil cell experiments at a pressure
of roughly 21 GPa [106]. These experiments are supported
by numerical computations which predict a transition from
α-quartz (quartz I) to quartz-II phase. Simulations predict the
transition pressure to be between 16 GPa and 22 GPa, depend-
ing on the deviation from the purely hydrostatic stress state
[99,107–109]. The experimental and computational estimated
critical pressure agrees well with the dynamical instability
Pc ≈ 23.3 GPa in our simulations.

The ultimate stability of crystalline lattices (as charac-
terized by a dynamical or elastic instability) appears to be
reached in experiments on silicon dioxide but does not appear
to play a role in the stability of silicon and silicon carbide. In
particular, for silicon, the experimentally observed Si-I to Si-II
transition appears where the high pressure phase becomes
thermodynamically stable and not where the lattice collapses.
Transitions between the two states must then involve nucle-
ation and growth processes, as transitioning directly between
two crystalline phases involves barriers that scale with sample
volume.

However, there are multiple factors that lower the ultimate
limit of stability as obtained from our zero-temperature cal-
culations. First, temperature softens the elastic response and
helps overcome energy barriers, which can significantly affect
the critical pressure. For example, Mizushima et al. used finite
temperature calculations to show that the critical pressure
of lattice stability in silicon reduces from 105 GPa at zero
temperature to 64 GPa at room temperature [70]. Second, it is
difficult to achieve perfect hydrostatic conditions in diamond
anvil cell experiments. For example, anvil cell experiments

using ethanol-methanol as a pressure medium have been re-
ported to deviate from a purely hydrostatic condition at around
10 GPa pressure [110,111]. Our calculations on silicon show
that multiaxial stress significantly reduces the limit of lattice
stability. As shown in Fig. 7, a shear stress of magnitude equal
to 10% of the hydrostatic pressure reduces the critical pressure
roughly by a factor of two. A similar trend was recently
observed in boron carbide, where an additional shear stress
significantly reduces the yield stress [112,113]. A combina-
tion of temperature fluctuations and multiaxiality therefore
likely lowers the limit of lattice stability significantly, poten-
tially to the pressure of the purely thermodynamic transition.

VII. SUMMARY AND CONCLUSIONS

In this paper, we revisited the question of how to define
elastic coefficients at an arbitrary state of stress and included
the role of nonaffine displacements. Based on these theoretical
results, we gave closed-form expressions for a select set of
many-body interatomic potentials for all terms required to
analytically compute the elastic coefficients in atomistic sim-
ulations. These terms include expressions for the Hessian, the
nonaffine forces, and the Born elastic coefficients for generic
many-body potentials. These analytical expressions are imple-
mented in our open-source software MATSCIPY [26] and they
have the advantage of being exact. Their derivation is based on
a generalized, unified functional form that fits many empirical
interatomic potentials. It is easily extendable to interatomic
potentials beyond those presented here. The resulting elastic
properties are fast to compute and not prone to parameters in
the numerical computation.

We demonstrated these methods on the elastic coefficients
and the lattice stability of silicon, silicon carbide and sil-
icon dioxide under volumetric and multiaxial deformation.
We highlighted that all employed bond-order potentials and
cluster potentials using a finite interaction range suffered from
unreliable results once second-nearest neighbors had been
included in the interaction range. Furthermore, we showed
that multiaxiality plays a critical role in the stability limits of
crystalline lattices.
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