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Quenching of low-energy optical absorption in bilayer C3N polytypes
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In this work we provide a first-principles description of the electronic and optical properties of bilayers C3N,
with different stacking motifs AB, AB′, and AA′. Starting from quasiparticle electronic band structures, we
solve the Bethe-Salpeter equation (BSE) to access the excitonic properties of these bilayers. For all stacking
sequences, we see strong optical absorption at energies lower than but close to that of the monolayer. Most
relevant, we predict a strong quenching of the low-energy optical absorption, with negligible oscillator strengths
of low-lying bound excitons. This is a unique phenomenology that does not arise in the monolayer case, nor in
other common homobilayers. We explain these findings in terms of the small interband dipole matrix elements
associated to the valence-conduction transitions involved in these excitons, and we discuss them in view of the
different stacking motifs.

DOI: 10.1103/PhysRevMaterials.7.064006

I. INTRODUCTION

Many recent experimental and theoretical works have fo-
cused on a detailed understanding of the electronic and optical
properties of two-dimensional (2D) materials, due to their po-
tential use in the design of innovative optoelectronic devices
which could combine atomic-size dimensions with improved
performance [1–11]. Great attention has been reserved to the
study of Van der Waals structures, where atomically thin
2D materials are vertically stacked and held together by
weak and long range dispersive interactions, strongly affect-
ing both the optical [12–14] and the electronic properties
of the isolated single layers [15]. A promising material for
such novel applications is graphenelike 2D polyaniline (also
known as monolayer C3N), which has been recently synthe-
sized through different approaches [16,17]: its electronic and
optical properties have been extensively studied from a the-
oretical point of view [18–21], revealing a quasiparticle band
structure with indirect band-gap and intense optical absorption
for photons in a narrow spectral range around 2 eV.

Vertical stacking of two layers of C3N is a possible ap-
proach to tune its electronic and optical properties. Few
theoretical works have analysed the stability of bilayers C3N
(BL-C3N) as a function of the possible stacking patterns
[18,22]. Following the notation of Ref. [22], all these calcu-
lations have obtained negative formation energies for AB and
AB′ (displacedlike), as well as AA′ (sandwichlike stacking)
arrangements.

Furthermore, BL-C3N with AA′ and AB′ stackings
have also been experimentally synthesized, as described in
Ref. [22], where a detailed investigation of the electronic
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properties using scanning tunneling spectroscopy (STS) has
been provided. The results indicate a strong change of the
electronic-transport band gap passing from monolayer to bi-
layer, together with relevant modifications of the electronic
properties as a function of the stacking sequence. Motivated
by these experimental advances, in this work we discuss the
optical properties of BL-C3N via first-principles methods,
properly including excitonic effects which are known to play
a fundamental role in the description of optical absorption
in 2D materials [12,23,24]. Since the AA stacking has been
demonstrated to have a significantly lower binding energy per
atom [18,22], we decided to not consider it in this study. As a
first result, we find for all systems a strong optical absorption
in an energy region around 1.7 eV which is slightly lower than
the absorption peak of the isolated monolayer [19], despite
the consistent reduction of the electronic gap. This feature,
combined with the energy band structure associated to these
absorption peaks, is promising for photovoltaics. Moreover,
our results indicate that, for all the considered stackings, the
optical response does not present other bright excitonic states
at lower energies. Such behavior is not observed in other com-
mon semiconducting bilayer homostructures, e.g., BL-hBN
[13], BL-MoS2 [1,11], or BL-phosphorene [9]. Finally, the
origin of this low-energy absorption quenching is explained
and rationalized, focusing on the properties of the single par-
ticle states involved in the formation of the lowest-energy
excitons.

The article is organized as follows. In Sec. II, we summa-
rize the computational methods used within this work, while
in Sec. III we present quasiparticle band structures for the AB
and AB′ displacedlike stacking patterns. In Sec. IV we discuss
the optical properties of these bilayers and in Sec. V we ex-
plain the reason for the negligible oscillator strength observed
for the low-lying excitons. Finally, in Sec. VI, we discuss
the optical properties of bilayer C3N with AA′ sandwichlike
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stacking, predicting a strong optical absorption quenching
starting from the symmetry properties of this polytype and
confirming such interpretation with an approximate solution
of the Bethe-Salpeter equation.

II. COMPUTATIONAL METHODS

Ground-state structural and electronic properties have been
investigated using density functional theory (DFT), as im-
plemented in the plane-wave-basis-set package QUANTUM

ESPRESSO [25,26]. In these calculations, we have used
norm-conserving ONCV pseudopotentials [27], within the
GGA-PBE approximation [28] for the exchange-correlation
potential. Van der Waals interactions between layers have
been taken into account by adding the dispersion correction
proposed by Grimme [29] to the exchange-correlation energy
(PBE-D2). Equilibrium structural properties have been ob-
tained by relaxing both the in-plane unit cell and the atomic
positions up to when the components of the forces acting
on each atom were smaller than 5 × 10−4 Ry/Bohr. In all
ground-state calculations we used a 12 × 12 × 1 Monkhorst-
Pack [30] k-grid to sample the Brillouin Zone (BZ) and a
kinetic energy cutoff of 90 Ry for the plane wave basis set
used to represent single particle wave functions.

In the case of AB and AB′ stacking motifs, Kohn-
Sham wave functions and eigenvalues, computed from the
equilibrium ground-state charge density, have been used
to evaluate quasiparticle (QP) corrections to DFT ener-
gies within the GW approximation [31,32] for the electron
self energy. QP corrections εKS

nk have been computed using
the single shot G0W0 approach, evaluating the expectation
value of the operator � − vKS on the Kohn-Sham states
|ψnk〉, being � the electron self-energy operator and vKS

the exchange-correlation potential. When solving the Dyson
equation we linearized the frequency dependence of the self-
energy, �(EQP

nk ) ≈ �(εKS
nk ) + ∂�

∂ε
|εKS

nk
(EQP

nk − εKS
nk ), as proposed

in Ref. [33].
The electron-electron screened interaction W has been

computed using the random phase approximation (RPA), as
implemented in the Yambo code [34,35]. Converged QP gaps
within a 10 meV threshold required the inclusion of 700 bands
and a G-vector cutoff of 16 Ry in the construction of the
screening matrix at the RPA level. The frequency dependence
of W has been described using the Godby-Needs plasmon-
pole model [36], and 1000 bands have been included in the
sum-over-states appearing in the correlation part of the self en-
ergy. To reduce spurious interactions among different cells in
the stacking direction, we have used a supercell length along z
of 23.5 Å, together with a 2D cutoff [37,38] for the Coulomb
potential. Finally, to speed-up the convergence of QP gaps
w.r.t. the k-point mesh, we have adopted the approach recently
proposed by Guandalini et al. [39]. In this work we have ver-
ified that, with this method, a 18 × 18 × 1 Monkhorst-Pack
k-grid already provides converged gaps within the chosen
threshold of 10 meV.

Starting from QP corrected electronic energies, we have
obtained excitonic properties by solving the Bethe-Salpeter
equation (BSE) [40,41] in the resonant (Tamm-Dancoff)
approximation, i.e., via diagonalization of the excitonic

Hamiltonian

Hexc(vck, v′c′k′)

= (
EQP

ck − EQP
vk

)
δcc′δvv′

+ Kd (vck, v′c′k′) + Kx(vck, v′c′k′), (1)

where Kd (Kx) is the direct (exchange) part of the BSE ker-
nel, (v, v′) and (c, c′) are the valence and conduction bands
included in the BSE and EQP

(v,c)k are the QP corrected elec-
tron energies. Converged exciton energies have been obtained
including the two highest-occupied valence and the four
lowest unoccupied conduction bands in the construction of
Hexc(vck, v′c′k′), and using a 48 × 48 × 1 Monkhorst-Pack
k-grid to sample the BZ. We point out that, in the solution
of the BSE, QP corrections have been approximated via a
scissor-stretching operator (see Supplemental Material [42]
for a detailed description about the fitting procedure), while
the electron-electron screened interaction has been computed
at the RPA level, in the static approximation, using the
same converged parameters adopted for the calculation of QP
corrections.

Finally, by diagonalization of Hexc(vck, v′c′k′),∑
v′c′k′

Hexc(vck, v′c′k′)Aλ(v′c′k′) = EλAλ(vck), (2)

we obtained the energies Eλ and the envelope functions
Aλ(vck) for each exciton λ. Optical absorption is finally
computed as the imaginary part of the macroscopic dielectric
function,

εM (E ) = 1 − 8π

V

∑
λ

Dλ

E − Eλ + iη
. (3)

In the above expression, V is the unit cell volume and Dλ the
oscillator strength of exciton λ defined as

Dλ =
∣∣∣∣∣ε̂ ·

∑
vck

dvckAλ(vck)

∣∣∣∣∣
2

, (4)

where ε̂ is the in-plane polarization direction of the incom-
ing light, and dvck = 〈ϕvk|r|ϕck〉 the single-particle interband
dipole matrix element.

III. STRUCTURAL AND ELECTRONIC PROPERTIES
OF BILAYER C3N WITH AB AND AB′ STACKINGS

In Fig. 1 we present the crystal structures of BL-C3N with
AB (upper panel) and AB′ (lower panel) stackings: yellow
(light blue) spheres denote Carbon (Nitrogen) atoms and small
(large) atoms are located on the upper (lower) layer, denoted
from now on as L1 (L2). For both stacking motifs, we have
obtained an in-plane lattice parameter of 4.849 Å, slightly
smaller than that of the isolated monolayer (4.857 Å); the in-
terlayer distance (evaluated as the separation along z between
Carbon atoms with the same in-plane coordinates) has been
found equal to 3.22 Å for the AB and 3.21 Å for the AB′

stacking. These values are in agreement with those obtained
with PBE-D2 calculations in Ref. [22], while slightly smaller
than the interlayer distances computed with VdW-functionals
in Ref. [18].
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FIG. 1. Crystal structures for bilayer C3N with AB (upper panel)
and AB′ (lower panel) stackings. Yellow (light blue) spheres indicate
Carbon (Nitrogen) atoms, while small (large) radius spheres denote
atoms located on the upper (lower) layer. The red dot indicates the
in-plane position of the inversion symmetry center, while dashed red
lines represent mirror symmetry planes parallel to the stacking di-
rection. Finally, the green dot in the AB bilayer denotes the in-plane
position of the two threefold rotation axes parallel to the stacking
direction, while the dashed green line in the AB′ bilayer corresponds
to an in-plane C2 rotation axis.

We now briefly discuss the crystal symmetries of the two
stackings. The point group of AB-C3N is D3d, and also in-
cludes nonsymmorphic operations. This stacking possesses a

spatial inversion center (red dot in the upper panel of Fig. 1)
together with a threefold C3 rotation axis along z direction,
whose in-plane position is denoted by a green dot in Fig. 1.
Furthermore, this stacking motif is invariant under mirror
reflections σ w.r.t. planes parallel to the stacking direction
and represented by dashed red lines in Fig. 1: These planes
are respectively denoted as σ̂�M, σ̂�M′ , and σ̂�M′′ as they are
aligned to these high symmetry directions in the BZ. AB′-C3N
has lower symmetry: Its point group is C2h, that includes the
inversion symmetry, a twofold in-plane rotation axis lying
between the two C3N planes (represented by the green dashed
line in the lower panel of Fig. 1 and denoted as Ĉ�K

2 ), and a
mirror symmetry plane σ̂�M′′ parallel to the �M′′ direction in
the BZ.

In Fig. 2 we present the electronic band structure of
AB-C3N [Fig. 2(a)] and AB′-C3N [Fig. 2(b)], computed first
within DFT-PBE (dashed green lines) and then including QP
corrections at the G0W0 level (solid black lines). We note that
the two stackings are characterized by an indirect band gap,
both at the DFT and GW level. In the case of AB stacking, the
electronic band dispersion along �M and �M′′ coincide, as a
consequence of the threefold rotational symmetry. Therefore,
the highest-energy valence band has six equivalent maxima,
while the bottom of the conduction band is located at the �

point. We also note that the presence of doubly degenerate
bands at � is consistent with irreducible representations of
dimension 2 in the D3d point group. The calculated indirect
gap at PBE level is 0.108 eV, which is increased to 0.72 eV
once QP corrections are taken into account. Finally, the di-
rect band gap is found along the �M direction, at k located
approximately at half the � → M path: the G0W0 gap is
1.85 eV, 0.73 eV larger than the value obtained at the PBE
level (1.12 eV).

In the AB′ stacking, the maximum of the valence band is
found at the M′′ point, while the lowest unoccupied conduc-
tion state is at �, as in the case of the AB stacking motif. Our
calculations give an indirect gap of 0.136 eV at the DFT-PBE
level, which is increased to 0.73 eV with the inclusion of

FIG. 2. Electronic band structure computed at the DFT-PBE (green-dashed lines) and with G0W0 approximation (continuous black lines),
for AB-C3N (a) and AB′-C3N (b). The insets represent the hexagonal Brillouin zone, together with the high symmetry points defining the paths
where bands are computed. The parity of the topmost valence and the lowest conduction bands along �M′′ direction w.r.t. mirror symmetry
σ̂�M′′ are indicated: the notation np

i indicates that band ni has parity p, being p = +(−) for even (odd) states and n = {v, c}. In both images,
the top valence band energy is shifted to 0 eV.
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TABLE I. Direct and indirect gaps (in eV) at high symmetry
points for AB and AB′ BL-C3N, obtained at the G0W0 level, com-
pared with monolayer (ML) data (G0W0 on top of DFT-PBE) from
Ref. [19]. The last row indicates the minimum direct electronic gap
evaluated along �M′′ direction. The value in parenthesis represents
the available STS experimental measurement in the AB′ case.

Gaps ML [19] AB AB′

�c − �v 2.96 2.36 2.39
Mc − Mv 2.67 2.02 2.40
M′′

c − M′′
v 2.02 2.03

�c − Mv 1.42 0.72 0.87
�c − M′′

v 0.72 0.73 (0.85)
Min. direct gap 2.62 1.85 1.79

QP corrections. The obtained indirect gap for AB′-C3N is
slightly smaller than the one measured experimentally with
STS on SiO2-Si substrates in Ref. [22] (0.85 ± 0.03 eV), but
in better agreement than other GW calculations [18] where the
Hybertsen-Louie plasmon-pole model was used [33]. Because
of the lack of threefold rotational symmetry around the z axis,
the directions �M and �M′′ are no longer equivalent. As a
result, the minimum direct gap is found approximately at half
the � → M′′ path, with a value around 1.79 eV (1.09 eV
within DFT) while the indirect gap between the conduction
at � and the top-valence at M is slightly larger than the one
between � and M′′. We obtain a �c − Mv gap of 0.87 eV
(0.249 eV) at the G0W0 (DFT-PBE) level. Electronic gaps
computed within the G0W0 approximation for both stacking
motifs at high symmetry points are summarized in Table I.

Comparing the band dispersions for AB and AB′ stackings,
we notice that, for k along the �M direction, the lowest pair
of conduction bands are almost degenerate (splitting of about
1 meV) in the AB′ stacking, while well separated in the AB
case (splitting larger than 0.2 eV). In the Supplemental Mate-
rial [42], we provide a qualitative explanation of this peculiar
lack of splitting among the two lowest conduction bands in
AB′-C3N, analyzing the quasisymmetries of the sublattice
where conduction states are localized once k is taken along
�M direction. A similar behavior is also observed for the
two topmost valence states, where the splitting is, however,
not negligible also in the AB′ stacking (splitting of about
50 meV). Overall, the obtained gaps for the AB and AB′

stacking are similar (in agreement with the hybrid-DFT results
of Ref. [22]), while the electronic dispersions differ because
of the different symmetry properties of the two stackings. We
point out that there are clear differences with the monolayer
case, as we observe a strong reduction in both the indirect and
direct electronic gaps (see Table I for a comparison).

We complete our analysis by recalling that both stack-
ing configurations are invariant under mirror reflection σ̂�M′′ ,
therefore electronic states for k along this direction can be
classified in terms of their parity w.r.t. such symmetry. We
have numerically found that, in both stackings, the two highest
occupied valence bands are even w.r.t. σ̂�M′′ (here denoted
as v+

i in Fig. 2, with i = 1, 2). However, if k has modulus
in the range [ |�M|

3 , |�M|], then the two lowest unoccupied
conduction bands are σ̂�M′′ -odd (c−

i ). Instead, for k close to �,

the second and the third conduction bands are even w.r.t σ̂�M′′

and exhibit a stronger dispersion with k, if compared with odd
conduction states. We point out that a similar analysis can
be carried out also for electronic states along this direction
in monolayer C3N. In that case, the highest valence (lowest
conduction) is even (odd) w.r.t. the mirror symmetry along
�M′′ direction, while the second conduction is even. In the
case of AB stacking, the same parity analysis can be presented
for the bands along the direction �M, as the crystal is invariant
w.r.t. σ̂�M mirror symmetry. Such symmetry classification will
be exploited to understand bilayer optical properties in the
following.

IV. OPTICAL ABSORPTION IN BILAYER C3N
WITH AB AND AB′ STACKINGS

We now turn to the discussion of the optical properties
of bilayer C3N. In Fig. 3 we show the absorption spectra
computed for AB [Fig. 3(a)] and AB′ bilayer C3N [Fig. 3(b)],
at the independent particle level (dotted black lines), and with
the inclusion of electron-hole interaction by solving the BSE
as detailed in Sec. II. Green dashed (solid red) lines have been
obtained assuming light polarized along the �K (�M′′) di-
rection. For clarity, polarization versors ε̂ are shown together
with the crystal structures in the insets.

The AB spectrum is dominated by an intense peak (denoted
as C) at energy E ≈ 1.70 eV, whose spectral position and
intensity are not dependent on the polarization direction. Such
peak is due to a set of almost degenerate eigenstates of Hexc,
characterized by relevant contributions from single particle
transitions between the valence band v+

1 and the conduc-
tion state c−

1 along �M equivalent directions. Among these,
transitions with the highest weights are denoted by arrows
on the band structure shown in Fig. 3(c). We point out that
transitions between v+

2 and c−
2 for k along the same direction

also contribute to this absorption peak, though with a smaller
weight than v+

1 → c−
1 , and are omitted for clarity in Fig. 3(c).

The situation is slightly different in the case of AB′ C3N.
Indeed, also for this stacking motif the absorption spectrum
is dominated by a single intense peak, but its position in
energy and its strength depend on the in-plane light polar-
ization direction. In Fig. 3(b), we have labeled as C1 the
main peak at 1.71 eV obtained for light polarization along
�K and as C2 the absorption maximum at 1.73 eV found for
�M′′-polarized light. The C1 peak is mainly due to v+

1 → c−
1

for k along �M′′ direction, as shown schematically by green
arrows in Fig. 3(d), again with a smaller contribution coming
from v+

2 to c−
2 transitions for the same k points [not shown

in Fig. 3(d). However, the C2 absorption peak comes from
transitions between the two highest occupied valence states
and the two lowest (quasidegenerate) conduction bands along
�M and �M′ directions [see red arrows in Fig. 3(d)].

First, we note that the energy window found for strong
optical absorption in both stackings is still in a good range
for solar energy conversion, not much lower than that found
for monolayer C3N of 1.82 eV in Ref. [19]. Furthermore, the
associated transitions are still in region favorable to electron-
hole splitting, as in the monolayer. This can be particularly
interesting, since one can expect the bilayer to have a more
stable structure, compared to a monolayer, when deposited
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FIG. 3. Optical absorption spectra for AB-C3N (a) and AB′-C3N (b). Solid red (dashed green) lines correspond to spectra computed with
light polarization along the �M′′ (�K) direction, while dotted lines are the independent particle spectra evaluated for polarization along �M′′.
The polarization directions are indicated on top of the crystal structures for clarity. The insets highlight low-energy quasidark peaks labeled as
P1 and P2, while the vertical black dashed lines indicate the position of the direct QP band gap obtained within G0W0. The band structure at the
G0W0 level of AB-C3N is shown in panel (c), with red arrows indicating the transitions mainly responsible for the C absorption peak in panel
(a). Similarly, the single particle bands of AB′-C3N are displayed in panel (d): green (red) arrows emphasize the transitions mostly involved in
C1 (C2) peaks labeled in panel (b).

on a suitable electrode. Second, and central to this work, the
striking feature of bilayer C3N optical spectra is the apparent
absence of intense absorption peaks due to strongly bound
excitonic states formed by single particle transitions close to
the electronic direct gap. As shown in the insets of Figs. 3(a)
and 3(b), within the energy range between 1.25 and 1.5 eV,
two absorption structures (labeled in both cases as P1 and
P2) are present, but they exhibit optical strengths which are
almost two orders of magnitude smaller than the most intense
peaks.

In AB-C3N, both P1 and P2 peaks are due to a pair of
degenerate excitons, respectively, at energies EP1 = 1.35 eV
and EP2 = 1.47 eV, with oscillator strengths not dependent on
the polarization direction. For completeness, we point out that
diagonalization of the excitonic Hamiltonian also provides
other excitonic resonances (the lowest with energy of 1.34 eV)
which are characterized by null oscillator strength within
numerical accuracy. Such excitons, dark by strict symmetry
reasons, will not be considered further in the following. P1

and P2 excitons are almost totally composed by electron-hole
transitions between the highest occupied valence v+

2 and the
lowest unoccupied conduction c−

1 states, with wave-vectors k
along �M and equivalent directions in the BZ. This is better

clarified in Figs. 4(a) and 4(c), where we show plots of the
quantity

Avc(k) =
∑

λ

|Aλ(vck)|2 (5)

for the P1 and P2 excitons, respectively. In Eq. (5), the index v

(c) is fixed to the last valence (first conduction) band and the
sum over λ is performed over the pair of degenerate states
responsible for the P1 and P2 peaks. We notice that single
particle transitions forming the excitons P1 are mainly local-
ized in the central region of �M and equivalent directions,
with Avc(k) having nonnegligible values for |k| mainly in the
interval [ 1

3 , 2
3 ]|�M|. However, excitons P2 [Fig. 4(c) are still

localized along �M directions, but the corresponding func-
tion Avc(k) has intense contributions from transitions slightly
closer to the M point and exhibits a node for k points along
this direction.

In the case of the AB′ stacking, P1 and P2 peaks are related
each to a single-nondegenerate exciton at energies EP1 =
1.30 eV and EP2 = 1.42 eV, respectively. Differently from
the AB case, the oscillator strength of these excitations is
polarization dependent as shown in the inset of Fig. 3(b),
where we notice that both resonances are dark for light
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FIG. 4. Contributions of single particle transitions between the
highest occupied valence and the lowest unoccupied conduction in
the BZ to excitons P1 and P2 in AB-C3N (a), (c) and in AB′-C3N (b),
(d), as defined by Eq. (5).

polarization along the �M′′ direction while they exhibit a
small but nonzero optical activity for incoming light polar-
ized along �K. As in the AB stacking, such excitons are
mainly formed by transitions between the highest occupied
valence and the lowest conduction band. In Figs. 4(b) and
4(d) we show the functions Avc(k) computed for exciton P1

and P2, respectively. We see that, in both cases, the transi-
tions involved in these excitations are strongly localized along
the single �M′′ direction of the BZ (see, e.g., Fig. 2), with
the P1 exciton having the main contributions coming from the
middle of �M′′, where the minimum direct electronic band
gap is located, and the P2 resonance characterized by a node
along this BZ-line.

The observed polarization dependence in the optical ab-
sorption of AB′-C3N can be rationalized via symmetry
arguments, similarly to the analysis proposed in Ref. [13]
for bilayer hBN. The point group of AB′-C3N is C2h, so the
in-plane exciton dipole operator projected along �M′′ (D�M′′ )
transforms as the Bu irreducible representation of C2h, while
D�K as Au. In fact, D�M′′ is invariant under the mirror symme-
try σ̂�M′′ (as oriented along �M′′), but it changes sign under
inversion and Ĉ�K

2 rotation (see Fig. 1). Differently, D�K is
even w.r.t. Ĉ�K

2 and odd under σ̂�M′′ and inversion, therefore
behaving as the Au(C2h) irreducible representation. Therefore,
the eigenstates |λ〉 of Hexc such that 〈0|D|λ〉 �= 0 (|0〉 being
the excitonic vacuum transforming as the fully symmetric
representation Ag) transform as Au or Bu if D is projected
along �K or �M′′, respectively. Considering for example Au

states, these will have null optical activity by symmetry, once
incoming light is polarized along �M′′. Therefore, we can
explain the presence of absorption peaks in AB′-C3N which
turn on and off according to the chosen polarization direction.
Furthermore, following the presented analysis, we can assign
P1 and P2 excitons to the Au representation, exactly as the

FIG. 5. Side view of the wave functions for exciton P1 computed
in real space for AB (left) and AB′ (right) stackings. In each panel,
the upper (lower) wave function has been computed keeping the hole
localized on a Nitrogen atom on layer L1 (L2). The hole position
along the stacking direction is indicated by the red circle. The isosur-
face value is fixed to 10% of the maximum intensity.

eigenstates of Hexc responsible for the C1 peak, while C2 is
expected to be due to excitations transforming as Bu.

The situation is different for AB stacked C3N. For simplic-
ity, we discuss the brightness of excitonic eigenstates using
the subgroup C3v of D3d , formed by the mirror planes σ

along �M directions together with the two threefold rotations
depicted in the upper panel of Fig. 1. The in-plane exciton
dipole operator D transforms as the two-dimensional irre-
ducible representation E of C3v . As a consequence, all bright
excitons behave as E of C3v , so that they are expected to be
double-degenerate and characterized by an isotropic oscillator
strength, in agreement with the numerical results obtained
from ab initio calculations.

We now turn our attention to the quasidark nature of the
low-lying bound excitons P1 and P2 in both the considered
stackings. We point out that such small optical activity cannot
be related to an interlayer nature of these excitons, i.e., it is
not due to a negligible spatial overlap between electron and
hole wave functions. This point is better clarified by looking,
for example, at the real space wave functions of exciton P1,
as shown in Fig. 5, with AB (AB′) results reported in the
left (right) panel. For each stacking, the upper (lower) wave
function has been obtained assuming the hole (represented by
the red dot) fixed on layer L1 (L2) and located in the plane
close to a nitrogen atom. This choice comes from the fact
that the valence orbitals along the �M direction are purely
nitrogen pz-states as shown in Ref. [22] The wave functions
clearly indicate the intralayer nature of such excitons, as can
be seen also from the top views reported in Fig. 6: In fact,
looking at the excitonic wave-function isosurfaces, we notice
that the electron has a high probability to be found on the same
layer on which the hole is localized. The largely different real-
space symmetry features and in-plane localization of the P1

exciton in the two different stackings are also emphasised in
this figure. In particular, the doubly degenerate exciton in the
AB case is similar to the strongly optically active exciton in
hexagonal boron nitride (BN) systems [8,13], except that here
the electron density is mostly localized on the three carbon
“rings” surrounding the hole, while in BN it is localized on
the three nearest-neighbour atomic boron sites.

Therefore, the negligible dipole strength of these low-lying
excitons is a consequence of the small interband dipole asso-
ciated to the electron-hole single particle transitions involved
in these excitations. This can be understood from the indepen-
dent particle (IP) absorption spectrum shown in Figs. 3(a) and
3(b) as dotted lines, where, in both cases, the optical signal
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FIG. 6. Top view of wave functions for exciton P1 computed in
real space for AB (left) and AB′ (right) stackings. In each panel,
the upper (lower) wave function shows the electron density when
the hole position is on the same (on the other) layer. The relevant
polarization directions are indicated in the center.

is negligible for energies close to the direct QP gap, with
the IP absorption onset located at higher photon energies. In
the following section we discuss in greater detail the single
particle states involved in these low-lying excitons and we
propose a possible rationale for the observed IP absorption
quenching.

V. RATIONALE FOR QUENCHING OF LOW ENERGY
ABSORPTION IN AB AND AB′ BL-C3N

In this section we develop a model for the electronic bands
in proximity of the direct gap to rationalize the small oscillator
strength of the single particle transitions close to the direct
electronic gap. As the following analysis is valid for both
stackings, here we focus on the case of AB′-C3N (results for
AB motif are presented in the Supplemental Material [42]).
We will restrict our analysis to k along �M′′, in the region
where valence to conduction transitions giving the highest
contribution to the low-energy quasidark excitons are located.

As already discussed in the literature [18,22], the low-
est lying conduction bands and the highest valence states
have a π character. Therefore, we can analyze them using a
tight-binding (TB) Hamiltonian, obtained considering one 2pz

orbital for each atom. In the following we will denote as τα the
position of both the atom α and the 2pz orbital localized on it.
In practice, we construct a TB Hamiltonian as

H2L
α,β (k) =

∑
R

eik·R t (α0, βR), (6)

where R is a lattice vector and t (α0, βR) = 〈α0|H |βR〉 are
the hopping matrix elements between two 2pz orbitals, lo-
calized at sites τα and τβ + R, respectively. These matrix
elements have been computed fully ab initio by Wannier-
ization [43,44] of DFT bands using the Wannier90 [45–47]
code. Details about the procedure are provided in the Supple-
mental Material [42].

As there are 16 atoms in the unit cell, at a general k the TB
Hamiltonian can be written as a 16 × 16 Hermitian matrix, in

a blocklike form as

H2L(k) =
[

HL1 (k) HIL(k)

HIL(k)† HL2 (k)

]
, (7)

where HL1 , HL2 , and HIL are 8×8 matrices corresponding to
the different layers and their coupling. Indeed, to obtain this
separation, we have grouped together the orbitals localized
on L1 and on L2, associating to each orbital α1 localized at
τα1 on layer L1 an orbital α2 at τα2 on layer L2, such that
τα2 = Îτα2 , Î being the inversion symmetry operator. Then
HL1 (HL2 ) is the block of H2L which contains the intralayer
hopping within layer L1 (L2), while HIL depends on the hop-
ping integrals between orbitals on different layers. We can
now write H2L(k) = hIN(k) + hIL(k), where hIN(k) is block-
diagonal while hIL(k) is purely off-diagonal. We note that the
subscripts “IN” and “IL” stand for intralayer and interlayer,
respectively. Using spatial (Î) and time (T̂) inversion symme-
tries, in the Appendix we show that, for each k, hIN(k) has
a spectrum of eigenvalues ε0

nk which are degenerate in pairs.
Furthermore, we also show that the eigenspace associated to
each eigenvalue ε0

nk is spanned by two Bloch states |φL1
nk〉 and

|φL2
nk〉 such that |φL2

nk〉 = −Î · T̂|φL1
nk〉 and with |φLi

nk〉 localized
on layer Li.

Before proceeding, we clarify the physical meaning of
the splitting of H2L into hIN and hIL. In particular, hIN can
be thought as an intralayer Hamiltonian, describing the two
layers as not interacting with each other. Note however that
the presence of the other layer is implicitly considered as the
intralayer matrix elements in HL1 (HL2 ) are affected by the
presence of opposite layer L2 (L1). However, hIL describes
the interlayer interaction and acts as a perturbation of hIN

since interlayer hopping integrals are typically smaller than
the intralayer ones. With this interpretation, the states |φL1

nk〉
and |φL2

nk〉 can be thought as Bloch states with the same energy
ε0

nk localized on one of the two monolayers, if the coupling
hIL is set to zero. We now define ε0

vk (ε0
ck) as the energy of

the highest occupied valence (lowest unoccupied conduction)
band on these two noninteracting layers. The effect of the
interlayer coupling will be to mix these layer-localized wave
functions, to give the electronic states of the bilayer.

While the discussion presented so far is general and valid
for each k-point of the BZ, we now specialize to k-vectors
along the �M′′ direction. For these wave vectors, H2L com-
mutes with σ̂�M′′ and the same is valid for hIN and hIL

separately. Therefore,

σ̂�M′′
∣∣φLi

vk

〉 = ∣∣φLi
vk

〉
,

σ̂�M′′
∣∣φLi

ck

〉 = −∣∣φLi
ck

〉
, (8)

with i = 1, 2 (we have also numerically verified these rela-
tions by computing the eigenstates of hIN). We now include
the effect of hIL using first order degenerate perturbation
theory, separately diagonalizing the matrix representation of
hIL on the two subspaces {|φL1

vk〉, |φL2
vk〉} and {|φL1

ck 〉, |φL2
ck 〉}.

With this procedure, we obtain the two highest-energy (σ̂�M′′ -
even) valence bands {|ϕv1k〉, |ϕv2k〉} and the two lowest-energy
(σ̂�M′′ -odd) conduction states {|ϕc1k〉, |ϕc2k〉} in the bilayer.

064006-7



MATTEO ZANFROGNINI et al. PHYSICAL REVIEW MATERIALS 7, 064006 (2023)

Such states have been labeled as (v+
1 , v+

2 ) and (c−
1 , c−

2 ),
respectively, in Fig. 2(b). They can be compactly written as

|ϕn j k〉 = 1√
2

[∣∣φ̃L1
nk

〉 + s j

∣∣φ̃L2
nk

〉]
, (9)

Enj k = ε0
n,k + s j |�nk|. (10)

In Eqs. (9) and (10), n = v, c, j = 1, 2, s j = −1 (+1) for j =
1 ( j = 2), �nk = 〈φL1

nk|hIL|φL2
nk〉, and∣∣φ̃L1

nk

〉 = e+i
γnk

2
∣∣φL1

nk

〉
,∣∣φ̃L2

nk

〉 = e−i
γnk

2
∣∣φL2

nk

〉
, (11)

where γnk = Arg[�nk] guarantees that the relative phase be-
tween the projections cα (n jk) = 〈αk|ϕn j k〉 of a Bloch state
|ϕn j k〉 on 2pz orbitals localized on different layers is gauge
invariant, i.e., it does not change under the transformation
cα1 (nk) → eiηcα1 (nk), η being an arbitrary phase. See the
Appendix for further details.

We point out that the zero-order expression given by Eq. (9)
is a good approximation for the two lowest σ̂�M′′ -odd con-
duction bands and the two highest-energy σ̂�M′′ -even valence
bands, for the considered k vectors along �M′′ direction.
In principle one should also consider other terms in the ex-
pression of the eigenstates [48], coming from higher orders
of the perturbative series, describing the coupling between
|φLi

nk〉 and the eigenstates of hIN with different eigenvalues.
For k points around the middle of the �M′′ direction, these
terms can be neglected in first approximation, as the other
eigenstates of hIN with the same σ̂�M′′ -parity of |φLi

nk〉 have en-
ergies far from ε0

nk (w.r.t. to the interlayer coupling strength),
so that the hybridization is negligible. Our numerical results
(not shown) indicate that these neglected terms become more
relevant for k along the same direction, but closer to the �

point. Therefore, looking at Eq. (9), we can understand that
the lowest odd-conduction band and the highest even-valence
can be seen, respectively, as antibonding and bonding com-
binations of the conduction and the valence states localized
on the two monolayers. We recall that the states defined in
Eq. (11) are still eigenstates of the intralayer Hamiltonian ĥIN,
with |φ̃L2

nk〉 = −Î · T̂|φ̃L1
nk〉.

Starting from Eq. (9), we can evaluate the interband matrix
element between the last occupied valence |ϕv2k〉 and the
lowest unoccupied conduction |ϕc1k〉 as

dε
v2c1k = 1

2

[〈
φ̃

L1
vk

∣∣ε̂ · r
∣∣φ̃L1

ck

〉 − 〈
φ̃

L2
vk

∣∣ε̂ · r
∣∣φ̃L2

ck

〉
+ 〈

φ̃
L2
vk

∣∣ε̂ · r
∣∣φ̃L1

ck

〉 − 〈
φ̃

L1
vk

∣∣ε̂ · r
∣∣φ̃L2

ck

〉]
, (12)

where ε̂ is the light polarization. To make the treatment sim-
pler, in the following we neglect the last two terms in Eq. (12),
as they involve states localized on different layers, so that their
value is generally small as a result of the reduced overlap
among the wave functions. In this way, we obtain that the
interband dipole is the difference between intralayer-interband
dipoles:

dε
Li

(k) = 〈
φ̃

Li
v,k

∣∣ε̂ · r|φ̃Li
c,k

〉
. (13)

The approach adopted to compute these matrix elements start-
ing from the proposed tight binding model is discussed in the
Supplemental Material [42].

If ε̂ is chosen along the �M′′ direction, then we imme-
diately find that dε

L1
(k) = dε

L2
(k) = 0, because of the parity

of layer-resolved states, given by Eq. (8). However, if ε̂ is
taken along the direction �K, orthogonal to �M′′, then we
cannot explain the quenching by straightforward symmetry
arguments. To clarify this point, in Fig. 7(a) we show the mod-
ulus (upper panel) of the intralayer-interband dipoles d�K

L1
(k)

and d�K
L2

(k), together with their relative phase (lower panel)
�ϕd (k) = Arg[d�K

L1
(k)] − Arg[d�K

L2
(k)]. Our results indicate

that the obtained intralayer dipole matrix elements are equal in
modulus and they exhibit a relative phase close to zero in the
range of k points here considered, i.e., |k| in [ |�M′′|

3 , |�M′′|].
As the total interband dipole is the difference among in-
tralayer contributions—see Eq. (12)—it will be almost zero,
as a consequence of the destructive interference of the two
layer-resolved components. In other words, the transition
probability from |ϕv2k〉 to |ϕc1k〉 due to �K-polarized light can
be interpreted as the quantum superposition of the interband
scattering processes occurring on the two layers separately,
whose probability amplitudes are out-of-phase, giving an
overall negligible interband oscillator strength.

In Fig. 7(b), the continuous red line indicates the interband
dipole between |ϕv2k〉 and |ϕc1k〉, computed using the pertur-
bative solution of the TB model (see Supplemental Material
[42] for details), while the red dots are the same quantities
obtained ab initio using Yambo, to check the validity of our
approximate treatment. We notice that, as this cancellation
is not symmetry-constrained, the interband dipole is small,
but not exactly zero. Such cancellation is exact at M′′ point,
because of symmetry reasons. In fact, as M′′ is invariant under
spatial inversion Î, we can assign inversion-parity labels to the
states at this point. Ab initio results indicate that both |ϕv2k〉
and |ϕc1k〉 are odd under Î exactly as d�K, therefore the overall
matrix element is zero.

We point out that the interband dipole is nonzero once the
transition between a pair of bonding or antibonding combi-
nations is considered. For example, taking into account the
scattering |ϕv1k〉 → |ϕc1k〉, the intralayer-interband transition
amplitudes sum constructively giving an intense overall inter-
band dipole. The intense optical activity of these transitions
is responsible for the main absorption peak denoted as C1 in
Fig. 3. Such prediction is confirmed by data in Fig. 7(b), where
this quantity is shown as computed using the model (dashed
blue line) and fully ab initio using Yambo (blue triangles).
We notice that the reasonable agreement between the model
and the ab initio results is an a posteriori confirmation of the
validity of Eq. (9) to describe single particle states along �M′′.

VI. THE CASE OF AA′ STACKING

As discussed in the Introduction, together with AB and
AB′ stackings, another stable bilayer C3N motif is AA′. Previ-
ous DFT calculations have effectively shown that these three
stackings exhibit similar energies and coexistence of these
motifs is expected at room temperature [18]. The crystal
structure of AA′-C3N is shown in Fig. 8(a). This stacking
has an inversion symmetry center (shown by the red dot
in the figure), two mirror symmetry planes, represented by
red dashed lines, and a twofold rotation axis parallel to the
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FIG. 7. Interband dipole matrix elements for k along �M′′ direction, in the interval [ |�M′′ |
3 , |�M′′|]. In the upper panel of (a) we show the

moduli of dε
Li

for light polarization along �K for the two layers i = 1, 2, while in the lower panel the phase difference among dε
L1

and dε
L2

is
presented. In panel (b) the red continuous (blue dashed) line corresponds to the interband dipole between |ϕv2k〉 (|ϕv1k〉) and |ϕc1k〉 computed
using the TB model. Dots and triangles represent the same quantities computed fully ab initio using Yambo code. Light polarization versor is
assumed aligned along �K direction.

stacking direction (indicated by the green dot). Interestingly,
this stacking-motif is also invariant w.r.t. the nonsymmorphic
symmetry operation {σxy|τ}, corresponding to z → −z mirror
symmetry followed by fractional translation of the vector τ,
represented by the red arrow.

Structural optimization performed within PBE-D2 pro-
vides an in-plane lattice parameter a = 4.849 Å, while the
interlayer distance is equal to 3.22 Å, similarly to the other
two stackings. For this relaxed atomic structure, the electronic

FIG. 8. Crystal structure for bilayer C3N with AA′ stacking is
shown in (a). The red dot indicates the in-plane position of the
inversion symmetry center, the dashed red lines represent mirror
symmetry planes parallel to the stacking direction and the green dot
denotes the in-plane position of the twofold rotation axis parallel to
the stacking direction. Finally, the red arrow represents the fractional
translation 	τ discussed in the main test. The DFT-PBE electronic
structure is shown in (b) along the direction �M′ the highest valence
and the lowest conduction bands are labeled according to their parity
w.r.t. {σxy|τ} symmetry operation.

structure at the DFT level is shown in Fig. 8(b). We notice
that the highest valence state (found at the M′ point) has a
higher energy than the lowest conduction state, occurring at
the � point, in agreement with the DFT results of Ref. [18]
(our results give a negative “gap” �c − M′

v = −0.31 eV).
Such metallicity is a problem related to the use of the PBE
functional within the Kohn-Sham DFT scheme, since, exper-
imentally, AA′-C3N has been shown to have a finite gap of
about 0.4 eV [22] and hybrid DFT calculations [22] provide a
semiconducting ground state.

The use of such metallic ground state to compute both
QP corrections and optical properties is problematic, as
it would induce a fictitious over-screening effect once the
electron-electron screened interaction is evaluated using RPA
approximation, providing inaccurate values for electronic
gaps and exciton binding energies. Nevertheless, in the fol-
lowing, we will assume that the Kohn-Sham states computed
at the PBE level are anyhow a good approximation for elec-
tronic wave functions, despite the problems of the associated
Kohn-Sham energies.

Figure 8(b) indicates that the lowest direct band gap occurs
almost in the middle of the �M′ direction. As a consequence,
it is reasonable to expect that the low-energy transitions which
contribute to the lowest energy excitons also come from this
portion of the BZ. Notably, k points along this direction are
invariant both under the σ̂�M′ mirror symmetry and {σxy|τ},
therefore the electronic states can be properly labeled ac-
cording to how they transform under these operations. Our
DFT results indicate that the highest valence band is even
under {σxy|τ}, while the lowest conduction is odd. In Fig. 8(b)
these two states are indicated as v+

2 and c−
1 , respectively.

As the dipole operator dε is invariant under {σxy|τ} (assum-
ing, as usual, incoming light with polarization direction ε̂

orthogonal to the stacking direction z), the matrix element
〈ϕv2k|ε̂ · r|ϕc1k〉 is zero, independently of the direction of
the polarization versor ε̂. Therefore, we expect light-induced
scattering between these bands to be forbidden by symmetry
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FIG. 9. Absorption spectra for AA′-C3N, computed using rigid
shift parameter sW

0 equal to 0.35 eV. Polarization directions are shown
on top of the crystal structure, while the vertical dashed line indicates
the energy of the minimum direct gap. Finally, the black dotted
line represents the independent particle absorption spectra. The inset
underlines the dark nature of low-lying excitons, whose spectral
positions are represented by vertical black bars.

and consequently the low-energy excitons composed by these
transitions to be optically dark.

To confirm this symmetry-based analysis, we solve BSE
computing the static electron-electron interaction in the direct
kernel using PBE single particle wave functions and applying
a rigid scissor sW

0 to all the unoccupied bands, to manually
remove DFT-spurious metallicity. Such scissor parameter has
been chosen so that the minimum gap �c - M′

v of the re-
sulting band-structure was positive but smaller than the one
found experimentally, to avoid under-screening effects. Fur-
thermore, in the independent-particle part of the excitonic
Hamiltonian, Eq. (1), we mimic quasiparticle corrections via
a scissor operator applied to the DFT bands, manually chosen
to obtain a minimum indirect band gap �c - M′

v equal to the
experimental one (0.4 eV). We underline that such scissor is
therefore larger than the one introduced in the calculation of
electronic screening.

The results of these calculations are shown in Fig. 9,
where we have chosen sW

0 = 0.35 eV, which fulfills the above-
mentioned requirement to induce a small, positive band gap.
The obtained spectra confirm the symmetry-based discus-
sion just outlined. In fact, in both cases, low-energy excitons
(whose positions are indicated by black vertical bars in the
inset) are optically dark independently of the polarization
direction, and no absorption structure is observed in the low-
energy region between 0.75 and 1.25 eV, where low-lying
discrete excitons are found. The dark bound excitons are
due to single particle transitions between bands v+

2 and c−
1

along the �-M′ direction. This point is further clarified in
the Supplemental Material [42], where, for completeness, we
report the exciton wave functions of the low-lying excitons
in reciprocal space. We point out that the observed optical
quenching is stable with respect to small variations of the
sW

0 scissor parameter. In the Supplemental Material [42] this
is further confirmed by solving BSE using a RPA screening
obtained with sW

0 = 0.45 eV.

We emphasize that a more complete analysis of the optical
properties of AA′ stacking would require a better starting
point for G0W0 and BSE calculations (i.e., a semiconducting
electronic ground state). This is presently beyond the scope of
this work and is left for future investigations.

VII. CONCLUSIONS

In this work, we discussed electronic and optical properties
of bilayer C3N using state-of-the-art ab initio calculations. As
a first point, we find that optical absorption around 1.7 eV
is favored for all stacking structures studied. Moreover, our
findings indicate a distinctive behavior of BL-C3N, as we
do not observe the anticipated low-energy absorption peaks
caused by tightly bound excitons that are typically present
in traditional homobilayers such as BL-hBN, BL-MoS2, or
BL-phosphorene. These findings are explained in terms of
independent-particles effects as due to the negligible inter-
band dipole strengths between the lowest conduction and the
topmost valence bands, which are those involved in the for-
mation of the lowest-lying excitons. In the case of AB and
AB′ stackings, we develop a model for the single-particle
states of interest, to demonstrate that the overall interband
dipole assumes negligible values because of the destructive
interference of the contributions coming from the two layers.
Furthermore, we also rationalize the quenching of low-energy
absorption in AA′-C3N stacking, employing the symmetry
properties of the crystal.

This work sets the stage for future theoretical and experi-
mental investigations on multilayer C3N. On the one hand, it
could be fascinating to investigate how optical properties of
C3N can be tuned varying the number of stacked monolay-
ers or changing the twist angle between them. On the other
hand, the abundant presence of dark or quasidark low-energy
excitons in BL-C3N could have important effects on exciton
lifetimes and dynamics.
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APPENDIX: PROPERTIES OF INTRALAYER
HAMILTONIAN

We consider the block diagonal Hamiltonian hIN defined
in Sec. V. For each 2pz orbital on layer L1 at position τα1

there is an analogous state localized at τα2 = Îτα1 on layer
L2, because of the inversion symmetry of the bilayer (with
both AB and AB′ stacking). Thus, the diagonal blocks can be
related to each other, i.e.,

HL1
α1,β1

(k) =
∑

R

eik·R t (α10, β1R)

=
∑

R

e−ik·R t (α20, β2R)

= HL2
α2,β2

(k)∗, (A1)

where we have used the fact that the Hamiltonian of the
system H is invariant under spatial inversion symmetry and
the hopping integrals are real because of time reversal and
Î|β1R〉 = −|β2ÎR〉. Equation (A1) indicates that the matrix
HL1 is the complex conjugate of HL2 , therefore these matrices
have the same eigenvalues. As the spectrum of hIN is the union
of the spectra of HL1 and HL2 , each eigenvalue ε0

nk of hIN will
be twofold degenerate, for each k.

Furthermore, as HL1 = HL2∗, we can associate to each
eigenvalue ε0

nk the pair of eigenstates∣∣φL1
nk

〉 =
∑
α1

cα1 (nk)|α1k〉,
∣∣φL2

nk

〉 =
∑
α2

cα2 (nk)|α2k〉, (A2)

where |αk〉 = 1√
N

∑
R eik·R|αR〉 and cα2 (nk) = cα1 (nk)∗,

being ∑
β1

HL1
α1β1

(k)cβ1 (nk) = ε0
nkcα1 (nk). (A3)

We notice that |φL1
nk〉 (|φL2

nk〉) is a Bloch function localized on
layer L1 (L2) as it only involves 2pz orbitals localized on that
layer. Further, defining the time inversion operator T̂ = K̂, i.e.,
equal to the complex conjugate operator, one can show that
|φL2

nk〉 = −Î · T̂|φL1
nk〉. In fact,

−Î · T̂
∣∣φL1

nk

〉 = −
∑
α1

cα1 (nk)∗ Î · T̂ |α1k〉. (A4)

By using the reality of 2pz orbitals together with the relation:
Î|α1R〉 = −|α2 ÎR〉 we find

Î · T̂ |α1k〉 = − 1√
N

∑
R

eik·R|α2R〉. (A5)

Combining Eqs. (A4) and (A5) and reminding cα2 (nk) =
cα1 (nk)∗ we finally obtain |φL2

nk〉 = −Î · T̂|φL1
nk〉.
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