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Flat-band materials (FBMs) serve as a platform for a variety of exotic properties and applications, such as
strongly correlated states, topological states, and superconductivity. However, reported FBMs highly rely on
materials engineering, such as Moiré lattices. Here, we demonstrate the acceleration of intrinsic FBM discovery
using explainable statistical learning within a periodic table representation (PTR). Our model achieves validation
accuracies of 0.81–0.97 for X2Y Z full-Heusler alloys across three different databases and 0.84 for ABC3

perovskites. Our interpretable model and statistical analysis reveal several important valence electron-related fea-
tures for FBMs, supported by atomic orbital hybridization theory. We further discuss various physical properties
and applications strongly associated with flat bands, including topology, thermal conductivity, electron-phonon
coupling, and superconductivity. Finally, we predict 25 high-potential, previously unreported flat-band Heusler
alloys using the PTR model, validated by first-principles calculations.
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I. INTRODUCTION

An electron in crystals feels both single-particle and
electron-electron interactions. The single-particle interaction
characterized by the bands makes the crystal a normal metal
or semiconductor. While the electron-electron interaction pre-
dominates over the single-particle interaction, the material
will show various exotic quantum phenomena, such as super-
conductivity [1,2], the fractional quantum Hall effect [3,4],
and excitonic Bose-Einstein condensation [5]. Such a situa-
tion usually occurs when the material has flat enough bands,
i.e., weak dispersion of spectral bands in the momentum
space, suppressing the single-particle interaction. One of the
most typical flat-band systems might be the twisted bilayer
graphene with a Moiré lattice [3,6–9]. The search for new
flat-band materials within other two-dimensional (2D) pat-
terned systems, such as Kagome [4,10–12] and Lieb [13–16]
lattices, is ongoing and has shown a great success. Besides
2D systems, the flat bands also can exist in three-dimensional
(3D) systems such as pyrochlore lattice [17–20]. Recently,
Bernevig and his collaborators developed a catalog for 2379
3D flat-band materials in total by analytic methods and
high-throughput calculations, in which 35 full-Heusler alloys
(FHAs) are reported as the best flat-band candidates, having
perfectly flat bands at or very close to the Fermi level (E f )
[21,22].

Despite the recent success in discovering and designing
flat-band materials by the experiment and calculation, the
exploration of them is slow and expensive. An emerging
technique of machine learning (ML) has attracted immense
attention in the field of materials science, which can provide
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an alternative approach to discover crystals with unique prop-
erties quickly and cheaply, such as battery electrode materials
with large voltages [23], topological materials with Weyl
points [24], high-temperature superconductors [25], and 2D
magnetic materials with high Curie temperature [26]. Thanks
to the experimental and computational development of ma-
terials databases, such as ICSD [27,28], AFLOW [29–33],
Materials Project (MP) [34,35], and 2DMatPedia [36,37], the
developed materials-related ML models become accurate and
reliable. Particularly, ML models show the superior perfor-
mance for a large family of stoichiometric materials with
a type of chemical formulas and structures, such as ABO3

perovskites, X2Y Z FHAs, Mn+1AXn (n = 1−3) MXenes, and
C3A2D3O12 garnets. The abundance of crystals with fixed
formulas/structures can provide the basis for training ML
models without structural features, such as using the peri-
odic table, making the model easier to train [38–41]. Several
element-only-based deep learning (DL) models have been
successfully developed for the materials science community
such as an artificial neural network (ANN) [42], Composition-
ally Restricted Attention-Based network (CrabNet) [43], and
ElemNet [44]. However, none of models have been developed
for efficiently predicting flat bands and providing physical
explanation to the flat-band properties in stoichiometric ma-
terials.

In this work, we develop an explainable deep-learning
classification model by combining the convolutional neural
network (CNN) with the periodic table representation (PTR)
[38], and demonstrate that such DL model cannot only ac-
curately predict flat bands in 3D stoichiometric crystals, but
provide explainable physical parameters with statistical anal-
ysis. By training more than 50 000 X2Y Z FHA data sets in
AFLOW, the accuracy of our PTR model is as high as 0.81
for the validation set from the Materials Project. Besides,
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TABLE I. Statistics of total, spin polarized (SP), and non-SP full-Heusler crystals in the AFLOW, Materials Project, and catalog of flat-band
stoichiometric materials database, hosting flat bands around the Fermi level under different screening criteria. �E and ω is the energy window
around E f and energy dispersion of bands, respectively.

Dataset 3
(Catalog of flat-band

Spin state Dataset 1 (AFLOWa) Dataset 2 (Materials Projectb) stoichiometric materialsc)

Total number Non-SP 36698 (70.1%) 893 (74.4%) 35
SP 15681 (29.9%) 307 (25.6%) −

At least one high-symmetry path Non-SP 15506 (29.6%) 368 (30.7%) −
�E < 1.5 eV, ω < 50 meV SP 14217 (27.1%) 240 (20.0%) −

At least one high-symmetry path Non-SP 354 (0.7%) 19 (1.6%) 35
�E < 0.5 eV, ω < 10 meV SP 443 (0.8%) 28 (2.3%) −

Whole Brillion zone Non-SP 72 (0.1%) 0 −
�E < 1.5 eV, ω < 50 meV SP 118 (0.2%) 0 −

aTraining and test data set [30–33].
bValidation data set 1 [34,35].
cValidation data set 2 [21].

our model can identify 34 over 35 best full-Heusler flat-
band candidates reported by high-fidelity density-functional
theory (DFT) calculations [21]. The PTR model is universal
and performs well for other crystals, like ABC3 perovskites,
keeping a high validation accuracy of 0.84. It demonstrates
the robustness and generalization of our PTR model. To un-
cover the CNN “black box”, we visualize the hidden layers
of the PTR model with the principal composition analysis
(PCA) and compare with statistical analysis on FHAs. It is
found that the first-principals component (PCA1) has a direct
relationship with the mean number of the valence electrons
(MNV) with a period of 3n (n is integers), which is due to
the additional 3n electrons from elements with fully occupied
d and/or f orbital. Such a periodic trend indicates that the
number of valence electrons is an important physical descrip-
tor for the flat-band prediction, which is further confirmed
by our statistical analysis on the data set. Furthermore, we
find that the flat rate is as high as 0.91 for the spin polarized
(SP) FHAs, which can be physically explained by the Slater-
Pouling rule [45,46] and the band spin splitting. Interestingly,
for the non-SP compounds, two flat rate peaks around 16 and
24 of the total number valence electrons (TNV) are found.
Two such magic numbers of the flat rate are explained by the
orbital hybridization theory. The combination of the statistical
learning, data analysis, and orbital hybridization model in
this work not only gives a detailed physical explanation for
the formation of flat bands, but also provides a quick and
economical way for discovering and designing flat bands in
other stoichiometric crystals, for example, ABC3 perovskites.
Finally, 19 high-potential, new full-Heusler alloys and six
previously unreported half-Heusler alloys with flat bands very
close to the Fermi level are predicted by the PTR model
(Supplemental Material [47]).

II. METHODS

Screening data. The training data set of FHAS are from
the AFLOW database through the RESTful API [31–33]. We
get a total of 61 692 full-Heusler crystal structures and band

structures which are calculated by the high-throughput DFT
framework. The spin-orbital interaction is neglected as it does
not drastically affect the band structure around the Fermi en-
ergy. Considering the practical applications, the crystals with
rare earth (Sc, Y, Lanthanides) and the radioactive elements
are removed from the data set. Finally, there are a total of
52 379 full-Heusler crystals for training the model.

Flat bands are defined along at least one full high-
symmetry path in the Brillion zone as these flat bands are
symmetry protected and physically meaningful. The energy
window (�E = |E − E f |) of the flat bands is set as 1.5 eV
because the electronic property of a crystal is mainly defined
by the electrons around the E f . Finally, the energy dispersion
(ω) is bound within a narrow window of 50 meV. A wider or
narrower flat-band threshold would filter out more or fewer
crystals with flat bands [12] as shown in Table I. Full-Heusler
crystals with several special flat-band thresholds can be found
in the Supplemental Material (Tables S3–S5) [47]. According
to our definition, about half of the crystals (29 723/52 379) in
our database have a flat band close to the E f . Such a balanced
data set is helpful for training the model to get a more reliable
classification result.

We adopt two data sets of FHAs from other databases for
validation. One is from the Materials Project [34,35], in which
there are around 2000 FHAs. The other one is from “Cate-
gory of flat-band stoichiometric materials” [21], in which 35
FHAs are claimed as the best flat-band candidates by DFT
calculations.

PTR model. Since our database are all full-Heusler crys-
tals, only elemental properties are needed for distinguishing
a crystal for a machine. The atomic properties are closely
related to the position of the element in the periodic table.
Therefore, the atomic properties could be directly extracted
from the periodic table, and in consequence, the periodic table
is a natural descriptor of a crystal. With this understanding, we
use a specific type of deep learning network, named the peri-
odic table representation (PTR) classification model. It is a
supervised CNN model and just uses the periodic table figure
as the input without any manually picked features and thus
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greatly minimizes human involvement. Every full-Heusler
crystal is transformed into a two-dimensional periodic table
figure with five rows and 17 columns, and then the figure is
denoted by a matrix A. The corresponding site in matrix A
is initialized by −0.1 if the site is taken by the 55 elements
that our data sets contain, and initialized by 0 if the element is
not contained. The periodic table should capture the difference
between elements occupying the X site and those occupying Y
or Z site (YZ sites). It is because the full-Heusler crystals have
the chemical formula of X2Y Z and elements at the X site have
a different chemical environment to those at the YZ sites. The
X site atoms form a simple cubic crystal with an octahedral
(Oh) symmetry, while the atoms located at YZ sites form a
body-centered-crystal with a tetrahedral (Td ) symmetry. Then,
the value of the corresponding X site element in the periodic
table is set to 2.6 in matrix A, and those YZ site elements are
set to 1.3 to keep the mean of matrix A is always equal to zero.
With such a method, the normalization process is no longer
needed. The periodic table is used as the only input feature for
our ab initio deep learning model without any other manual
featurization. In another example of ABC3 perovskites, except
the element A, B, and C, all the remaining elements are firstly
set as -0.1 in the periodic table matrix. To guarantee the mean
value of the whole matrix to be zero, the A and B sites are set
as 1.1, and C as 3.3 because the number of the C atoms is three
times of the A and B atom in a perovskite unit cell. Then, the
PTR model is ready to be trained for the flat-band prediction
of perovskite crystals.

The input figure is then transferred into the PTR model
which includes three convolutional layers that are used as
the feature extractor, and two full connection layers that are
used for data prediction. The crystals with flat bands along
high-symmetry path are labeled as 1, and those without flat
bands labeled as 0. To be more specific, 96 convolutional
maps are used in each convolutional layer which is fol-
lowed with a rectified linear unit (ReLU) layer. The ReLU
has a nonlinear activation function f (x) = max(0, x). In the
training process, the negative log likelihood loss (NLLLoss)
function is used to quantify the model. The model is fully
trained after the accuracy is converged with the optimiza-
tion method of stochastic gradient descent (SGD), a starting
learning rate of 0.01 and a momentum of 0.9. The convo-
lutional filters are set as 3 × 3, 5 × 5, and 3 × 3 for the
three convolutional layers, respectively, and the stride is set
to be 1. Also, a zero padding of one is used for the first
two convolutional layers by adding zeros around the border
to preserve as much information as possible in the early
layers. The input volumes are 19 × 7, 19 × 7, and 15 × 3,
for the three convolutional layers, respectively, and the gen-
erated convolutional maps after the convolution are 17 × 5,
15 × 3, and 13 × 1, respectively. The code is available in
Ref. [65].

Number of valence electrons. For counting MNV, we in-
clude the fully occupied d orbital and f orbitals, which
could differentiate the elements in the same group in
the periodic table. For example, 28 valence electrons
([Xe]4 f 14 5d10 6s2 6p2) are considered for the Pb atom. For
counting TNV, we do not consider the fully occupied d orbital
and f orbitals. Thus, the Pb have four total valence electrons
(6s2 6p2). We only take the non-spin-polarized crystals into
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FIG. 1. Crystal structures of two typical categories of stoichio-
metric materials, X2Y Z full-Heusler alloys and ABC3 perovskites.
(a) Crystal structure of a cubic L21 full-Heusler conventional cell
(space group Fm3̄m, No. 225). (b) X site (blue) atoms locate at the
Wyckoff position 8c ( 1

4 , 1
4 , 1

4 ), forming an Oh site symmetry and a
simple-cubic sublattice. (c)Y (orange) or Z (green) site atoms locate
at the Wyckoff position 4a (0, 0, 0) and 4b ( 1

2 , 1
2 , 1

2 ), respectively,
forming a Td site symmetry and a face-centered-cubic sublattice. (d)
Irreducible Brillion zone of conventional fcc lattice. Path: � (0, 0,
0), X (1/2, 0, 1/2), W (1/2, 1/4, 3/4), K (3/8, 3/8, 3/4), L (1/2,
1/2, 1/2), U (5/8, 1/4, 5/8). (e) Crystal structure of an orthorhombic
ABC3 perovskite conventional cell (space group Pnma, No. 62). (f)
A site atoms occupy the 4c (cuboctahedron) position and (g) B site
atoms are on the 4d (octahedron) position. (h) Irreducible Brillion
zone of ABC3 perovskites. Path: � (0, 0, 0), X (1/2, 0, 0), S (1/2,
1/2, 0), Y (0, 1/2, 0), Z (0, 0, 1/2), U (1/2, 0, 1/2), R (1/2, 1/2, 1/2),
T (0, 1/2, 1/2).

consideration for TNV flat-band analysis as more than 90%
of the spin polarized FHAs have flat bands.

DFT calculations. The band structures and density of
states of the full-Heusler crystals in this work are all cal-
culated with the DFT method based on the first-principles
theory in the VASP code [48,49]. The projector augmented
wave method [50] with the cutoff energy of 600 eV is
employed. The exchange-correlation functional is evaluated
within the generalized gradient approximation function [51]
in the scheme of the Perdew-Burke-Ernzerhof parameter. The
geometric crystal structure is firstly fully optimized with
the force convergence threshold of 0.01 eV/Å. The self-
consistent calculations are converged with a reciprocal space
Monkhorst-Pack grid [52] sampling of size 15 × 15 × 15 in
the irreducible Brillouin zone (BZ) for a unit cell and energy
threshold of 10−6 eV.

III. MODEL PERFORMANCE

The L21 full-Heusler compound has a face-centered cubic
(fcc) crystal structure with space group of Fm3̄m, No. 225,
and a stoichiometric composition X2Y Z . The primitive cell of
a full-Heusler contains two atoms sitting at the Wyckoff posi-
tion 8c (1/4, 1/4, 1/4) (X site), one atom at 4a (0, 0, 0) (Y site),
and one atom at 4b (1/2, 1/2, 1/2) (Z site) [Fig. 1(a)]. Atoms
at the X site have the Oh symmetry [Fig. 1(b)] and those at the
Y or Z site have the Td symmetry [Fig. 1(c)]. The perovskite
structure of ABC3 has a much lower symmetry compared with
Heusler alloys, which is orthorhombic with space group of
Pnma, No. 62 [Figs. 1(e)–1(h)]. In the final part of this work,
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FIG. 2. Work flowchart of this study. The full-Heusler crystals are obtained from AFLOW database. The flat bands are defined with the
threshold of �E < 1.5 eV and ω < 50 meV and 29723 flat-band and 22656 non-flat-band full-Heusler crystals are labeled, which are used for
statistical analysis and training the PTR model. The explainable PTR model is then used to extract physical features from the hidden layers
of the neural network. Finally, statistical analysis and a physical mechanism is applied to help explain the model. The red arrows show the
explainable deep-learning path, while the blue arrows indicate the data statistical path.

using perovskites as example, we demonstrate that our model
is not only applicable for crystals with the large data set and
high symmetry, but also applicable to the small data set and
low symmetry. We take 61 692 FHAs and corresponding band
structures in AFLOW for both the statistical analysis and ML
model development of flat bands in this work. Before training
the ML model, the outliers and unsuitable compounds in the
data set are cleaned (Fig. 2) as declared in the method part.
Finally, 52 379 full-Heusler crystals are used for study, which
is randomly divided into training, validation, and test sets in
the ratio of 0.8:0.1:0.1. The training, validation, and test set
are used for training the model, tuning the hyperparameters,
and providing a fair evaluation of performance metrics across
other ML models, respectively. To define the band flatness
from band structures, the flat band segments along the high-
symmetry path in the BZ [Fig. 1(d)] around the Fermi level are
taken into consideration. The parameter of the energy window
(�E ) is to confirm that the flat bands locate around E f , which
is meaningful for practical applications in devices. The other
parameter of the energy dispersion (ω) is to identify “flat”
bands along the path between high-symmetry points within
the energy window (see details in the Methods section). Under
the threshold of �E < 1.5 eV, and ω < 50 meV, about half
of FHAs have flat bands (Table I). A more strict or loose
threshold will clearly filter out more or fewer alloys with flat
bands. Even under a very strict threshold of �E < 0.5 eV, and
ω < 10 meV, 797 (AFLOW) and 47 (MP) alloys still satisfy

the criteria. Interestingly, there are 190 alloys (AFLOW) have
flat bands along the whole BZ (see details in Fig. S7 and
Table S4). Considering a tradeoff between the size of data sets
and the quality of flat bands, the threshold of �E < 1.5 eV
and ω < 50 meV are used in the remaining part unless other-
wise stated.

After data collection and classification, we transform each
alloy into the corresponding 2D periodic table fragment
matrix for the PTR model classification [see examples of
Cu2MnAl and Fe2HfSn in Fig. 3(a), and more details in the
Methods section]. Our PTR model achieves the accuracy of
0.86 and 0.83 on the validation and test sets, respectively.
Specifically, this means that the PTR algorithm can predict
the flat band around E f for full-Heusler compounds with an
accuracy larger than 80% only using the information of the
chemical formula. It is found that when the X site is occupied
by the Co, Mg, Ge, Cd, Sn, and Hg, the average accuracy
is greatly increased to 0.92 [Fig. S1(a)]. The accuracy at YZ
site is much high and uniform for all elements [Fig. S1(b)].
Thus, the flat bands in FHAs are mainly affected by the X site
elements.

IV. MODEL VALIDATION

To estimate our PTR model’s generalized and robust capa-
bility, we directly apply it on ∼1200 FHAs in MP database as
the validation data set. All of them are not seen by the model
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(a) Periodic Table Representation model

(b)

(d)(c)

FIG. 3. (a) Structure of the periodic table classification model. The input images take the non-flat-band Cu2MnAl and flat-band Fe2HfSn
as examples. The output of Cu2MnAl and Fe2HfSn is classified as 0 and 1, respectively. The color code in the periodic table: Cu/Fe (X site)
is dark blue, Mn/Hf and Al/Sn (YZ sites) are blue, the other elements are light blue, and the elements not in any full-Heusler alloys are white
(see elemental details in Fig. S1 [47]). The last hidden layer (purple shaded layer) is picked out for the model visualization. (b) The count
of full-Heusler alloys (blue solid circles) for mean valence electrons and the PCA1 value for each compound (orange solid diamonds). The
FWHM)of the count distribution is used for our analysis and highlighted within a white area. (c) PCA1 averaged (blue solid circles) over the
MNV of full-Heusler unit cells and flat rate (orange solid stars) of the corresponding MNV. (d) Flat rate (orange solid stars) and the count
of alloys (blue solid circles) for total valence electrons of a unit cell of non-SP full-Heusler crystals. Two flat-rate peaks within FWHM are
highlighted by two black circles.

during the training process. It is found that the PTR model can
also get an accuracy of 0.81 for the MP data set. Moreover,
using the best flat-band candidates of 35 FHAs reported in a
previous work [21] as another validation, our PTR model can
identify 34 of them except Ru2FeSi. It is worth noting that the
paramagnetic state of Ru2FeSi is used in Ref. [20]. However,
Ru2FeSi is a ferromagnetic alloy [34]. The flat bands are
destroyed by the spin-polarization effect (Fig. S2 [47]). Such
results reconfirm that our PTR model can correctly predict flat
bands near E f for either spin polarized or non-SP FHAs.

Model visualization and explanation. Our PTR model
shows its strong capability to automatically predict flat bands
with a high accuracy, but does the PTR model predict the
flat bands based on the logical descriptors? To answer this
question, it is necessary to unravel the neural network in-
ternal operations. To open the black box and understand the
physics behind our PTR model, we resort to visualization

process with the principal composition analysis [23] through
pulling out data in the last two fully connected layers. Our
PTR model identifies that the number of valence electrons,
including mean and total, as the most important features for
the flat-band prediction. The PCA1 results show a periodic
oscillation of the mean number of valence electrons (MNV)
per atom [Fig. 3(b)]. Note that we only use the full width
at half maximum (FWHM) of the count distribution for our
next analysis, corresponding to the MNV in the range of 4 to
16.5 [Fig. 3(b)], because the statistical analysis is meaningless
for small number of crystals. Figure 3(c) shows a clear peri-
odic relationship between PCA1 and the MNV, i.e., a period
of 3. It means that the MNV must be a crucial parameter
for flat bands in FHAs because the first-principles compo-
sition analysis is the most important component in the PTR
model. To further verify whether the mean number of valence
electrons learned from PCA1 is the predominant parameter
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for flat bands, we calculate the flat rate for each MNV, which
is the ratio between the number of the crystals having flat
bands and the total number of crystals. Obviously, the flat
rate has the relationship with the MNV or the same trend to
PCA1 [Fig. 3(c)]. In summary, our PTR model has learned
the underlying physics of flat-band information automatically,
which is supported by the statistical analysis.

The periodic behavior of MNV with the flat-band rate
in Fig. 3(c) originates from accounting of electrons in fully
occupied d or f orbitals as introduced in the Methods section.
For example, Ge has 14 valence electrons ([Ar]3d10 4s2 4p2)
according to the magpie features. In the same group VIA, Ge
possesses the same number of valence electrons as C and Si
[four valence electrons (s2 p2)] if the fully occupied d orbital
is ignored, and exhibits similar electronic behavior. Thus, on
average, about 12 more electrons (10 for d and 14 for f ),
corresponding to three electrons per atom (a full-Heusler alloy
consists of four atoms), are accounted for when calculating
the number of valence electrons for elements in a full-Heusler
alloy. If two such elements are present, six more valence
electrons are counted per atom, and so on. If the fully occupied
d or f orbitals are excluded from valence electron counting,
the periodic behavior of the flat-band rate with the MNV dis-
appears [Fig. 3(d)], validating our explanation for the periodic
behavior in Fig. 3(c).

The relationship between valence electrons and flat bands
discovered by our explainable PTR model should be physi-
cally reasonable. It is because many other physical properties
of full-Heusler compounds are decided by the valence elec-
tron count (NV ) [46,53–56]. For example, the magnetic
moment per unit cell (m) of FHAs can be roughly pre-
dicted through the Slater-Pauling rule (m = NV − 24) [46];
the Curie temperature is linearly dependent on NV; most
full-Heusler compounds with 24 valence electrons are semi-
conductors [53]; nonmagnetic full-Heusler crystals with NV

of around 27 usually have a high superconducting transi-
tion temperature [55,56]. Furthermore, the main difference
in electronic structures of FHAs is the location of the E f ,
which is mainly determined by the NV . Therefore, the ex-
istence of flat bands around the E f should have a strong
correlation with the number of valence electrons, which can
be further validated by the statistical analysis on the data
set.

Statistical analysis. To statistically study the elemental
contribution to the flat band, we separate the X site from the
YZ sites. It is because Fig. S3 [47] shows that the flat rate is
relatively large if the X site is occupied by 3d-transition-metal
(TM) elements or s elements. We then revisit all full-Heusler
band structures with 3d-TM elements occupying the X site. It
is found that almost all of them have at least one flat band
along the high symmetry paths, although some flat bands
are far from E f or crossed by other bands. Further physical
inspections found that the flat band is only contributed by the
e∗

u orbital (contributed by dz2 and dx2−y2 ) of the X site 3d-TM
elements [see an example in Figs. 4(a)–4(b)].

Further data analysis (Table I) indicates that SP materials
have larger flat rate than the non-SP compounds with the
values as high as 91% and 78% for AFLOW and MP, re-
spectively. However, the flat rate is only 42% and 41% for
the non-SP compounds in these two databases, respectively.

We believe the Slater-Pauling rule, the magnetic moment (Mt )
of a full-Heusler crystal obeys Mt = Zt−24 where Zt is the
total number of the valence electrons [45,57], may be the main
reason for the large flat rate of the SP crystal. It is because the
spin down bands always contain exactly 12 electrons, which
makes the E f located just below the e∗

u orbital that usually
has several flat bands. This behavior makes the spin down
band always have flat bands around the E f and will certainly
greatly enhance the flat rate for the SP FHAs. Furthermore,
the spin polarization results in a splitting of two subsets of
bands (spin-up and spin-down), thus a probability for shifting
the flat band (out of �E initially) into �E .

Next, we take Ca2ClP, a typical 16 valence-electron
full-Heusler alloy, as an example to explain the flat-rate
magic number of 16 using the orbital hybridization analysis.
Figure 4(e) shows its band structure with a flat band along the
�-X high symmetry path. The P and Cl atoms form a simple
cubic structure, and their p orbitals first hybridize with each
other. An antibond (t∗

1u) and a bond (t1u) are formed. The s
orbitals of the P, Cl, and the two Ca atoms also hybridize,
resulting in two of the s orbitals located at the low energy
level and the other two located at the high energy level. Then,
the 16 valence electrons of Ca2ClP will fill up eight orbitals,
two nondegenerate a1u and a1g and threefold degenerate t1u

and threefold degenerate t∗
1u bonds [Fig. 4(f)]. After filling 16

electrons, the threefold degenerated t∗
1u is just located below

the E f [Fig. 4(f)]. Thus, the flat band along the �-X direction
is induced by the nonbond threefold degenerate t∗

1u. For 15 or
14 valence-electron FHAs, one or two orbitals of t∗

1u will be
shifting above the E f , but still leaving two or one nonbond
orbital below the E f . Thus, FHAs with 15 or 14 valence
electrons also have a high flat rate compared with those with
16 electrons due to the threefold degenerate feature of t∗

1u as
shown in Fig. 3(d).

V. DISCUSSION

Generalization of PTR model. So far, we have demonstrated
the superior performance of our explainable PTR model for
predicting the flat-band behavior in FHAs. Actually, our pe-
riodic table-based model is general, and is able to adapt
properly to other stoichiometric compounds, like the widely
studied ABC3 perovskites and A3B2C3D12 garnets. For ap-
plying the PTR model to such material families, just only
the weight of each element in the periodic table graph is
needed to be fine tuned according to the element weight in
the formula (see details in the Methods section). Using 189
ABC3 perovskites (SG No.: 62) from the Materials Project, we
demonstrate that the accuracy of the PTR model is still as high
as 0.84. Thus, the PTR model is applicable for materials with
both high and low symmetry. To further demonstrate the uni-
versality and applicability of our model, we perform the PTR
model to predict new flat-band half-Heusler alloys. Besides
the new 19 flat-band full-Heusler alloys, six high-potential,
previously unreported half-Heusler alloys with flat bands very
close to the Fermi level (−0.5–0.5 eV) and a high density of
states are discovered and reported in this work (Fig. S9 [47]).

Topology of flat bands. The topological property of
flat bands has attracted great interest for quantum devices
[3,58,59]. One can use our PTR model to predict flat bands
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FIG. 4. (a) Element and (b) Fe orbital projected band structures of spd-type Fe2SnHf. (c) Element projected band structures of sp-type
Ca2ClP. The color and the line width of the band structure are proportional to the weight of the corresponding elements. The Fermi energy
is set to zero. (d) Atomic-orbital energy diagrams of d orbitals between two Fe atoms at different sublattices in the unit cell of Fe2SnHf. (e)
hybridizations among Fe_d , Mn_d , and Si_p under the Td site symmetry of Fe2SnHf. (f) Atomic-orbital hybridizations among p and s orbital
of P and Cl atom, and s orbital of two Ca atoms at different sublattices in the unit cell of Ca2ClP. Note the orbital symmetry characters are
represented under the Oh site symmetry throughout the diagram: representations of d−e (dz2 , dx2−y2 ), d − t2 (dxz, dyz, dxy), p − t2 (px , py, pz),
and s − a1 states in Td site symmetry can be transformed into those of eg, t2g, t1u, and a1g states in Oh site symmetry, respectively.

first. Then, the topological property of the flat band can be
further analyzed by DFT calculations. For example, the band
structure of Fe2HfSn with spin orbital coupling (SOC) is
shown in Fig. S4(a) [47]. The twofold degenerate conduction
bands have several flat bands. The flat band along the X-W,
W-K, U-W, and U-X high symmetry paths may be nontrivial
because of a gap opening in the presence of SOC [12], while
the �-X flat band might be topologically trivial.

Seebeck coefficient and electron-phonon coupling. The
high density of states on or very close to the Fermi level
will induce strong electron-phonon coupling, which is an
indispensable factor for the thermal conductor and super-
conductor. Taking semiconducting Fe2HfSn and metallic
Ni2NbAl, two stable flat-band FHAs as an example, which
have the negative formation energy, small energy above Hull
(<0.01 eV/atom) and no imaginary frequency in the phonon
structure [Fig. S5(a) and S5(c)], we calculate the Seebeck
coefficient, power factor, and electron-phonon coupling ef-
fect. The narrow-bandgap Fe2HfSn has very large Seebeck
coefficients of 600 and 400 µVK−1 for n- and p-type doped
compound [Fig. S5(b)] because its band asymmetry (asym-
metric conduction and valence bands [60,61] as well as the
asymmetric conduction band along �-X and X-W) [62,63].
The calculated electron-phonon coupling constant and Tc of
the superconducting state of Ni2NbAl is 0.59 and 2.66 K [Fig.
S5(d)], respectively, in good agreement with the experiments
(2.15 K) [64].

VI. CONCLUSION

A periodic table representation model is developed in this
work, which can correctly identify flat band around the E f

in stoichiometric materials. For example, using the Heusler
data sets from the Materials Project [34,35] and the catalog
of flat-band stoichiometric materials [21] as validation, the
model accuracy is 0.81 and 0.97, respectively. The model
self-learns the number of valence electrons (mean and total)
as two important features for the flat-band prediction, which
is confirmed by the statistical analysis. The magic numbers
of the large flat rate in non-spin-polarized compounds are
physically explained through the orbital hybridization theory.
Finally, we give a brief discussion and perspective on how
to apply the PTR model on other stoichiometric materials
(ABC2 perovskites) and physical applications, such as the
topology, thermoelectricity, and superconductor. Our explain-
able deep-learning model, systematic statistical analysis, and
physical interpretation show some of the nature of flat bands,
and may prompt further explorations of intrinsic flat bands
in crystals and their fruitful physical, material, and device
applications.

ACKNOWLEDGMENTS

The authors thank Z. Wang, J. He, J. You, and T. Yang for
their helpful discussion on the DFT calculations. This work
was supported by MOE, Singapore Ministry of Education

064804-7



ZHANG, ZHAO, SONG, AND SHEN PHYSICAL REVIEW MATERIALS 7, 064804 (2023)

(No. A-0001160-00-00 and No. A-0005241-01-00), con-
ducted at the National University of Singapore. The authors
gratefully acknowledge the Centre of Advanced 2D Materials,

National University of Singapore and the National Super-
computing Centre of Singapore for providing computational
resources.

[1] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theory of super-
conductivity, Phys. Rev. 108, 1175 (1957).

[2] J. Winterlik, G. H. Fecher, and C. Felser, Electronic and struc-
tural properties of palladium-based Heusler superconductors,
Solid State Commun. 145, 475 (2008).

[3] Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y.
Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E.
Kaxiras et al., Correlated insulator behaviour at half-filling in
magic-angle graphene superlattices, Nature (London) 556, 80
(2018).

[4] M. Kang, L. Ye, S. Fang, J. S. You, A. Levitan, M. Han, J.
I. Facio, C. Jozwiak, A. Bostwick, E. Rotenberg et al., Dirac
fermions and flat bands in the ideal kagome metal FeSn, Nat.
Mater. 19, 163 (2020).

[5] G. Sethi, M. Cuma, and F. Liu, Excitonic Condensate in Flat
Valence and Conduction Bands of Opposite Chirality, Phys.
Rev. Lett. 130, 186401 (2023).

[6] E. Suárez Morell, J. D. Correa, P. Vargas, M. Pacheco, and
Z. Barticevic, Flat bands in slightly twisted bilayer graphene:
Tight-binding calculations, Phys. Rev. B 82, 121407 (2010).

[7] G. Trambly de Laissardière, D. Mayou, and L. Magaud, Numer-
ical studies of confined states in rotated bilayers of graphene,
Phys. Rev. B 86, 125413 (2012).

[8] J. M. B. Lopes dos Santos, N. M. R. Peres, and A. H. Castro
Neto, Continuum model of the twisted graphene bilayer, Phys.
Rev. B 86, 155449 (2012).

[9] S. Fang and E. Kaxiras, Electronic structure theory of weakly
interacting bilayers, Phys. Rev. B 93, 235153 (2016).

[10] E. Tang, J. W. Mei, and X. G. Wen, High-temperature Fractional
Quantum Hall States, Phys. Rev. Lett. 106, 236802 (2011).

[11] M. Kang, S. Fang, L. Ye, H. C. Po, J. Denlinger, C. Jozwiak,
A. Bostwick, E. Rotenberg, E. Kaxiras, J. G. Checkelsky et al.,
Topological flat bands in frustrated kagome lattice CoSn, Nat.
Commun. 11, 4004 (2020).

[12] H. Liu, S. Meng, and F. Liu, Screening two-dimensional mate-
rials with topological flat bands, Phys. Rev. Mater. 5, 084203
(2021).

[13] T. Yang, Y. Z. Luo, Z. Wang, T. Zhu, H. Pan, S. Wang, S. P.
Lau, Y. P. Feng, and M. Yang, Ag2S monolayer: An ultrasoft
inorganic Lieb lattice, Nanoscale 13, 14008 (2021).

[14] R. Shen, L. B. Shao, B. Wang, and D. Y. Xing, Single Dirac
cone with a flat band touching on line-centered-square optical
lattices, Phys. Rev. B 81, 041410(R) (2010).

[15] E. H. Lieb, Two Theorems on the Hubbard Model, Phys. Rev.
Lett. 62, 1201 (1989).

[16] Y. Hwang, J.-W. Rhim, and B.-J. Yang, Flat bands with band
crossings enforced by symmetry representation, Phys. Rev. B
104, L081104 (2021).

[17] I. Hase, T. Yanagisawa, and K. Kawashima, Flat-band in py-
rochlore oxides: A first-principles study, Nanomaterials (Basel)
9, 876 (2019).

[18] I. Hase, T. Yanagisawa, Y. Aiura, and K. Kawashima, Possi-
bility of Flat-Band Ferromagnetism in Hole-Doped Pyrochlore

Oxides Sn2Nb2O7 and Sn2Ta2O7, Phys. Rev. Lett. 120, 196401
(2018).

[19] T. Mizoguchi, H. Katsura, I. Maruyama, and Y. Hatsugai,
Flat-band solutions in D-dimensional decorated diamond and
pyrochlore lattices: Reduction to molecular problem, Phys. Rev.
B 104, 035155 (2021).

[20] I. Hase, T. Yanagisawa, and K. Kawashima, Computational
design of flat-band material, Nanoscale Res. Lett. 13, 63 (2018).

[21] N. Regnault, Y. Xu, M.-R. Li, D.-S. Ma, M. Jovanovic, A.
Yazdani, S. S. P. Parkin, C. Felser, L. M. Schoop, N. P. Ong
et al., Catalogue of flat-band stoichiometric materials, Nature
(London) 603, 824 (2022).
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