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First-principles insight in structure-property relationships of hexagonal Si and Ge polytypes
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Hexagonal SiGe is a promising material for combining electronic and photonic technologies. In this paper, the
energetic, structural, elastic, and electronic properties of the hexagonal polytypes (2H , 4H , and 6H ) of silicon
and germanium are thoroughly analyzed under equilibrium conditions. For this purpose, we apply state-of-the-art
density functional theory. The phase diagram, obtained in the framework of a generalized Ising model, shows
that the diamond structure is the most stable under ambient conditions, but hexagonal modifications are close to
the phase boundary, especially for Si. Our band structure calculations using the modified-Becke-Johnson–local-
density-approximation (MBJLDA) and Heyd-Scuseria-Ernzerhof (HSE06) exchange-correlation functionals
predict significant changes in electronic states with hexagonality. While Si crystals are always semiconductors
with indirect band gaps, the hexagonal Ge polytypes have direct band gaps. The branch-point energies of
the Si polytypes appear in the fundamental gaps, while for the Ge crystals they are below the valence band
maxima. Band alignment based on the branch-point energy leads to type-I heterocrystalline interfaces between
Ge polytypes, where electrons and holes can be trapped in the layer with the higher hexagonality.
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I. INTRODUCTION

The group-IV elements silicon (Si) and germanium (Ge)
crystallize under ambient conditions in a cubic diamond struc-
ture. The bonding is characterized by sp3 hybridization, and
consequently, the nearest-neighbor atoms form regular tetra-
hedra. However, under higher pressure several Si and Ge
polymorphs with different coordination have been reported
[1–8]. In addition, using various deposition and growth tech-
niques, Si and Ge polytypes that differ from the diamond
structure have also been observed.

Polytypism is a one-dimensional type of polymorphism
which occurs, e.g., when the geometry of structural layers
is preserved but the number of layers in the layer-stacking
sequence is altered. In this setting, hexagonal polytypes of the
diamond structure can be formed by keeping the tetrahedral
coordination while varying the stacking sequence along the
cubic [111] (corresponding to the hexagonal [0001]) direction
[9]. As can be observed in Fig. 1, the resulting polytypes
only differ in the manner in which Si or Ge bilayers are
oriented along the stacking axis, yielding either a chair or
a boat conformation. One may equivalently speak about the
stacking of eclipsed or staggered bilayers [10]. In Ramsdell
notation [11] the stacking in the diamond structure is purely
chairlike (eclipsed) and denoted with 3C, since periodicity in
the [111] direction is reached after three cubic (C) bilayers.
The space group is O7

h (Fd3m). The pure stacking of boatlike
(staggered) conformers leads to the hexagonal lonsdaleite 2H
structure with space group D4

6h (P63/mmc) and two hexagonal
(H) bilayers to reach periodicity in the [0001] direction. In
addition, in Fig. 1, two other hexagonal polytypes, 4H and
6H , with four or six bilayers and, hence, 8 or 12 atoms in
their hexagonal unit cells, are displayed. The space group of
pH polytypes (p = 2, 4, 6) is still D4

6h (P63/mmc). The ratio

of the number of staggered bilayers to the total number of
such layers gives the percentage of hexagonality h with 0%
for 3C, 33% for 6H , 50% for 4H , and 100% for 2H . More
complex arrangements of eclipsed and staggered bilayers can
lead also to rhombohedral (R) polytypes pR with space group
R3m (C5

3v).
Lonsdaleite 2H is the most studied polytype of Si after dia-

mond 3C and has been synthesized using a variety of methods
[12–18]. Lonsdaleite silicon is present in core-shell nanowires
[16,19–21], and 4H-Si nanoplatelets have been recently re-
ported [22]. The transformation of cubic Si into hexagonal
polytypes is also observed for high-temperature indentation
[23], plastic deformation [24,25], ion implantation [26], low-
pressure chemical vapor deposition [27], pulsed laser beam
annealing [28], and nanoribbon growth [29]. It is worthwhile
mentioning that the rhombohedral polytype 9R has been ob-
served in Si nanowires [19,30]. Ribbons of lonsdaleite Ge
were produced in a diamond-Ge matrix already 30 years ago
[31–33]. More recently, room temperature nanoindentation
[34] and ultraviolet laser ablation at low pressure [35,36] have
been employed to obtain hexagonal phases of Ge. Similarly to
the case of Si, different routes toward hexagonal Ge nanowires
have been explored [20,37–40]. Other hexagonal polytypes
besides 2H , e.g., 4H Ge, have also been reported [41–44].

Although hexagonal polytypes such as 2H and 4H of Si
and Ge are well documented experimentally, little is known
from theoretical studies about their electronic properties in
comparison with the abundant literature for SiC (see, e.g.,
Ref. [45]). One publication [46] addresses their structural,
cohesive, and electronic properties in the framework of the
density functional theory (DFT) [47,48] with the local den-
sity approximation (LDA) [48] for the exchange-correlation
(XC) functional. The 2H phases of Si and Ge have been
recently investigated in detail, including elastic properties,
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FIG. 1. Bond stacking along the [0001] direction in the hexagonal unit cells of the four polytypes. Group-IV atoms are displayed as red
spheres. Bonds in the (112̄0) plane are indicated by thick black lines. The cubic (c) or hexagonal (h) character of each bilayer is defined by
the nonparallel bond in the plane. The signs + and − denote the orientation of the bilayer. For a more detailed explanation, see Ref. [45]. The
primitive basis vectors ai (i = 1, 2, 3) are also shown.

with DFT calculations using advanced XC functionals for
improved band structures [49–51]. In fact, the Kohn-Sham
band structures obtained from standard functionals in the LDA
or generalized gradient approximation (GGA) drastically un-
derestimate the fundamental gaps and interband energies of
semiconductors [52], and germanium is wrongly predicted to
be metallic independently of the polytype [46,53]. Accurate
quasiparticle (QP) band structures can be obtained, for in-
stance, within the GW approximation to the XC self-energy
[52]. For 2H-Si, such GW calculations are available [49].
It has, however, been shown that more efficient computa-
tional approaches allow one to obtain QP band structures of
the same quality at a lower computational cost [50,54–56].
The most reliable such approaches consist in applying hybrid
XC functionals, e.g., the Heyd-Scuseria-Ernzerhof (HSE06)
functional [57] or a meta-GGA XC functional called MB-
JLDA [55,58,59]. The MBJLDA functional is based on a
modified Becke-Johnson (MBJ) exchange potential [60–62]
together with LDA correlation. We note that an empirical-
pseudopotential method (EPM) has also been applied in the
literature to the 2H polytypes [63–65].

In this paper, we present a comprehensive overview of
calculations for ground-state and excited-state properties of
2H , 4H , and 6H hexagonal polytypes of the group-IV el-
ements Si and Ge. We include also calculations for the 3C
diamond phase, using a nonprimitive hexagonal unit cell to
facilitate the comparison. Concerning the ground state, we
discuss atomic structures, phase stability, and elastic coeffi-
cients. In contrast to the 2002 work of Raffy, Furthmüller, and
Bechstedt [46], where the LDA was employed, we use here
the GGA Perdew-Burke-Ernzerhof XC functional revised for
solids (PBEsol) [66]. The excellent accuracy of this functional
for geometry optimization and calculation of elastic properties
is proved in Ref. [50] for the 3C and 2H phases of Ge. Among

the excited-state properties we focus on the modification of
band structures and band gaps with hexagonality. These band
structures are now calculated with the HSE06 and MBJLDA
functionals, which yield band structures in close agreement
with experimental data for the most studied 3C and 2H phases
[49,50]. In contrast to earlier LDA and GGA calculations, and
in agreement with experiment, we obtain with these function-
als an open band gap for all Ge polytypes. Taking advantage
of the accuracy of our band gap calculations, we calculate
branch-point energies and apply them to obtain band align-
ments at the interface between different polytypes.

II. THEORETICAL AND COMPUTATIONAL METHODS

A. Structural properties

All calculations were performed with the Vienna ab ini-
tio simulation package (VASP) [67,68]. The wave functions
and pseudopotentials are described within the projector-
augmented wave method [69] and the shallow Ge 3d electrons
are considered as valence electrons. The plane-wave expan-
sion is restricted to a cutoff of 500 eV. The Brillouin zone
(BZ) integrations are carried out by means of �-centered
12 × 12 × M k-point meshes according to Monkhorst and
Pack [70]. The value of M is varied according to the number of
bilayers p = 2, 3, 4, 6 (see Fig. 1) in the unit cell. Explicitly,
we use M = 6, 4, 3, 2 for the 2H , 3C, 4H , and 6H phases.
We apply the GGA PBEsol XC functional [66], a modified
version of the Perdew-Burke-Ernzerhof (PBE) functional [71]
optimized for solids, for structural optimizations. The lattice
relaxation leads to a minimization of the total energy Etot with
a convergence accuracy of 1 meV/atom. The atomic geometry
of the hexagonal polytypes pH are characterized by lattice
constants a and c and (p − 1) internal-cell parameters. The
constants a and c give the cell volume V = √

3a2c/2 as well
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TABLE I. Equilibrium structural parameters and total energies (relative to the energy of the 3C phase). A comparison with experimental
and other theoretical values is also given.

Element Polytype a (Å) 2c/p (Å) 2c/pa V (Å3/atom pair) B0 (GPa) B′
0 Etot (meV/atom) Ref.

Si 2H 3.826 6.327 1.654 40.109 93.5 4.25 9.7 This paper
3.824 6.257 1.6362 39.619 [18] (expt.)
3.8237 6.3237 1.6538 40.035 [20] (expt.)
3.837 6.317 1.646 40.271 [76] (expt.)
3.840 6.280 1.630 40.098 [13] (expt.)
3.798 6.280 1.653 39.226 96.7 4.06 10.7 [46] (theor.)
3.828 6.325 1.652 40.133 92.8 4.24 [49] (theor.)
3.800 6.270 1.650 39.204 11.7 [77] (theor.)

4H 3.834 6.298 1.643 40.095 93.6 4.25 2.5 This paper
3.837 6.293 1.640 40.126 [78] (expt.)
3.840 6.270 1.633 40.034 [79] (expt.)
3.806 6.254 1.643 39.228 96.7 4.13 2.4 [46] (theor.)

6H 3.837 6.290 1.639 40.106 93.5 4.25 1.2 This paper
3.810 6.244 1.639 39.248 96.7 4.13 1.0 [46] (theor.)

3C 3.844 6.277 1.633 40.152 93.5 4.25 0.0 This paper
3.840 6.272 1.633 40.047 97.9 4.24 0.0 [80] (expt.)
3.816 6.230 1.633 39.283 96.6 4.18 0.0 [46] (theor.)

Ge 2H 3.993 6.589 1.650 45.493 63.7 4.99 16.0 This paper
3.96 6.57 1.659 [31] (expt.)
3.988 6.578 1.649 [39] (expt.)
3.962 6.538 1.650 44.440 72.8 4.74 16.1 [46] (theor.)
3.996 6.590 1.649 45.566 67.6 4.81 10.0 [50] (theor.)
3.989 6.582 1.650 45.351 72.0 [55] (theor.)

4H 4.001 6.568 1.642 45.516 67.2 4.75 7.1 This paper
3.990 6.558 1.643 45.205 [43] (expt.)
3.969 6.516 1.642 44.447 72.8 4.77 6.9 [46] (theor.)

6H 4.004 6.560 1.638 45.535 67.2 4.67 4.5 This paper
3.972 6.510 1.640 44.473 72.8 4.77 4.3 [46] (theor.)

3C 4.010 6.550 1.634 45.596 66.0 4.08 0.0 This paper
4.001 6.534 1.633 45.292 77.0 4.60 0.0 [80] (expt.)
3.979 6.496 1.633 44.534 72.5 4.80 0.0 [46] (theor.)

as the cell shape by their ratio c/a. In the case of 3C in
Fig. 1 this ratio is fixed as 2c/3a = √

8/3. The optimization
of the atomic positions in the unit cell is important as demon-
strated for III-V compounds [72]. Small deformations of the
equilibrium atomic geometry are applied to extract elastic
constants from the corresponding total energy variations. The
Murnaghan equation of state (EOS) [73] Etot = Etot (V ) is ap-
plied to determine the equilibrium volume V0, the isothermal
bulk modulus B0, and its pressure derivative B′

0.

B. Electronic states

In order to compute approximate QP band structures, we
apply two approaches based on approximations of more ad-
vanced treatments of the XC effects, the MBJLDA meta-GGA
functional [60–62] and the HSE06 hybrid functional [57].
Spin-orbit coupling (SOC) is taken into account for all calcu-
lations. To perform hybrid functional calculations, we slightly
reduce the density of the k-point meshes to 8 × 8 × M, where
M = 6 for 2H , M = 4 for 3C, M = 3 for 4H , and M = 2 for
6H polytypes. In the case of calculations with the meta-GGA
functional, the cutoff energy was increased to 520 eV. The
eigenvalues of the parity operator were calculated using the
code IRREP [74,75].

III. RESULTS FOR GROUND-STATE PROPERTIES

A. Structural parameters

The calculated lattice parameters a and c of the hexagonal
Bravais lattices (as well as of the diamond lattices in their
hexagonal unit cells), together with their ratio c/a and the cell
volume V , are listed in Table I. Therein, the lattice constant
c is divided by the number of bilayers p in the unit cell, and
the volume per atom pair is calculated as V = √

3a2c/(2p).
We can observe clear trends with the hexagonality h, where
h = 1.00 for the 2H polytype, 0.50 for the 4H polytype, 0.33
for the 6H polytype, and 0.00 for the 3C polytype, as indicated
in Fig. 1.

For both Si and Ge the lattice constant a decreases, while
the normalized lattice constant 2c/p and the ratio 2c/(pa)
increase with increasing hexagonality [see Fig. 2(a)]. The
trend observed for a also holds for the volume per atom in the
Ge case. However, for Si the trend is not monotonous, because
of the opposite behavior of a and 2c/p. The cell volume V
reaches a minimum at h = 0.50, i.e., for the 4H-Si polytype.
The general trend with respect to h indicates an increasing
deformation of the tetrahedral units that are stretched along
the c axis.

Our findings in Table I are in qualitative agreement
with other calculations and experimental data. However,
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FIG. 2. Dependence on the hexagonality of (a) structural and (b) elastic properties of Si (dashed lines) and Ge (solid lines) polytypes.

systematic experimental studies are missing. The theoretical
data obtained in the framework of DFT-LDA [46] show ex-
actly the same qualitative behavior not only for Si and Ge, but
also for SiC [81]. The underestimation of a, 2c/p, and V in
Ref. [46] is a consequence of the well-known tendency of the
LDA functional to overbind [82]. The computed DFT-PBEsol
lattice constants are much closer to the measured a and c
values, clearly indicating the improved quality of the PBEsol
XC functional. For all hexagonal polytypes the 2c/(pa) ratio
is larger than the ideal value

√
8/3 = 1.633 of the 3C poly-

type. This result agrees with observations for III-V and II-VI
compounds that crystallize in the zinc blende structure under
ambient conditions [77,83]. By contrast, the ratio 2c/(pa) of
compounds such as III-nitrides, SiC, and some II-VI materi-
als, for which the wurtzite 2H polytype is more stable than
3C, is below the ideal value [45,77,83].

Our results for the fits to the Murnaghan EOS are also
displayed in Table I. The overall elastic properties expressed
by the isothermal bulk modulus B0 and its pressure derivative
B′

0 remain practically uninfluenced by the polytype geometry
in the case of Si. Because of the shallow Ge 3d core elec-
trons, minor deviations appear for Ge. The B′

0 values slightly
increase with h, while B0 exhibits a weakly pronounced maxi-
mum for intermediate hexagonality values. Similar trends are
observed using the DFT-LDA approximation [46]. However,
due to the overbinding tendency of LDA, the B0 values are
systematically larger by about 3–4% in comparison to the
DFT-PBEsol results.

B. Energetics

In Table I we list the total energy differences between the
energies of the polytypes and the energy of the 3C structure.
We can see that diamond 3C is the most stable polytype for
both Si and Ge, in agreement with experiments. This crystal
structure is followed by 6H and 4H , whereas the lonsdaleite
geometry 2H is substantially higher in energy. We conclude
that the general trend is an increase in the internal energy
with hexagonality. There is, however, a substantial difference
between Si and Ge: For the former the energy increase with
hexagonality can be fitted with an exponential curve, while the

growth is only approximately linear for Ge [see Fig. 3(a)]. The
absolute values of the energy differences calculated with the
PBEsol density functional are close to the DFT-LDA energies
of Ref. [46]. Our result for the 2H-3C energy difference for
the Si case is also close to the value reported by Yeh et al.
[77].

The polytypes differ only in the stacking sequence of
the bonding tetrahedra along the c axis. We can there-
fore model the internal energy of a generic polytype using
a one-dimensional Ising-type model, called the axial next-
nearest-neighbor Ising (ANNNI) model [84], that uses three
parameters Jj ( j = 1, 2, 3) to account for the jth-neighbor
bilayer interaction. This model can be successfully applied
to explain the energy differences in Table I [45,46,83–85].
The parameters of the model and the resulting stacking-fault
energies are summarized in Table II. The ANNNI parame-
ters allow the construction of a polytypic phase diagram in
terms of the relative interaction strengths J1/J2 and J3/J2. Our
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FIG. 3. (a) Total energies of the polytypes vs hexagonality with
respect to 3C. (b) Phase diagram of polytypes from the ANNNI
model. The solid lines represent the phase boundaries between the
parameter regions where the indicated phases are the most stable.
The blue and red dots represent the group-IV materials that favor the
3C polytype. For comparison the 4H equilibrium structure of SiC
[45] is also displayed.
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TABLE II. Parameters Jj of the ANNNI model (in meV/group-
IV pair) and resulting stacking-fault energies γ (in mJ/m2). Note that
it is hard to extract precise data for the different types of stacking
faults from experiments.

Element J1 J2 J3 γISF γESF γTSF Ref.

Si 10.4 −2.4 −0.68 36.5 21.2 8.9 This paper
11.4 −2.9 −0.75 39.3 20.6 8.4 [46] (theor.)

69 60 [92] (expt.)
55 ± 7 [93] (expt.)

Ge 16.4 −1.0 −0.38 69.4 63.3 30.8 This paper
16.5 −1.2 −0.46 69.7 62.2 30.0 [46] (theor.)

60 ± 10 [93] (expt.)

phase diagram for 3C, 6H , 4H , and 2H polytypes is shown
in Fig. 3(b). We indicate in the different parameter regions
which is the most stable phase. The solid lines represent
phase boundaries. This figure clearly shows that under ambi-
ent conditions, Si and Ge crystallize in the diamond structure.
However, the corresponding coordinate point (J1/J2, J3/J2)
is much closer for Si diamond than for Ge diamond to the
3C-6H phase boundary with J1 + 2J2 + 3J3 = 0 and the triple
point J1 = −2J2 of the three polytypes 3C, 6H , and 4H . The
reason for this is the larger (smaller) nearest-neighbor inter-
action J1 (second-nearest-neighbor interaction J2) in Ge (Si)
(see Table II). This phase diagram suggests that under near-
equilibrium conditions the preparation of hexagonal polytypes
should be easier for Si. In fact, the position of the diamond
structure in the Si phase diagram is similar to that of the
ground-state 4H in the phase diagram of SiC, a compound
which shows a pronounced polytypism [45,86].

By using the ANNNI model, not only can the different
polytypes be easily characterized, but also the formation of a
stacking fault, i.e., a two-dimensional (2D) defect with respect
to the infinite stacking in the 3C structure, can be studied
with this simple model. The most common stacking faults are
the intrinsic stacking fault (ISF), the extrinsic stacking fault
(ESF), and the twin stacking fault (TSF) [87–91]. The ISF
(ESF) is defined by removing (adding) one bilayer from (to)
the 3C stacking sequence. A TSF defect occurs if a reflection
symmetry is present with the mirror plane positioned in the
middle of the bilayer. The corresponding formation energies
(per atom) are given as [89,91]

E f (ISF) = 4(J1 + J2 + J3),

E f (ESF) = 4(J1 + 2J2 + 2J3),

E f (TSF) = 2(J1 + 2J2 + 3J3). (1)

The stacking-fault energies γ per unit area can be calculated
by dividing the formation energies of (1) by the area

√
3a2/2

of the hexagonal unit cell in the (111) or (0001) plane. The
resulting values are also listed in Table II.

These formation energies depend very weakly on the
XC functional. However, they significantly depend on
the chemical element. The theoretical values indicate that the
stacking-fault generation is less energy expensive in Si than
in Ge, while the experimental formation energies are rather
similar. It is known from experiments that Si films crystallized

TABLE III. Internal-cell parameters for unit cells of type pH in
relative coordinates (fraction of the c parameter, units of 10−4) with
respect to the lowest atom in the cell, whose internal parameter is set
to zero. For comparison, DFT-LDA values from Ref. [46] are also
listed.

2H 4H 6H

Element ε(1) ε(1) ε(2) δ(2) ε(1) ε(2) ε(3) δ(2) δ(3)

Si
This paper −10.0 6.6 −1.7 8.3 6.2 3.3 −1.2 7.4 2.9
Ref. [46] −9.4 6.6 −1.9 8.5 6.6 3.6 −1.2 7.8 2.9

Ge
This paper −7.2 7.4 −2.1 9.5 6.8 3.6 −1.5 8.3 3.2
Ref. [46] −7.0 8.0 −1.7 9.7 7.1 4.0 −1.4 8.5 3.1

with pulsed laser beams show many extrinsic stacking faults
[28,94].

C. Internal-cell parameters

The atomic positions in the unit cell of a pH polytype
are not only defined by the lattice constants a and c, which
fix the primitive basis vectors of the Bravais lattice a1 =
a(1, 0, 0), a2 = a

2 (−1,
√

3, 0), and a3 = c(0, 0, 1), but also
defined by the internal-cell parameters. The stackings in
Fig. 1 can be described as ABABABABABAB · · · for 2H ,
ABCABCABCABC · · · for 3C, ABCBABCBABCB · · · for
4H , and ABCACBABCACB · · · for 6H . The letters indicate
the location of the vertical bonds (indicated with thick black
lines in Fig. 1) in the layers stacked along z in the unit cell.
The lowest atom sets the origin (0,0,0), and the other atoms
in the vertical bonds have Wyckoff positions [95] (0, 0, u),
(1/3, 2/3, v), and (2/3, 1/3,w) with

2H : uL = 0, uU = 3
8 + ε(1),

4H : uL = 0, uU = 3
16 + ε(1),

vL = 1
4 + δ(2), vU = 7

16 + ε(2),

6H : uL = 0, uU = 1
8 + ε(1),

vL = 1
4 + δ(2), vU = 7

24 + ε(2),

wL = 1
3 + δ(3), wU = 11

24 + ε(3), (2)

where the deviations of the atomic positions from the ideal
ones are given by the dimensionless internal-cell parameters
ε(1), . . . , ε(p/2) for the upper (U ) atom in the bilayer and
δ(1) = 0, . . . , δ(p/2) for the lower (L) atom.

Table III shows that the geometry optimization produces
only small deviations from the ideal lattice positions. The
discrepancies of the relative site positions between Si and Ge
pH polytypes are rather small, whereas the absolute shifts
are much larger because of the different values of the lattice
constant c (see Table I). The values calculated with the PBEsol
and LDA functionals are also very similar.

The largest deviations happen for the 2H lonsdaleite
polytype. However, even for 2H the resulting u = 3/8 +
ε(1) parameter is still very close to the ideal value u =
0.375, in agreement with previous computations (see, e.g.,
Refs. [49,50,77]).
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TABLE IV. Elastic stiffness constants Ci j , bulk modulus B0, Young’s modulus E , biaxial modulus Y (all in GPa), and Poisson ratio ν

(dimensionless). We compare the calculated values with reported theoretical values for 2H and experimental values for 3C.

Element Polytype C11 + C12 C11 C12 C13 C33 C44 B0 E Y ν Ref.

Si 2H 239.5 185.6 53.9 38.6 211.6 43.8 93.8 199.2 225.4 0.161 This paper
237.0 37.0 213.0 202.0 224.0 0.157 [49]
230.8 181.9 48.9 33.3 205.9 48.9 88.9 0.213 [99]
239.0 185.0 54.0 38.0 211.0 47.0 94.0 198.0 225.0 0.159 [100]
249.3 194.0 55.3 42.0 206.5 44.8 97.0 192.3 232.2 0.168 [97]

4H 238.8 183.4 55.4 41.4 201.7 50.9 93.9 187.3 221.8 0.173 This paper
179.9 50.2 36.0 197.1 52.2 89.1 0.214 [99]

6H 238.3 182.5 55.8 42.4 198.5 53.2 93.9 183.4 220.2 0.178 This paper
179.1 50.3 36.9 194.1 53.7 88.9 0.214 [99]

3C 237.0 183.4 53.6 44.4 192.7 56.0 93.8 176.0 216.5 0.187 This paper
248.8 191.4 57.4 44.8 204.0 57.9 97.9 203.6 248.4 0.180 [97]

Ge 2H 182.5 143.1 39.3 23.9 164.9 40.1 69.5 158.6 175.5 0.131 This paper
177.7 124.0 53.7 22.8 159.4 39.1 67.3 153.5 171.2 0.128 [51]
193.1 155.6 37.5 27.7 169.3 41.1 74.0 161.4 184.0 0.143 [97]
179.0 138.0 41.0 25.0 161.0 38.0 77.0 154.0 171.0 0.140 [100]

4H 181.3 141.2 40.0 25.9 158.1 42.0 69.4 150.7 172.8 0.143 This paper
6H 180.3 141.4 38.8 26.8 155.7 43.0 69.3 147.7 171.0 0.149 This paper
3C 179.3 142.7 36.6 28.2 151.2 44.9 69.2 142.3 168.7 0.157 This paper

183.3 154.2 35.3 23.3 159.9 47.6 68.9 154.0 176.5 0.127 [101]

D. Elastic coefficients

The elastic stiffness constants Ci j of the hexagonal poly-
types pH (p = 2, 4, 6) and the 3C polytype in a hexagonal
unit cell are extracted using DFT total energy calculations
and the expression of the elastic energy for five different
deformations (<1%) of the crystal lattice. Combinations of
Ci j [96,97] yield the bulk modulus [51,98]

B0 = (C11 + C12)C33 − 2(C13)2

(C11 + C12) + 2(C33 − 2C13)
, (3)

the Young’s modulus E , the biaxial modulus Y , and the
Poisson ratio ν [51,98]

E = C33 − 2(C13)2

C11 + C12
,

Y = C11 + C12 − 2(C13)2

C33
, (4)

ν = C33

C11 + C12
. (5)

The calculated results are listed in Table IV. We can com-
pare the elastic constants of the lonsdaleite polytype with
data computed recently within similar approaches and XC
functionals [49,97,100]. In the case of 2H-Ge, calculations
[51] performed with the ELASTIC code [102], based on VASP

total energies, are also available. For 3C we reexpress the
stiffness constants [101] measured for the cubic system to
obtain the coefficients corresponding to the hexagonal sym-
metry applying the formulas (including corrections) given in
Ref. [103]. Apart from the almost constant isothermal bulk
modulus B0 and the hardly varying stiffness constant C12, the
other elastic constants show clear trends with hexagonality
h. We observe an increasing trend with hexagonality h for

C11 + C12, C11, C33, E , and Y and a decreasing trend for
C13, C44, and ν. The almost linear dependence with respect
to the parameter h is displayed in Fig. 2(b) for E , Y , and
ν. The dependence of the crystal stiffness on hexagonality is
related to the different tetrahedron deformation and stacking.
Of course, in comparison, variations of elastic properties due
to the presence of a different chemical element, Si or Ge, are
much stronger than effects related to the different polytype.
This is especially visible in the values of the bulk modulus
B0 or of the reciprocal compressibility, which varies slightly
around 94 GPa for Si and 68 GPa for Ge. A similar effect of
the chemistry is visible for the other elastic properties. Only
the Poisson ratios ν = 0.161–0.187 (Si) and ν = 0.131–0.157
(Ge) versus decreasing h exhibit similar chemical and crystal-
lographic ranges of variation.

For the polytype 2H the results can be compared with data
from previous calculations [49,51,97,100]. We could verify
an excellent agreement with stiffness constants and elastic
moduli computed using the same or similar XC functionals
in the GGA. If LDA functionals [97] are employed, the elastic
constants are systematically larger, in agreement with the ten-
dency for overbinding of the LDA. For a detailed comparison,
all values can be found in Table IV.

Experimental data are available for the 3C polytype [101].
We find qualitative agreement between measured and com-
puted values, with overall smaller theoretical values, as
expected due to the slight tendency of the PBEsol functional to
underbind. Very recently, combining nanoindentation and in
situ high-pressure synchrotron x-ray diffraction, the Young’s
modulus E = 152.4 GPa, the bulk modulus B0 = 91.8 GPa,
and the Possion ratio ν = 0.22 of hexagonal silicon have
been determined [104]. The deviations of E and ν from the
calculated values in Table IV may be traced back to the poly-
crystalline nature of the samples.
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FIG. 4. Approximate QP band structures of the four Si polytypes
(a) 2H , (b) 4H , (c) 6H , and (d) 3C along high-symmetry lines,
calculated within MBJLDA (red dashed lines) and HSE06 (black
lines). The right panels show zooms on an energy interval around
the fundamental gap and the BZ center, as indicated in the left panels
by a black rectangle. The BP is used as energy zero, and BPs are
indicated by black horizontal lines in the right panels of (b) and
(c). The insets show the lowest conduction bands in MBJLDA and
HSE06 on the �-M-L lines. The irreducible representations of high-
symmetry states around the lowest conduction bands and highest
valence bands are given in the double-group notation of Koster et al.
[107] for 2H . Because of zone-folding arguments the denotation of
2H is also applied in the cases of 4H and 6H . Ab initio band parities
at � are also displayed for all hexagonal polytypes. The gap regions
are shaded in gray.

IV. RESULTS FOR EXCITED-STATE PROPERTIES

A. Band structures

In Figs. 4 and 5 we display the electronic band structures
of the four considered polytypes of Si and Ge. The elec-
tronic states are calculated using approximate QP frameworks,
namely, the MBJLDA potential and the hybrid HSE06 func-
tional. In the left panels the band energies are plotted along
the high-symmetry lines A-L-M-�-A-H-K-� of the hexagonal
BZ. In the right panels are zooms on the k-space region
around �, along the �A and �M directions, and on energies
around the gap. The insets display the lowest conduction
bands outside �. For comparison, we also show the band

FIG. 5. Approximate QP band structures of the four Ge poly-
types (a) 2H , (b) 4H , (c) 6H , and (d) 3C along high-symmetry lines,
calculated within MBJLDA (red dashed lines) and HSE06 (black
lines). The right panels show zooms on an energy interval around
the fundamental gap and the BZ center, as indicated in the left panels
by a black rectangle. The BP is used as energy zero, and BPs are
indicated by black horizontal lines in the right panels of (b) and
(c). The insets show the lowest conduction bands in MBJLDA and
HSE06 on the M-L line. The irreducible representations of the high-
symmetry states around the lowest conduction bands and highest
valence bands are given in the double-group notation of Koster et al.
[107] for 2H . Because of zone-folding arguments the denotation of
2H is also applied in the cases of 4H and 6H . Ab initio band parities
at � are also displayed for all hexagonal polytypes. The gap regions
are shaded in gray.

structure of the cubic polytype, folded in the hexagonal BZ,
that results from the use of a nonprimitive hexagonal 3C
unit cell, as illustrated in Fig. 1. The height of the different
hexagonal BZs varies with the polytype, i.e., it is determined
by the number of bilayers p along the c axis, whereas the
in-plane hexagonal sections perpendicular to the c axis are
basically equal.

In order to align the band structures of the different poly-
types, we define the branch-point (BP) energy as the common
energy zero. We compute the BP for each polytype applying
an approximate treatment [105] that has been reliably tested to
give excellent results for band discontinuities between semi-
conductors, their polytypes, and their alloys [83,105,106].
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Following the procedure of Schleife et al. [105], we use 2p
conduction and 4p valence bands to construct the approximate
charge neutrality point. If only half of the bands are applied,
the BP is shifted toward higher energies (see 2H-Si and 2H-
Ge in Ref. [106]). The resulting eigenvalues, band parameters,
and gaps are listed in Tables V and VI.

The energy levels can be labeled using the notation derived
for lonsdaleite [107]. For the refinement of the representations
we follow Refs. [63,64], where a conduction (valence) band
state has the subscript c (v). All zone center states in 2H
lonsdaleite with space group D4

6h belong to �7, �8, or �9 repre-
sentations with either even or odd parity because of the center
of inversion symmetry. For all hexagonal polytypes, 2H , 4H ,
and 6H , the band parities have been calculated as expectation
values of the parity operator. They agree with other calculated
values for 2H-Ge [50] but disagree with the parities derived
within the empirical-pseudopotential method (EPM) for both
2H-Si and 2H-Ge [65]. The irreducible representations of
the space group at � are just the representations of the point
group D6h, i.e., all symmetry operations of the point group
C6v as well as the inversion. For k points out of � with a
finite component along the c axis the little group is C6v , i.e.,
a point on the � line, but recovers the point group D6h at
the A point. The little groups of the high-symmetry k points
on the zone boundaries of the hexagonal BZ are D3h for K
and H but D2h for L and M. Even including SOC, the bands
in Figs. 4 and 5 remain twofold degenerate because of the
inversion symmetry. Point group operations must be followed
by appropriate fractional translations to obtain the irreducible
representation of a wave function. Interestingly, not only at A
and L but also along the L-M line, a couple of bands merge, so
that, considering spin, a fourfold degeneracy appears. In the
cubic case 3C we do not apply band labels of the 2H space
group, despite the O7

h space group of the diamond geometry.
Information on the irreducible representations of the band
states of 2H considering the hexagonal crystal field and SOC
can be found elsewhere [65].

The lonsdaleite 2H band structures are displayed in
Figs. 4(a) and 5(a). The double-group notations of the
irreducible representations of the band states are chosen
according to Refs. [50,65] including the parity. The corre-
sponding single-group notation for lonsdaleite without SOC
can be found elsewhere [64,108,109]. Rules for the transition
between single- and double-group notations, i.e., without and
with SOC, for the C4

6v symmetry are listed in Refs. [110,111].
The most important band energies at � are made visible in
the zoomed band structures of Figs. 4(a) and 5(a). They are
listed together with the energies of the conduction band min-
imum (CBM) on the �-M-L lines for Si and the L-M line
for Ge in Table V. The 2H-Si crystal remains an indirect-
gap semiconductor with the CBM near M and gap energy
E ind

g (�+
9v → M5c) = 1.10 (0.98) eV according to MBJLDA

(HSE06) calculations. In the following, all values will be
given as MBJLDA (HSE06). While the lowest conduction
band is an sp-derived �−

8 state in both 2H polytypes, the
weaker SOC and stronger chemical bonding give rise in Si
to pxy-type second and third conduction bands, �−

9c and �−
7c,

respectively, which only slightly split (by about 20 meV). In
the case of Ge, instead, the second �−

7c conduction band is
mainly s derived. Such a pure s band occurs for Si at the
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TABLE VI. Important conduction and valence band splittings, distances of the p lowest conduction bands, and direct and indirect gaps
between conduction and valence bands (in eV). Values are obtained from calculations using MBJLDA (HSE06).

Material Polytype �c f �SO �SO‖ �SO⊥ �εc E dir
g (�) E ind

g (near M)

Si 2H 0.345 (0.330) 0.050 (0.054) 0.050 (0.054) 0.053 (0.053) 0.899 (1.029) 1.728 (1.691) 1.096 (0.984)
4H 0.156 (0.170) 0.048 (0.054) 0.048 (0.050) 0.047 (0.048) 0.965 (1.045) 1.955 (1.976) 1.233 (1.131)
6H 0.104 (0.104) 0.048 (0.052) 0.048 (0.050) 0.048 (0.047) 0.986 (1.088) 2.021 (2.031) 1.247 (1.145)
3C 0.000 (0.000) 0.047 (0.054) 0.047 (0.056) 0.046 (0.048) 0.752 (0.874) 2.415 (2.447) 1.291 (1.232)

Ge 2H 0.274 (0.299) 0.278 (0.317) 0.278 (0.332) 0.271 (0.320) 0.349 (0.338) 0.308 (0.283) 0.629 (0.615)
4H 0.140 (0.145) 0.274 (0.310) 0.274 (0.280) 0.271 (0.306) 0.786 (0.863) 0.469 (0.568) 0.648 (0.750)
6H 0.093 (0.102) 0.272 (0.314) 0.272 (0.362) 0.271 (0.317) 1.038 (1.166) 0.518 (0.586) 0.743 (0.769)
3C 0.000 (0.000) 0.275 (0.316) 0.275 (0.323) 0.267 (0.308) 0.176 (0.223) 0.690 (0.715) 0.643 (0.690)

much higher energy of 2.6 eV above the lowest conduction
band. In 2H-Si the direct gap at �, Edir

g (�+
9v → �−

8c) = 1.73
(1.69) eV, is much larger. The second conduction band �−

9c lies
2.63 (2.72) eV higher in energy. The situation is completely
different in the 2H-Ge polytype, which becomes a direct-gap
semiconductor with Edir

g (�+
9v → �−

8c) = 0.31 (0.29) eV. The
second conduction band �−

7c = 0.63 (0.61) eV and the CBM
U5c = 0.62 (0.62) eV on the L-M line are somewhat higher in
energy.

The uppermost valence bands �+
9v , �+

7+v , and �+
7−v are

rather similar in 2H-Si and 2H-Ge. Only the larger SOC in
Ge gives rise to larger energy splittings. Another interesting
high-symmetry point is A, because of its possible mapping
onto the � point or the A-� line in polytypes 4H , 6H , and
3C with larger unit cells and, therefore, less extended BZs
in the direction of the c axis. The uppermost split valence
bands A8v + A9v and A7v + A9v lie in Si and Ge below the
interesting energy region of �+

9v , �+
7+v , and �+

7−v . The lowest
conduction band A8c + A7c, however, approaches the energy
region of the second-lowest conduction band �−

9c (Si) or �−
7c

(Ge). It will therefore influence the conduction bands in 4H
and 6H according to folding arguments.

The most striking feature of the 4H , 6H , and 3C band
structures in Figs. 4(b)–4(d) and 5(b)–5(d) is the increase in
the number of bands according to the increase in the number
of atoms in the unit cell. The bands surrounding the funda-
mental gap, e.g., the lowest conduction and highest valence
bands, qualitatively show a similar behavior to those of the
2H polytypes. The three uppermost valence bands around �

keep their symmetry, parity, and dispersion, independently
of the polytype, since other valence bands cannot be folded
in the same energy range. The lowest conduction band also
maintains its similarity with the CBM at � with �−

8c symmetry.
The next conduction band minimum is found near M, along
the M-L or M-� line. In the case of Si, the indirect CBM
moves from M in the 2H phase toward a position along the
�-M line, with an increasing distance from M with decreasing
hexagonality. In the case of Ge the indirect minimum remains
on the L-M line and does not show a unique trend with the
hexagonality. This is mainly due to the mapping of the L
point of the 2H crystal structure onto the M point in the 4H
structure, and that of the 2H minimum near 1

3 ML onto M in
the BZ of 6H . The different behavior of the indirect CBM
appears already in the diamond structure, where it occurs on

the �-X line near 0.8 �X for Si, but at the L point for Ge,
where X and L are high-symmetry boundary points of the fcc
BZ. The band folding, when going from 2H to 4H structures,
and further to 6H , is also visible in the energy range of the
lowest conduction bands near �. While in Ge the �−

8c and
�−

7c band ordering of 2H is also preserved for 4H and 6H , in
the two latter cases additional conduction bands appear in the
corresponding energy region. For the 4H polytype, the two
(SOC-split) lowest conduction bands at A of 2H appear in
the energy region of the �−

8c and �−
7c bands. For 6H-Ge, four

such bands mapped from the original A-� line can be found.
Thereby, the lowest band state at 2

3 A� in 2H is now folded
onto � at an energy around the �−

8c and �−
7c bands. In any

case, the lowest optical transition is parity forbidden for the
4H symmetry, in contrast to 2H and 6H . Therefore 4H-Ge
should be not suitable for active optoelectronic applications.

In general, MBJLDA and HSE06 bands agree well near
� and around the gap region. Farther away from the band
gap the discrepancies become larger. For instance, while the
three uppermost valence bands show excellent agreement,
the lower valence bands are located at lower energies in the
case of HSE06. This is due to the contribution of s orbitals
to the lower valence bands and the stronger localization of s
states using hybrid functionals [50].

B. Valence and conduction band parameters

From the MBJLDA (HSE06) band structures in Figs. 4 and
5 we can extract the band parameters and gaps in Tables V
and VI. The six lowest conduction and highest three valence
bands at � for the pH and 3C polytypes are listed in Table V.
As energy zero we choose the BP. In the Si case the BP
energy is slightly above the valence band maximum (VBM)
in MBJLDA. Its distance from the VBM slightly increases
with decreasing hexagonality, ranging from 0.008 to 0.255 eV,
in good agreement with other studies and references therein
[106]. Using the HSE06 functional, the BP position varies
around the VBM. For 100% hexagonality it is 0.212 eV
below the VBM, but it is 0.102 eV above the VBM in the
3C case. For Ge the BP is below the VBM, independent of
the polytype and the approximate QP description. Its dis-
tance decreases from 0.435 (0.514) to 0.240 (0.300) eV with
decreasing hexagonality of the polytype. Also this result is in
good agreement with predictions in the literature for 2H-Ge
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and 3C-Ge (see Ref. [105] and references therein). The abso-
lute band positions at � with respect to the VBM in Table V
are in agreement with similar calculations for 2H-Ge [50].
However, also the agreement with EPM calculations for 2H-Si
and 2H-Ge is excellent [65], despite the use of completely
different calculation methods.

From the valence band energies of �+
9v , �+

7+v , and �+
7−v

in Table V we can extract the crystal-field splitting �c f to-
gether with the spin-orbit splittings �SO‖ and �SO⊥ [112].
To this purpose, we apply formulas derived within the k · p
theory [113]. The first values, �c f and �SO, are derived
within the quasicubic approximation �SO‖ = �SO⊥ = �SO

[65,83]. The more general formulas, accounting also for the
hexagonal anisotropy, are presented elsewhere [50,65,83].
The resulting values are listed in Table VI. Their trends with
the hexagonality h of the polytype are displayed in Fig. 6.
The hexagonal crystal field for the point group D6h leads to
a splitting of the threefold (sixfold with spin) degenerate �15

VBM of the original diamond structure (without SOC) into
the px,y-derived �6 and the pz-derived �1 levels, separated
by �c f . The crystal field displays an almost linear increase
with the hexagonality, which is somewhat weaker for Si in
comparison with Ge. The spin-orbit interaction gives rise to a
further splitting of �6v into �9v and the �7+v states, while the
mixing with �1v leads to �7−v . An additional splitting �SO

occurs. In contrast to �c f , the SOC splitting �SO hardly varies
with the hexagonality, because of its strong atomic character.
We observe only a tendency toward a weak increase in the
average SOC constant �SO with the polytype hexagonality.
The absolute values of �c f and �SO differ from those ob-
tained with EPM for the 2H polytypes [65], because of the
use of an ideal diamondlike atomic symmetry in the latter
case. The anisotropy of the hexagonal polytypes leads to the
introduction of two SOC constants, �SO‖ and �SO⊥ [113]. In
Table VI we list the values resulting from the k · p formulas
[112,113] by replacing �c f with the value obtained in the
quasicubic approximation. These values are also plotted in

Fig. 6. In general, the hexagonal splitting �SO‖ − �SO⊥ is
negligibly small and does not exhibit a unique trend with the
hexagonality. In the case of 2H-Ge we find an anisotropy
splitting of 7 meV, in agreement with other computations
[50]. This splitting is of the order of 1 meV in the 2H-Si
case.

Another interesting band parameter is the splitting of the
p lowest conduction bands �εc at �, also listed in Table VI.
Going down the rows for 2H , 4H , and 6H , there is a small
increase with decreasing hexagonality for Si from 0.90 (1.03)
to 0.99 (1.09) eV but a drastic variation from 0.35 (0.34) to
1.04 (1.17) eV for Ge. The 3C band splittings �εc = 0.75
(0.87) eV (3C-Si) and 0.18 (0.22) eV (3C-Ge) do not follow
the trends with hexagonality because of the more complex
unfolding behavior when we compare the lowest conduc-
tion bands in the fcc BZ and the nonprimitive hexagonal
BZ.

The direct gaps Edir
g at � in Table VI also show a strong in-

crease with decreasing hexagonality from 1.73 (1.69) to 2.42
(2.45) eV for Si and from 0.31 (0.28) to 0.69 (0.72) eV for Ge.
This result is particularly important for Ge because its hexag-
onal polytypes are pseudodirect semiconductors, which have
shown to be promising for applications in optoelectronics
[39]. Only the 3C band structure displayed in the hexagonal
BZ, in agreement with its well-known indirect character in
the fcc BZ, exhibits a clear indirect behavior with the CBM
near M. The calculated indirect gap is E ind

g = 0.64 (0.69) eV.
These values are close to the 0.65 (0.68) eV found for the
indirect gap at the L point of the fcc BZ [50]. In the Si case
the indirect gap slightly increases with decreasing hexagonal-
ity, going from 1.10 (0.98) to 1.29 (1.23) eV in MBJLDA
(HSE06). Interestingly, the true lowest direct gap of 3C-Si
appears somewhat outside � on the �-A line with a value
of 2.17 (2.21) eV. Other HSE06 calculations [99] for the Si
polytypes yield values for the indirect gap that are very similar
to those in Table VI. Only the trend with the hexagonality is
not unique. The gaps of 2H-Si obtained from GW calculations
[49] are close to the values in Table VI. Optical measurements
reveal that 4H-Si exhibits an indirect gap near 1.2 eV [78], in
agreement with the first-principles calculations. In the case of
hexagonal Si nanoribbons an indirect gap of 1.5 eV has been
measured [29].

In the case of Ge, other HSE06 or even GW calcula-
tions give a slightly smaller direct gap at �, Edir

g = 0.23 eV
[114,115]. Band structure calculations with another hybrid
exchange-correlation functional, the Becke three-parameter
Lee-Yang-Parr (B3LYP) functional [43], deliver a much larger
direct gap of Edir

g = 0.81 eV for 4H-Ge. However, the B3LYP
functional already tends to overestimate the gap of 3C-
Ge. Measurements of bulk, unstrained 2H-Ge are difficult.
Photoluminescence measurements on core-shell nanowires
confirm a direct gap of about 0.3 eV [39]. Very recently,
direct-band-gap features have been also observed by pho-
toluminescence for hexagonal Ge nanostructures [116]. The
measured direct gap of Edir

g = 0.8 eV has been related to
atomically thin hexagonal layers embedded in cubic germa-
nium. The resulting carrier confinement and the compressive
biaxial strain may explain the gap increase compared with the
value of 0.3 eV calculated for a bulk, unstrained, hexagonal
crystal.
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C. Band discontinuities

Polytypic or heterocrystalline homojunctions have been
observed in Si or Ge nanowires [38,114,117]. In particular,
the 3C/2H homojunction has been studied, also theoretically
[106,118]. The alignment of the band extrema by means of the
BP energies in Table V allows us to determine the natural band
discontinuities �Ec and �Ev for the homojunctions formed
by two different polytypes of Si or Ge.

In Fig. 7(b) the situation for Ge is well defined because the
enlargement of the direct gaps along 2H , 4H , 6H , and 3C is
distributed over both band edges, CBM and VBM. A hete-
rocrystalline structure constituted by two different polytypes
gives rise to a type-I heterostructure [96]. The natural band
discontinuities can be extracted from Table V: �Ev = 0.10
(0.10), 0.03 (0.05), 0.06 (0.09), 0.19 (0.21) eV and �Ec =
0.06 (0.21), 0.02 (−0.03), 0.11 (0.04), 0.19 (0.22) eV for
the junctions 2H/4H , 4H/6H , 6H/3C, and 2H/3C, respec-
tively. The natural discontinuities �Ec = 0.19 (0.22) eV and
�Ev = 0.19 (0.21) eV for the 2H/3C junction are in close
agreement with results in the literature [106,108,114], even if
they vary slightly with the numerical details of the calculation.
The situation is less clear for the Si-based homojunctions dis-
played in Fig. 7(a). The natural band discontinuities between
the VBMs are also well pronounced with �Ev = 0.12 (0.17),
0.03 (0.03), 0.09 (0.10), 0.26 (0.31) eV for 2H/4H , 4H/6H ,
6H/3C, and 2H/3C, while the conduction band minima are
out of � and, moreover, only weakly vary. All the energies
of the CBM are near the value 1.07 (1.15) eV above the BP.
Consequently, in contrast to the holes, the electrons are hardly
localized in real space in one of the considered Si-based ho-
mojunctions. For the homojunction 2H/3C we find �Ev =

0.26 (0.31) eV and �Ec = −0.07 (−0.04) eV, i.e., a tendency
for a type-II heterocharacter [96]. This qualitative finding is in
agreement with other theoretical predictions [106,118].

V. SUMMARY AND CONCLUSIONS

We investigated the properties of hexagonal polytypes of
Si and Ge, a new class of recently synthesized group-IV
materials, using state-of-the-art ab initio calculations. First,
we discussed the structural, energetic, and elastic properties
of the hexagonal polytypes 2H , 4H , and 6H of Si and Ge, in
comparison with those of the energetically most favorable 3C
diamond structure, obtained by applying density functional
theory with the exchange-correlation potential PBEsol. The
crystal structures, including internal degrees of freedom, and
the elastic properties show clear trends with hexagonality.
We compared our results with calculations in the literature
performed with less accurate density functionals and with
available measurements.

Some earlier surprising results on the energetics of the
polytypes could be confirmed. The cubic 3C polytype is
certainly the most stable for Si and Ge. The total energy
of the pH polytypes increases with increasing hexagonality.
The increase is larger for Ge than for Si. Consequently, the
phase diagram constructed within a generalized Ising model
shows Si to be much closer to the triple point of 3C, 6H ,
and 4H compared with Ge, indicating an easier production
of the hexagonal polytypes in the case of Si, at least from
the thermodynamic point of view. These results are consistent
with the lower formation energies of stacking faults calculated
for Si.

The different stacking of bonds in the polytypes affects
the electronic properties. The direct (Si and Ge) gaps, as
well as the indirect (Si only) gaps, decrease with increas-
ing hexagonality. There is a clear tendency for Si to be an
indirect semiconductor, regardless of crystal structure, while
hexagonal Ge polytypes are direct semiconductors. This rule
is slightly broken in the case of 3C-Ge, where the lowest
conduction band minima at � and outside � differ by only
a few tenths of meV. The three uppermost valence bands are
quite similar, regardless of the polytype. Only the size of the
crystal field (�c f ) and spin-orbit splittings (�SO) differ for Si
and Ge. While �c f varies almost linearly with the strength of
the hexagonal crystal field, �SO remains fairly constant for all
polytypes.

The band alignment between Ge polytypes is particularly
interesting, in view of the direct band gap, for applications in
optoelectronics. We find that all heterostructures constituted
by two polytypes of Ge have a type-I character, with electrons
and holes confined in the layer with higher hexagonality.
These results can suggest design rules for quantum-well light
emitters.
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