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Robustness of the intrinsic anomalous Hall effect in Fe3GeTe2 to a uniaxial strain
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Fe3GeTe2 (FGT), a ferromagnetic van der Waals topological nodal line semimetal, has recently been studied.
Using first-principles calculations and symmetry analysis, we investigate the effect of a uniaxial tensile strain
on the nodal line and the resultant intrinsic anomalous Hall effect (AHE). Our results reveal their robustness
to the in-plane strain. Moreover, the intrinsic AHE remains robust even for artificial adjustment of the atomic
positions introduced to break the crystalline symmetries of FGT. When spin-orbit coupling is absent, the nodal
line degeneracy remains intact if the inversion symmetry or the twofold screw symmetry is maintained, which
reveals that the nodal line may emerge much more easily than previously predicted. This strong robustness is
surprising and disagrees with the previous experimental report [Wang et al., Adv. Mater. 32, 2004533 (2020)],
which shows that a uniaxial strain of <1% of the in-plane lattice constant can double the anomalous Hall
resistance. This discrepancy implies that the present understanding of the AHE in FGT is incomplete. The
possible origins of this discrepancy are discussed.
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I. INTRODUCTION

Two-dimensional magnetic van der Waals (vdW) materi-
als have been investigated intensely in recent years [1–18].
Especially Fe3GeTe2 (FGT) has attracted attention as a ferro-
magnetic topological nodal line semimetal candidate [16,19–
22]. The coexistence of the ferromagnetic ordering and the
nontrivial electronic topology makes interesting Berry phase
phenomena within this material, such as the intrinsic anoma-
lous Nernst effect [19,23] and the intrinsic anomalous Hall
effect (AHE) [16,24,25]. This topological nodal line origi-
nates from the symmetries of the layered structure of FGT,
which connect the d orbitals of Fe atoms in the adjacent lay-
ers. As the nodal line degeneracy is orbital driven, it appears
in the vanishing spin-orbit coupling (SOC) limit and is tunable
depending on the magnetization direction. The SOC-induced
band gap becomes the largest when the spin orientation is
completely out-of-plane. The most substantial Berry curvature
appears then, resulting in a tremendous intrinsic AHE [16].

Strain engineering, an efficient method for controlling the
electronic structure of vdW materials, is actively being studied
in many scientific branches, from emerging quantum phe-
nomena to next-generation information device technologies
[26–30]. Studies have already dealt with changes in the mag-
netic properties [31–34] and transport properties [35–38] of
FGT by strain. The experimental finding that a uniaxial strain
of <1% can cause a twofold increase in the size of the AHE
is particularly intriguing [32]. As the vast AHE within FGT
comes from the band topology, this significant change seems
to result from the symmetry breaking that occurred by strains.
Also, manipulating the AHE through strain has already been
explored in other two-dimensional magnetic materials such
as CrI3 [39,40] and CrTe2 [41]. Therefore, it is interesting to
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investigate the strain-induced phenomena in FGT and eventu-
ally understand the principles underlying the AHE difference
between FGT and other vdW mangets.

In this paper, we compute the intrinsic anomalous Hall con-
ductivity (IAHC) in strained structures via the first-principles
method to comprehend the impact of a uniaxial strain on the
AHE within FGT. We also investigate how the nodal line is
affected by strains. Surprisingly, our results show that uniaxial
tensile strains do not significantly affect the intrinsic AHE and
the nodal line degeneracy. Even when more constraints on the
two bands forming the nodal line are broken by artificially
modifying the atomic positions, the overall IAHC is not varied
much. Also, when the SOC is excluded, so the time-reversal
symmetry (T ) exists, the nodal line is maintained unless either
an inversion (P) or a twofold screw axis symmetry (C̃2z =
{C2z| 1

2 ẑ}) is broken. This imposes a less stringent constraint
on the symmetry than the earlier theoretical study of the
topological nodal line in FGT [16]. While the robustness of
the intrinsic AHE and the nodal line is surprising in itself, it
disagrees with the experimental result [32] that shows twofold
increase of the anomalous Hall resistance upon strain of <1%.
This discrepancy implies that our understanding of the AHE
in FGT needs to be improved. The possible origins of the
discrepancy are discussed.

The organization of this paper is as follows. In Sec. II, we
introduce the uniaxial strains, artificial lattice distortions, the
resultant changes in the symmetries, and the computational
details. In Sec. III, we show how uniaxial strains change
the IAHC and the nodal line and discuss with a symmetry
analysis. In Sec. IV, we summarize our conclusions.

II. METHOD

Bulk crystalline FGT consists of AB-stacked alternating
atomic layers of honeycomb lattices, where two Fe atoms

2475-9953/2023/7(6)/064003(7) 064003-1 ©2023 American Physical Society

https://orcid.org/0000-0003-1188-4035
https://orcid.org/0000-0003-1722-605X
https://orcid.org/0000-0002-1648-8093
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevMaterials.7.064003&domain=pdf&date_stamp=2023-06-12
https://doi.org/10.1002/adma.202004533
https://doi.org/10.1103/PhysRevMaterials.7.064003


LIM, CHOI, GHIM, PARK, AND LEE PHYSICAL REVIEW MATERIALS 7, 064003 (2023)

FIG. 1. Structure of the pristine FGT viewed on (a) the z axis and
(b) the x axis. A uniaxial strain T is indicated by an angle (θ ) to the x
axis. Considered strains are armchair (AC, π/2), zigzag (ZZ, 0), and
chiral (CH, π/12).

are positioned vertically above and below the center of each
hexagon (Fig. 1). It belongs to the space group D4

6h (P63/mmc,
No. 194), whose generators are sixfold screw rotation (C̃6z =
C6z| 1

2 ẑ), twofold rotation (C2x), and inversion (P). According
to the previous study, the following combinations of the sym-
metries protect the twofold nodal line degeneracy along the
KH symmetry line: C̃6z · P, Mx · P, and P · T (at the K point),
C3z ≡ (C̃6z )2 and either C̃6z · Mx or P · T (at any point between
the K and H points), and M̃z · P · T (on the kz = π plane,
including the H point) [16].

We consider tensile strains along three different directions
(θ ) to break some of them: armchair (AC, π/2), zigzag (ZZ,
0), and chiral (CH, π/12) [Fig. 1(a)]. Since the unit cell is
hexagonal, the AC strain along the π/2 direction is equivalent
to the strain along the π/6 direction. The CH strain along
the π/12 direction is heading toward the center of the other
two strains. The magnitude of the strains is between 0 and
5% of the in-plane lattice constant. The strained FGT has
lower symmetries than the pristine FGT. Table I shows the
symmetries of each strained FGT.

Moreover, to examine the effect of the symmetry breaking
further, we consider additional lattice distortions to 1 and
5% AC-strained structures to make them possess still lower
symmetries. Because the two wave functions constituting the
nodal line are mainly composed of d orbitals of Fe, positions
of Fe constituting the hexagonal lattices are chosen to be
moved. Through this process, we make four different struc-
tures with the following crystalline symmetries: one with only
P, one with only M̃z · P, one with only M̃z, and one with all
three of them. The size of movements is set equal to the extent
to which Fe atoms move purely by the strains: 0.0173 Å for

TABLE I. Existent symmetries in the AC-, ZZ-, and CH-strained
FGT. M̃i · P is equivalent to the twofold screw axis symmetry (C̃2i)
for i = x, y, z.

AC/ZZ E P M̃z M̃z · P Mx Mx · P M̃y M̃y · P
CH E P M̃z M̃z · P

the 1% strain and 0.0864 Å for the 5% strain. We note that the
lattice constants are adopted from the previous report [42],
and the atomic configurations are given in Tables SI–SIII in
the Supplemental Material [43].

First-principles calculations are composed of three steps.
First, all structures are relaxed with total energy convergence
threshold 1.36 × 10−3 eV and force convergence threshold
0.0257 eV/Å, while lattice parameters are fixed. Then the
electronic structure of each relaxed structure is obtained. This
step is performed by using the QUANTUM ESPRESSO [44] pack-
age with the projector augmented-wave pseudopotentials [45]
from PSlibrary [46] and the revised Perdew-Burke-Ernzerhof
exchange-correlation functional [47]. The SOC is also con-
sidered. A Monkhorst-Pack [48] k-grid of 20 × 20 × 5 is
used, and the cutoff energy of wave functions is chosen to be
1225 eV. We set the magnetization direction to be the z-axis
direction in Fig. 1.

Second, the maximally localized Wannier functions (ML-
WFs) are obtained from the Kohn-Sham states using the
WANNIER90 code [49]. We set the initial projections to be
dz2 , dxz, dyz, dx2-y2 , dxy for Fe, and pz, px, py for Ge and Te.
From 178 Kohn-Sham states, 96 MLWFs are obtained. We set
the frozen window as 2 eV above the Fermi energy for the
disentanglement of inner and outer spaces.

Third, the energy eigenvalue, the total Berry curvature
(�αβ), and the IAHC (σ AH

αβ ) are evaluated with the MLWFs.
We use the Kubo formula within the linear response theory to
compute the total Berry curvature and the IAHC:

σ AH
αβ = e2

h̄

1

VcellNk

∑
k

(−1)�αβ (k), (1)

�αβ (k) =
∑

n

fn(k)�n,αβ (k), (2)

�n,αβ (k) = −2Im
∑
m �=n

vnm,α (k)vmn,β (k)

(εn,k − εm,k )2 + 	2
(3)

where vnm,α (k) = 〈nk|∂kα
Ĥ (k)|mk〉 are the elements of the

velocity operator, and 	 is a smearing parameter whose unit
is energy. We set 	 and kBT in the Fermi-Dirac distribution
function to be 0.0129 eV, corresponding to 150 K and less than
the Curie temperature of bulk FGT [50,51]. The summation is
performed over a uniform k-grid of 120 × 120 × 60.

To visualize the nodal line, we investigate the energy gap
between the two bands forming the nodal line in the absence
of the SOC. We compute on ky = 0 and several kz = lπ (0 �
l � 1) planes near the KH symmetry line [Figs. 2(a) and 2(c)].

III. RESULTS

Figure 3(a) shows the band structures of the pristine, 1%,
and 5% AC-strained FGT. The red- and blue-colored bands
are related to the twofold nodal line degeneracy. As the mag-
nitude of applied tensile strain increases, the gap between the
two bands near the K point grows, while it stays zero at the H
point. This result is due to the breaking of C̃6z by the AC strain,
required for the existence of the degeneracy at the K point and
any point between the K and H points. However, as M̃z · P · T
is unaffected by the AC strain, the degeneracy at the H point
remains. When the SOC is activated, it leads to the separation
of the colored bands. Consequently, the previously red- and
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FIG. 2. Effects of uniaxial strains on the nodal line degeneracy. (a) The Brillouin zone (BZ) of pristine FGT. The red-colored and dashed
line represents the KH symmetry line. Two blue-colored lines schematically show the moved nodal lines due to the armchair (AC) and zigzag
(ZZ) strains. (b) The k-resolved band gap. The horizontal axis of each figure is a segment of a straight line connecting 	 and K, and width
is the same as 3% of the distance between them. The dashed line is equivalent to the KH symmetry line. (c) The BZ of pristine FGT viewed
on the kz axis. Three blue-colored arrows show how a nodal point near the KH symmetry line moves on a kz plane when a uniaxial strain is
engaged. (d) The k-resolved band gap on three kz planes in the case of 1% chiral (CH)-strained FGT. The length of the axes is equal to 6% of
the distance between the 	 and K points.

blue-colored bands transform into the adjacent black bands
positioned immediately above and below them, respectively.
In this transformed configuration, the two bands exhibit finite
Berry curvatures that possess opposite signs with respect to
each other.

From a semiclassical point of view, one can formulate
the IAHC as a sum of the anomalous velocities of electron
wave packets produced by an external electric field. This
anomalous velocity appears as a cross-product between the
electric field and the Berry curvature, and one can obtain
the IAHC from a summation of the weighted Berry curva-
ture over the band index [52–55]. Therefore, multiplying the
k-resolved total Berry curvature in Fig. 3(b) by the current
density coefficient −e2/(h̄Vcell ) gives the k-resolved IAHC.
We note that, as the strain intensity increases, both bands
shift toward below the Fermi energy. As a result, the total
Berry curvature, corresponding to the sum of the anomalous
velocities of all occupied bands, decreases as the magnitude
of the strain increases [Fig. 3(b)].

In Fig. 3(c), we present the dependence of the IAHC on the
Fermi energy, which is obtained from deformed structures by
applying AC strains of various magnitudes. At the exact Fermi
energy (E − EF = 0), the IAHC from the pristine FGT is
232.49 (� cm)−1, a value consistent with previous experimen-
tal results [14,17]. Notably, the IAHC remains almost constant
at this point, irrespective of the intensity of the strain. In detail,
as the strain strength increases to 2.5%, the IAHC decreases
linearly by 5.3% to 220.23 (� cm)−1. Conversely, for a higher
strain of 5%, the IAHC increases to 244.71 (� cm)−1, which
is 5.3% larger than the case of the pristine FGT. Also, in a
wide range of E , the IAHC is virtually unaffected by strains
<1%. Noticeable differences appear only for strong strains
of 2.5 and 5%. To be precise, in the region just below the

precise Fermi energy (E − EF ∈ [−0.2, 0.0]), where the in-
trinsic AHE is associated with the band topology and has
already been experimentally implemented [56], the 5% AC
strain causes the IAHC to rise ∼2.5 times higher than that
obtained from the pristine FGT.

The dependence of the IAHC on the direction of the ap-
plied strain is illustrated in Fig. 3(d). As above, in the region
where the intrinsic AHE of FGT is related to the topological
nodal line, the IAHC obtained from 1% strained structures is
nearly independent of the direction of the strain. Similarly, in
the cases of 5% strains, although there is a contrast between
the IAHC from them and the undeformed FGT, the directional
difference among themselves in this region is insignificant.
Also, even though the CH strain breaks more symmetries than
the strains in the other two directions, the IAHC from the CH-
strained FGT is between those from the AC- and ZZ-strained
structures. These results may suggest that the existence of the
nodal line degeneracy is not affected by any in-plane strain.
The IAHC obtained from the lattice distorted structures shows
a more exciting result [dotted lines in Fig. 3(d)]. Even though
the symmetry constraints weaken, there is no apparent change
in the IAHC.

To examine the effect of strain on the nodal line, the energy
difference between the two bands, responsible for the nodal
line, is investigated in the absence of SOC. Before performing
the calculations, we search for the region where the nodal line
will be located in the momentum space through a symmetry
analysis, which is given in the Supplemental Material [43]. We
find that, in the presence of M̃y, the degeneracy should appear
on the ky = 0 plane 4A	K ′H ′ plane, Fig. 2(a)]. To account for
cases where M̃y does not exist, such as the CH-strained FGT,
we also investigate several kz planes [Fig. 2(c)].

064003-3



LIM, CHOI, GHIM, PARK, AND LEE PHYSICAL REVIEW MATERIALS 7, 064003 (2023)

FIG. 3. (a) Band structures of the undeformed, 1%, and 5% arm-
chair (AC)-strained FGT along the KH symmetry line with spin-orbit
coupling (SOC; solid, black) and without SOC (colored, dashed).
(b) Corresponding total Berry curvatures. (c) The Fermi energy de-
pendence of the intrinsic anomalous Hall conductivity (IAHC) in x%
(0 � x � 5) AC-strained FGT. (d) The Fermi energy dependence of
the IAHC in 1% (left) and 5% (right) AC-, zigzag (ZZ)-, and chiral
(CH)-strained FGT. Dotted lines represent the IAHC obtained from
the AC-strained FGT with additional lattice distortions that further
lower the symmetry of the system. In (c), results for different strain
directions closely overlap and are almost indistinguishable.

Figure 2(b) shows how the nodal line moves on the ky = 0
plane due to the 1% AC, ZZ, and CH strains. In all cases, the
degeneracy at the kz = π plane is clearly preserved since the
Kramers’ degeneracy in the plane is protected by the sym-
metry M̃z · P, which is not broken by any in-plane strain. As
predicted by the symmetry analysis, the nodal line persists on
the ky = 0 plane for the AC and ZZ strains but disappears for
the CH strain. Nevertheless, as there is a nodal point near the
KH symmetry line on each kz ∈ [0, π ] plane, their continuous
connection can form the nodal line degeneracy [Figs. 2(c) and
2(d)]. For reference, the same results are also obtained in the
case of 5% strain, given in the Supplemental Material [43].
The results so far align with the previous report, which shows
that the nodal line is protected by P and (T ) in the absence
of SOC [57]. In our situation, none of the considered strains
disrupts P, and T remains intact due to the exclusion of SOC.

To go one step further, we also compute the band gap in
lattice distorted structures, and the detailed calculation re-
sults are given in the Supplemental Material [43]. Here, we
summarize the results. In the structure where both P and M̃z

exist (naturally their product M̃z · P also exists), the nodal line
appears just as in the CH-strained FGT. Although it is not
located on the ky = 0 plane, nodal points appear on every kz

plane. In the structure with only P, the kz = π plane is no
longer a nodal plane due to the breaking of M̃z · P. However,
a nodal point still appears on each kz plane. In the structure
with only M̃z symmetry, the nodal line degeneracy is lifted
in general. However, we find that the nodal line degeneracy
persists even after the M̃z symmetry is broken, provided the
M̃z · P symmetry is maintained. Also, the Kramers’ degener-
acy at the kz = π plane is also clearly visible. Therefore, this
nodal line cannot be distinguished from that in the structure
where both P and M̃z exist.

From now on, we present a symmetry analysis that demon-
strates how the combination of the two symmetries M̃z · P
and T protects the topological nodal line within FGT, an
expansion of the previous study [57] that shows that the com-
bination of P and T protects the topological nodal line. The
Hamiltonian of the strained FGT is modeled as shown below:

H (	k) = h0(	k) · 	σ0 + 	h(	k) · 	σ , (4)

where 	k = (kx, ky, kz ), 	σ is the Pauli matrix in the bases of
nodal-line-related states ψA and ψB, and h0(	k) and 	h(	k) are
real coefficients. In the absence of the strain, the nodal line
results from the two bands (both are superpositions of ψA and
ψB) touching each other. The operator T M̃zP maps the wave
vector (kx, ky, kz ) to (kx, ky,−kz ) due to the actions of M̃z ·
P and T , which transform (kx, ky, kz ) into (−kx,−ky, kz ) and
(−kx,−ky,−kz ), respectively. The Schrödinger equation for
H (	k) is given by

H (	k)un(	k) = En(	k)un(	k), (5)

where un(	k) = [ψA(	k), ψB(	k)]T is the state of the nth band,
and En(	k) is the corresponding energy. The state is a super-
position of the state ψA in the A layer and the state ψB in the
B layer in the AB-stacked FGT. To analyze the constraints on
H (	k) due to the symmetries M̃zP and T , we examine their
effect on the Schrödinger equation. We have

T M̃zPH (	k)un(	k) = T M̃zPEn(	k)un(	k). (6)

It follows that

H (	k′)T M̃zPun(	k) = En(	k)T M̃zPun(	k), (7)

where 	k′ = (kx, ky,−kz ). Since T can be replaced with the
complex conjugate operator K , the Schrödinger equation re-
sulting from the action of M̃zP and K is represented as follows,
using M̃zPun(	k) = [ψB(−	k′), ψA(−	k′)]T :

H (	k′)

[
ψ∗

B (	k′)

ψ∗
A (	k′)

]
= En(	k)

[
ψ∗

B (	k′)

ψ∗
A (	k′)

]
, (8)

where En(	k) = En(	k′). Since[
ψ∗

B (	k)

ψ∗
A (	k)

]
= K

[
ψB(	k)

ψA(	k)

]
, (9)
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we apply K to both sides of Eq. (8) to utilize the property
K2 = 1. This results in

KH (	k′)K

[
ψB(	k′)

ψA(	k′)

]
= En(	k)K2

[
ψB(	k′)

ψA(	k′)

]
. (10)

Furthermore, since[
ψB(	k)

ψA(	k)

]
= σx

[
ψA(	k)

ψB(	k)

]
, (11)

we add σx to both sides of Eq. (10) to take advantage of the
property that σ 2

x = I2, resulting in

σxKH (	k′)Kσx

[
ψA(	k′)

ψB(	k′)

]
= En(	k)σ 2

x

[
ψA(	k′)

ψB(	k′)

]
. (12)

The left side of Eq. (12) is H (	k′)un(	k′), leading to the follow-
ing relation of the Hamiltonian in momentum space:

σxKH (	k′)Kσx = H (	k′). (13)

Using the relation given by

K

⎛
⎝σx

σy

σz

⎞
⎠K =

⎛
⎝ σx

−σy

σz

⎞
⎠, (14)

the coefficients of the Hamiltonian in Eq. (13) transform into

σx[h0(	k′)σ0 + hx(	k′)σx − hy(	k′)σy + hz(	k′)σz]σx = H (	k′).

(15)

Furthermore, by using the relation of

σx

⎛
⎝σx

σy

σz

⎞
⎠σx =

⎛
⎝ σx

−σy

−σz

⎞
⎠, (16)

we obtain

h0(	k′)σ0 + hx(	k′)σx + hy(	k′)σy − hz(	k′)σz = H (	k′). (17)

The following constraints on the coefficients of H (	k′) are
derived:

hx(	k′) = hx(	k′), (18)

hy(	k′) = hy(	k′), (19)

hz(	k′) = −hz(	k′). (20)

As a result, we derive hz(	k) = 0, and the Hamiltonian and
energy eigenvalue can be represented as

H (	k) = h0(	k) 	σ0 + hx(	k) 	σx + hy(	k) 	σy, (21)

E (	k) = h0(	k) ±
√

hx(	k)2 + hy(	k)2. (22)

Consequently, two energy eigenvalues become degenerate
for suitable values of kx and ky that satisfy the two constraints
hx(	k) = 0 and hy(	k) = 0 for a given value of kz. This situation
amounts to the band touching within the given kz plane. Since
the number of free variables (kx and ky) matches the number
of constraints, the band touching occurs generically for each
kz. By connecting the band touching points (kx, ky) for each kz

from kz = 0 to π , one obtains the nodal line.
In the presence of uniaxial strains, the coexistence of

M̃z · P and P leads to the formation of nodal lines. The AHE is
related to the degeneracy of these nodal lines, which is lifted
by SOC. Therefore, we expect the magnitude of the IAHC
to remain largely unchanged in the presence of such strains.
This behavior is observed when either M̃z · P or P are present.
However, when M̃z is present alone, the nodal line degener-
acy is lifted weakly at 1% strain and significantly at 5%, as
shown in Figs. S17 and S19 in the Supplemental Material
[43]. Nevertheless, the IAHC remains largely unaffected at
1% strain since the energy gap after the degeneracy lifting is
small compared with the gap widened by SOC.

Lastly, we compare our calculation results with the recent
experimental results [32]. Contrary to our theoretical results,
the experiment reports that the anomalous Hall resistance
increases twofold due to a weak strain of <1%. Thus, our
calculation results disagree with the experimental results. Al-
though the origin of this discrepancy is unclear, it is evident
that the strain effect on the AHE in FGT requires further
study, both theoretically and experimentally. Here, we discuss
possible origins of the discrepancy. A possible origin is the
AHE of extrinsic origin. While our calculation is limited to
the AHE of intrinsic origin, the extrinsic contributions to the
AHE may be important. In transition-metal ferromagnets such
as Fe, Co, and Ni, it has been demonstrated that the AHE can
receive an extrinsic contribution of 10–30% or more [58–60].
Therefore, it is plausible that a significant extrinsic effect may
also be present in FGT, contrary to the commonly adopted
assumption that the AHE in FGT is dominated by the intrinsic
contribution. Another possible origin is the interplay between
the strain and the electron-electron interaction. The interaction
effect may be considered in the density functional theory cal-
culation by introducing the Coulomb interaction parameter U .
For the pristine FGT, the IAHC does not change significantly,
regardless of whether U is considered. For this reason, we ex-
cluded the contribution of U in our density functional theory
calculations. However, a more systematic study of the U effect
is necessary. Still another possible origin is the concurrent
variation of the longitudinal resistivity ρxx with the strain in
the experiment [32]. Considering the relation between the
anomalous Hall conductivity σyx and the anomalous Hall re-
sistivity ρyx, σyx = ρyx/(ρ2

xx + ρ2
yx ), the discrepancy between

our theoretical calculation results and the experimental results
can be resolved if ρxx increases concurrently with strain ap-
plied in the experiment since the simultaneous variations of
ρyx in the numerator and ρ2

xx + ρ2
yx ≈ ρ2

xx in the denominator
may cancel each other and leave σyx unaltered. However, this
appears to have a relatively low likelihood of accuracy. Further
theoretical and experimental investigation is required to better
understand the effect of the strain on the AHE in FGT.
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IV. CONCLUSIONS

In this paper, we have investigated the effect of a uni-
axial strain on the intrinsic AHE and the topological nodal
line within FGT first-principle calculations and model analy-
sis. Our results demonstrate the robustness of both the AHE
and nodal line against in-plane strain and artificial lattice
distortions. Specifically, we have shown that nodal line de-
generacy is preserved when either P or M̃z · P is conserved,
indicating that nodal lines may be more easily observed than
previously thought. Our findings suggest that the fundamental
symmetries identified in this paper can be utilized to repli-
cate the topological AHE observed in FGT across a broad
range of magnetic materials by selecting space groups that
meet the symmetry criteria. Furthermore, our results reveal
that the AHE is a robust property of the material, with a
high degree of resistance to external perturbations such as
strain. These findings have significant implications for the

development and optimization of magnetic materials for a
wide range of applications, including spintronics and quantum
information.
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