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Valley-related multiple topological phase transitions have attracted significant attention because they provide
significant opportunities for fundamental research and practical applications. Unfortunately, however, there is no
real material as of yet that can realize valley-related multiple topological phase transitions. Here, through first-
principles calculations and model analysis, we investigate the structural, magnetic, electronic, and topological
properties of VSiXN4 (X = C, Si, Ge, Sn, Pb) monolayers. VSiXN4 monolayers are stable and intrinsically
ferrovalley materials. Intriguingly, we found that built-in electric field and strain can induce valley-related
multiple topological phase transitions in materials from valley semiconductor to valley half-semimetal, to valley
quantum anomalous Hall insulator, to valley half-semimetal, and to valley semiconductor (or to valley metal).
The nature of the topological phase transition is the built-in electric field and strain-induced band inversion
between the dxy/dx2−y2 and dz2 orbitals at K and K ′ valleys. Our findings not only reveal the mechanism of
multiple topological phase transitions, but they also provide an ideal platform for the multifield manipulating the
spin, valley, and topological physics. This will lead to alternative perspectives for spintronic, valleytronic, and
topological nanoelectronic applications based on these materials.
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I. INTRODUCTION

Valley degrees of freedom and related manipulations have
become rising topics in recent years [1,2]. They are cou-
pled with the spin degree of freedom to exhibit extraordinary
quantum effects [3–7], such as the valley spin Hall effect
[8,9] and the valley polarized quantum anomalous Hall ef-
fect (VQAHE) [4,5,10–12]. The coupling effects are typically
strong in the transition-metal elements with localized d elec-
trons, and the effects will be further enhanced with a decrease
of dimensions. Therefore, two-dimensional (2D) transition-
metal materials provide a good opportunity to investigate the
manifestation of charge, spin, topological, and valley quantum
covariation effects.

In 2D hexagonal lattice material, the extreme value of the
valence and conduction bands appears at the K and K ′ points,
forming the valley degrees of freedom. Due to the effect
of inversion symmetry (P̂) breaking together with spin-orbit
coupling (SOC), the K and K ′ valleys have opposite spins but
degenerate energies, which is known as spin-valley locking.
As a result, the charged carriers in the two opposite valleys
were selectively stimulated by the photons with left-hand and
right-hand circular polarization. In addition, if the system fur-
ther breaks time-reversal symmetry (T̂ ), the valley degenerate
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will disappear at the K and K ′ points. This is known as a
ferrovalley [13]. Therefore, exploring ferrovalley materials is
beneficial to promoting the development of spintronics and
valleytronics.

Recently, a new 2D transition-metal material MoSi2N4

family was successfully synthesized in an experiment [14],
and more than 60 stable ternary compounds with similar struc-
tures have been predicted theoretically [15]. Such a family of
materials has many interesting physical properties, including
intrinsic magnetism, valley polarization, transport, and topol-
ogy [16–20]. It was noticed that 2D Janus transition-metal
dichalcogenides (TMDs) were also experimentally synthe-
sized [21]. It is well known that the MoSi2N4 family is a
combination of TMDs and SiN surface layers. Therefore, we
are optimistic that the Janus MoSi2N4 family can also be pre-
pared. The two chalcogen layers are different, and the mirror
symmetry in the Janus MoSi2N4 family is broken. The impact
of spontaneous out-of-plane dipole (the built-in electric field)
and strain on the covariation effect (charge, spin, topological,
and valley) may be crucial, but it is not yet clearly understood.

In this work, we systematically investigate the built-
in electric field and strain on the covariation effect of
spin, topological, and valley freedom of VSiXN4 (X =
C, Si, Ge, Sn, Pb) monolayers. It is found that the built-in
electric field and strain effects can induce a series of topolog-
ical phase transitions, such as valley semiconductor (VSC),
valley half-semimetal (VHSM), valley quantum anomalous
Hall insulator (VQAHI), and valley metal (VM). It essentially
originated from the built-in electric field and strain-induced
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band inversion between the dxy/dx2−y2 and dz2 orbitals at the
K and K ′ valleys. Our findings pave the way for valley-related
multiple topological phase transitions and further microelec-
tronic devices with perfect valley, spin, and topology.

II. STRUCTURES AND COMPUTATIONAL METHODS

To explore the electronic and magnetic structures, we used
the Vienna Ab init io Simulation Package (VASP) [22–24]
within the framework of the density functional theory (DFT)
for first-principles calculations. The exchange-correlation en-
ergy was described by the generalized gradient approximation
(GGA) with the Perdew-Burke-Ernzerhof (PBE) functional
[25]. The plane-wave basis with a kinetic energy cutoff of
500 eV was employed, and 17 × 17 × 1 and 25 × 25 × 1 �-
centered k meshes were adopted for structural optimization
and self-consistent calculations. A vacuum of 20 Å was set
along the c-axis to avoid the interaction between the sheet
and its periodic images. The total energy convergence crite-
rion and the force were set to 10−7 eV and −0.001 eV/Å,
respectively. To describe strongly correlated 3d electrons of
V [13,26], the GGA + U method was applied. The Coulomb
repulsion U was varied between 1 and 4 eV. To confirm
the results, the calculations were also checked using the
Heyd-Scuseria-Ernzerhof (HSE06) method. To investigate the
dynamical stability, the phonon spectra were calculated us-
ing a finite displacement approach as implemented in the
PHONOPY code [27]. The maximally localized Wannier func-
tions (MLWFs) were employed to construct an effective
tight-binding Hamiltonian to explore the Berry curvature,
anomalous Hall conductivity (AHC), and edge states [28].
Using the calculated AHC, we performed the Berry curvature
calculations using the formula

σxy = Ch
e2

h
, (1)

Ch = 1

2π

∫
BZ

d2k �(k), (2)

�(k) = −
∑

n

fn

∑
n′ �=n

2 Im〈ψnk|vx|ψn′k〉〈ψn′k|vy|ψnk〉
(En′ − En)2

, (3)

where Ch is the Chern number, �(k) is the Berry curva-
ture in reciprocal space, vx and vy are operator components
along the x and y directions, and fn = 1 for the occupied
bands [29–31]. One can obtain the Chern number as well as
AHC by integrating the Berry curvature in the entire Brillouin
zone (BZ). Therefore, the edge states were calculated in a
half-infinite boundary condition using the iterative Green’s
function method using the WANNIERTOOLS package [32].

III. RESULTS AND DISCUSSION

A. Structure and stability

The crystal structure of the VSiXN4 monolayer is shown
in Fig. 1(a). VSiXN4 consists of septuple layers of N-Si-N-
V-N-X -N, with atoms in each layer forming a 2D hexagonal
lattice. Each V atom is coordinated with six N atoms, forming
a trigonal prismatic configuration, and then this VN2 layer
is sandwiched by Si-N and X -N layers. The space group of
VSiXN4 is P3m1 (no. 156), and the space inversion symmetry

FIG. 1. (a) The top and side views of the crystal structure for
VSiXN4 (X = C, Si, Ge, Sn, Pb) monolayers. The red, gray, blue,
and green balls represent V, N, Si, and X elements, respectively.
(b) The Brillouin zone (BZ) of the honeycomb lattice with the
reciprocal-lattice vectors �b1 and �b2. �, K , and M are the high-
symmetry points in the BZ, and � and X are the high-symmetry
points in the one-dimensional BZ. (c) The splitting of d orbitals
under the trigonal prismatic crystal field.

is broken [except VSi2N4, which is P-6m2 (no. 187)]. The lat-
tice constant of VSi2N4 is optimized to 2.88 Å, agreeing well
with previous work [14,16]. However, the lattice constants of
VSiCN4, VSiGeN4, VSiSnN4, and VSiPbN4 are optimized
to 2.75, 2.95, 3.04, and 3.07 Å (see Table I), respectively.
The lattice constant is increasing with the increase of the X
atomic order. To confirm the stability of VSiXN4 monolayers,
the phonon spectra are calculated. As shown in Fig. S1, the
absence of imaginary frequencies confirms that the VSiXN4

monolayers are dynamically stable (see the supplemental ma-
terial [33]). Only VSiPbN4 has a small imaginary frequency
at the � point, which is a numerical error. In previous reports
[34,35], this is a common problem for 2D materials. These
imaginary frequencies become smaller as we increase the
supercell in the phonon spectrum calculations. In addition,
as shown in Fig. S2, we calculated the formation energy for
2H and 1T phase VSiXN4 [33]. The formation energy is

TABLE I. The calculated lattice constants a (Å) for the mono-
layer, magnetic anisotropy energy (MAE) (μeV/cell), the valley
degeneracy splits for the valence [EK

v − EK ′
v (meV)] and conduction

bands [EK
c − EK ′

c (meV)], and the global band gap Eg (meV) of the
2D material VSiXN4 (X = C, Si, Ge, Sn, Pb).

a MAE EK
v − EK ′

v EK
c − EK ′

c Eg

VSiCN4 2.75 96.66 46.73 0.00 722.04
VSi2N4 2.88 50.98 63.74 0.00 381.33
VSiGeN4 2.95 −4.16 70.17 0.00 0.00
VSiSnN4 3.04 −17.41 0.00 68.86 118.91
VSiPbN4 3.07 −30.27 0.00 72.45 0.00
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FIG. 2. (a) Spin charge densities with spin directions are indicated (yellow and cyan correspond to spin-up and spin-down, respectively).
The isovalue surface level is at 0.005 e/Å3. (b) Calculated total energies of VSiXN4 different magnetic structures, which are defined relative
to that of the FM state. (c) The magnetic anisotropy energy as a function of strain. These results were obtained with Ueff = 3 eV.

expressed as E f = (Etot − μV − μX − 4 µN)/N , where Etot is
the total energy of VSiXN4. μV, μX , and μN are the chemical
potential V, X , and N atoms, respectively. N is the number of
atoms in VSiXN4. As listed in Table SI, the negative value,
−6.390 to 7.504 eV, indicates that the VSiXN4 lattice is a
strongly bonded network and hence favors its experimental
synthesis [33]. Even though the 1T phase formation energy of
VSiGeN4, VSiSnN4, and VSiPbN4 is lower than that of the
2H phase formation, the difference is very small. In addition,
to confirm the dynamical stability of the 1T phase VSiXN4,
we calculated the phonon spectrum, as shown in Fig. S3 [33].
We found that the phonon spectrum of the 1T phase VSiXN4

has a large imaginary frequency, which indicates that the
dynamics of the 1T phase VSiXN4 is unstable.

B. Magnetic property

The valence electron configuration of the V atom is 3d34s2.
After donating four electrons to the neighboring N atoms, one
valence electron is retained. According to Hund’s rule and the
Pauli exclusion principle, the electron configuration of V4+ is
split into three groups: a1 (dz2 orbital), e1 (dxy, dx2−y2 orbital),
and e2 (dz2 orbital), as shown in Fig. 1(c). Therefore, the
magnetic moment of the VSiXN4 monolayer is expected to be
1 µB per cell. Our spin-polarized calculations indeed show that
VSiCN4, VSi2N4, VSiGeN4, and VSiSnN4 are spin-polarized,
and that the magnetic moments are mainly distributed over the
V atoms, with a magnetic moment of 1 µB per unit. It is worth
noting that only in VSiPbN4 is the magnetic moment not 1 µB
(it is 1.09 µB). Due to the increase of the out-of-plane dipole
formed by Si and Pb atoms, VSiPbN4 becomes a VM.

To determine the magnetic ground state of the VSiXN4

monolayer, three possible magnetic configurations are con-
sidered, namely the ferromagnetic (FM), antiferromagnetic
(AFM), and nonmagnetic (NM) structures [see Fig. 2(a)]. We

calculate the total energy difference between FM, AFM, and
NM using the GGA + U method. To determine a reasonable
value of U , the GGA + U calculated energy difference be-
tween the AFM and FM states is compared with the HSE06
results, as shown in Fig. S4 [33]. It can be found that the value
of U near 3 eV is consistent with the results of HSE06 for
the VSiXN4 monolayer. Therefore, we choose Ueff = 3 eV to
investigate the VSiXN4 (X = C, Si, Ge, Sn, Pb) system. By
comparing the total energy of FM, AFM, and NM states,
we found that the FM configuration is the magnetic ground
state for the VSiXN4 monolayer, as shown in Fig. 2(b). The
FM ground state of the VSiXN4 monolayer can be under-
stood by studying the crystal structure. In VSiCN4, VSiGeN4,
VSiSnN4, and VSiPbN4, the V-N-V bond angles are 87.9◦,
91.4◦, 92.8◦, and 93.1◦, respectively, which are close to
90.0◦. According to the Goodenough-Kanamori-Anderson
rule [36–38], this configuration is beneficial to FM coupling.

Then, we investigate the underlying physics for the robust
out-of-plane magnetization. The direction of spin-polarization
orientation is determined by magnetic anisotropy energy
(MAE), which is defined as MAE = Ez − Ex/y. First, we tested
the convergence of the K-mesh before calculating MAE. As
shown in Fig. S5, when the K-mesh is 25 × 25 × 1, the con-
vergence criterion is reached completely [33]. The MAE is
calculated using 25 × 25 × 1 K-mesh in Fig. 2(c). The MAE
value is listed in Table I. For magnetic ions V with a finite
orbital moment, MAE can be estimated through the formula
λ〈L〉〈S〉, where λ, L, and S represent the strength of SOC,
orbital angular momentum, and spin angular momentum [39],
respectively. For the VSiXN4 monolayer, the half-filled a1

and empty e1, e2 orbitals indicate that L = 0 and S = 1/2.
Due to the quenched orbital moment, the MAE originating
from the SOC of the V atom vanishes. As a result, MAE
is mainly contributed by the SOC effect originating from
N and X (X = C, Si, Ge, Sn, Pb) atoms. The MAE can be
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FIG. 3. Band structures and edge state of VSiXN4 monolayer obtained with the GGA + U (Ueff = 3 eV) method. (a) Spin-polarized band
structures of VSiXN4 monolayer. The red and blue lines represent spin-up and spin-down bands, respectively. (b) Band structure with SOC of
VSiXN4 monolayer. (c) Orbital-resolved band structure with SOC of VSiXN4 monolayer. (d) The edge state of VSiXN4 monolayer.

written as [40–42]

MAE = ξ 2
∑

u,o,σ,σ ′
σσ ′ |〈o, σ |Lz|u, σ ′〉|2 − |〈o, σ |Lx|u, σ ′〉|2

Eu,σ − Eo,σ ′
,

(4)

where o and u denote the occupied and unoccupied states,
respectively. The spin indices σ and σ ′ run over ±1, amount-
ing to each of the two orthogonal spin states at the K point.
Eu,σ and Eo,σ ′ are the band energy of the states. As shown
in Fig. S6, u and o are mainly contributed by N px and py

orbitals. The contribution from the X (X = C, Si, Ge, Sn, Pb)
atomic orbitals is almost negligible [33]. Therefore, u and
o can be written as aτ = ax + iτay from V atoms and
p′

τ = px + iτ ′ py from N atoms, where τ = ±1 and τ ′ = ±1.

Therefore, MAE can be simplified as

MAE = ξ 2
∑
τ,τ ′

∣∣〈aτ |LN
z |pτ ′ 〉∣∣2 − ∣∣〈aτ |LN

x |pτ ′ 〉∣∣2



, (5)

where 
 is the band gap, Lz|pτ ′ 〉 = τ ′|pτ ′ 〉 and Lx|pτ ′ 〉 =
iτ ′|pz〉, and

MAE = ξ 2
∑
τ,τ ′

|〈aτ |pτ ′ 〉|2 − |〈a′
τ |pz〉|2



. (6)

The spin orientation is determined by the orbital overlaps
of 〈aτ |pτ ′ 〉 and 〈a′

τ |pz〉. In a purely octahedral crystal envi-
ronment, the irreducible representations of the p′

τ and pz of
the ligands are Eu ⊕ Eg and A1g ⊕ A2u, respectively. aτ of V
atoms belongs to Eg, which indicates that aτ tends to couple
with p′

τ instead of pz from N atoms. Thus, |〈aτ |pτ ′ 〉| 	
|〈a′

τ |pz〉|. This indicates that the MAE favors a positive value,
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FIG. 4. (a) The band gap of VSiXN4 (X = C, Si, Ge, Sn, Pb)
at K and K ′ points. The dotted line is the fitting K and K ′ point
gap variation trend. (b) The built-in electric field (Ein) as functions
of strain for VSiXN4 monolayer. (c),(d) The schematic illustration
of energy level for V-d orbital in VSiGeN4 (c) and VSiSnN4 (d).
EF represents the Fermi level. These results were obtained with
Ueff = 3 eV.

benefiting the out-of-plane spin orientation. In fact, VSiCN4

and VSi2N4 have an easy magnetization plane, while the easy
axes of VSiGeN4, VSiSnN4, and VSiPbN4 are along the out-
of-plane direction, as shown in Fig. 2(c). This is attributed
to the fact that the MAE is tunable by the strong dipole
interaction of the system. MAE is an intrinsic property of
the material. There are many factors affecting the MAE of
materials, such as spin-orbit coupling, structure, orbital oc-
cupation, and so on. In VSiXN4, MAE is mainly determined
by the built-in electric field. As shown in Fig. 4(b), in the
absence of strain, the VSiCN4 has the largest built-in elec-
tric field. In addition, the built-in electric field is 0.36 V/Å
(VSiCN4), 0.16 V/Å (VSiGeN4), 0.26 V/Å (VSiSnN4), and
0.31 V/Å (VSiPbN4), respectively. To be precise, the MAE
is 96.66 µeV (VSiCN4), −4.16 µeV (VSiGeN4), −17.41
µeV (VSiSnN4), and −30.27 µeV (VSiPbN4), respectively.
The variation law of MAE is completely consistent with
that of the built-in electric field. In addition, as shown in
Fig. 2(c), we found that the tensile strain favors an out-of-
plane magnetism. This is because the tensile strains reduce the
distance between Si and X atoms, thus enhancing the dipole
interactions.

C. Electronic band structure

In addition, we first calculated the band structure of
VSiXN4 with spin polarization but without SOC. As shown
in Fig. 3(a), it can be found that there is a valley at each
of the K and K ′ points. Both the valence and conduction
bands of the valleys are spin-up bands. The two valleys are
degenerate in energy. More interestingly, as the atomic num-
ber of X increases, it exhibits abundant electronic structure
properties. VSiCN4, VSi2N4, and VSiSnN4 are VSC, while
VSiGeN4 and VSiPbN4 are VHSM and VM, respectively.
So we further calculated the band structures with the SOC
effect. As shown in Figs. 3(b) and 3(c), it can be found that

the valence-band valley of K is appreciably higher than K ′
for VSiCN4, VSi2N4, and VSiGeN4, while the conduction-
band valley of K is obviously lower than K ′ for VSiSnN4.
Therefore, the valley degeneracy is broken, and an evident
valley splitting EK

v − EK ′
v or EK

c − EK ′
c is induced. EK

v − EK ′
v

(or EK
c − EK ′

c ) is 46.73, 63.74, 70.17, 68.86, and 72.45 meV
for VSiCN4, VSi2N4, VSiGeN4, VSiSnN4, and VSnPbN4,
respectively (see Table I).

Here, we highlight a novel phenomenon. The valley po-
larization of VSiCN4, VSi2N4, and VSiGeN4 only appears at
the valence band, while it degenerates at the conduction band.
On the contrary, the valley splitting of VSiSnN4 and VSiPbN4

occurs at the conduction band. It is important that VSiGeN4 is
the critical state, and the valence-band maximum (VBM) and
conduction-band minimum (CBM) reveal degeneracy at the
K point forming a Dirac cone. From the orbital-resolved band
structure, as shown in Fig. 3(c), the VBM bands of VSiCN4,
VSi2N4, and VSiGeN4 are mainly contributed by V dxy/dx2−y2

orbitals, while the CBM bands are dominated by dz2 orbitals
of the V atom. For VSiSnN4 and VSiPbN4 monolayer, on the
contrary, the VBM bands are primarily dz2 orbital, while the
CBM bands are mainly dxy/dx2−y2 orbitals. It can be found
that the atomic number of the X atom induced band inversion
between the dxy/dx2−y2 and dz2 orbitals. As is well known, the
orbital angular momentum of the dz2 orbital is zero. There-
fore, the dz2 orbital does not cause valley splitting. Notably,
these results yield a good comparison with the band structures
obtained from the HSE06 method, as shown in Fig. S7 [33].

To understand the underlying mechanism for the ferroval-
ley effect in VSiXN4, we take VSiGeN4 here as an example
to perform model analysis. We adopted |ψτ

v 〉 = 1√
2
(|dxy〉 +

iτ |dx2−y2〉) ⊗ | ↑〉, |ψτ
c 〉 = (|dz2〉) ⊗ | ↑〉 as the orbital basis

for the VBM and CBM, where τ = ±1 indicate the valley
index corresponding to K/K ′. Since the VBM and CBM be-
long to the same spin channel (spin-up bands), we take the
SOC effect as the perturbation term, which is

ĤSOC = λŜ · L̂ = Ĥ0
SOC + Ĥ1

SOC, (7)

where Ŝ and L̂ are spin angular and orbital angular operators,
respectively. Ĥ0

SOC and Ĥ1
SOC represent the interaction between

the same spin states and between opposite spin states, re-
spectively. For the VSiGeN4 monolayer, the single valley is
composed of only one spin channel [see Fig. 3(a)], and the
other spin channel is far from the valleys. Hence, the term
Ĥ1

SOC can be ignored. On the other hand, Ĥ0
SOC can be written

in polar angles,

Ĥ0
SOC = λŜz′

(
L̂z cos θ + 1

2
L̂+e−iφ sin θ + 1

2
L̂−e+iφ sin θ

)
.

(8)

In the out-of-plane magnetization case, θ = φ = 0, the Ĥ0
SOC

term can then be simplified as

Ĥ0
SOC = λŜzL̂z. (9)

The energy levels of the valleys for the VBM and CBM can be
expressed as E τ

v = 〈ψτ
v |Ĥ0

SOC|ψτ
v 〉 and E τ

c = 〈ψτ
c |Ĥ0

SOC|ψτ
c 〉,
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FIG. 5. Band structures and edge state of VSiXN4 monolayer obtained with the GGA + U (Ueff = 3 eV) method. (a) Spin-polarized band
structures of VSiGeN4 monolayer with the biaxial strain. The red and blue lines represent spin-up and spin-down bands, respectively. (b) Band
structure with SOC of VSiGeN4 monolayer with the biaxial strain. (c) Orbital-resolved band structure with SOC of VSiGeN4 monolayer with
the biaxial strain. (d) The edge state of VSiGeN4 monolayer with the biaxial strain.

respectively. Then, the valley polarization in the valence and
conduction bands can be expressed as

EK
v − EK ′

v = i〈dxy|Ĥ0
SOC|dx2−y2〉 − i〈dx2−y2 |Ĥ0

SOC|dxy〉 ≈ 4λ,

(10)

EK
c − EK ′

c = 0, (11)

where L̂z|dxy〉 = −2ih̄|dx2−y2〉, L̂z|dx2−y2〉 = 2ih̄|dxy〉. The an-
alytical result indicates that the valley degeneracy splits
for the valence and conduction bands are consistent with
our DFT calculations (EK

v − EK ′
v = 70.17 meV, EK

c − EK ′
c =

0.00 meV).

D. Built-in electric-field-induced topological phase transition

To reveal the topological properties of VSiXN4 monolay-
ers, we have calculated the local density of states of the edge
state through the Green’s function method [43]. As shown
in Fig. 3(d), only the VSiGeN4 monolayer exists in a single
topologically protected edge state appearing between the con-
duction and valence bands. This indicates that only VSiGeN4

could be topologically nontrivial, while the others are topo-
logically trivial.

It can be seen that an interesting topological phase transi-
tion from VSC to VHSM, to VSC, and to VM appears with
the atomic number of X element increasing for the magnetic
VSiXN4 monolayers [see Fig. 3(b)]. For instance, the topolog-
ical phase transition occurs in VSiGeN4 (VHSM). Through a
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FIG. 6. Band structures and edge state of VSiXN4 monolayer
obtained with the GGA + U (Ueff = 3 eV) method. (a) The band
gap of VSiXN4 at the K and K ′ points with −5% ∼ 5% strain,
and the orange and light blue shade denotes the VQAHI and VSC
states, respectively. (b) The yellow shading corresponds to the edge
states. (c) Schematic diagram of the evolution of the band structures
and Berry curvatures of VSiXN4 with the various strain. The green
solid line, red solid line, and dotted lines represent the valence band,
conduction band, and Berry curvatures of VSiXN4 with the various
strain, respectively.

detailed analysis of the energy band variation with the atomic
number of the X element, it is found that the topological
properties are closely related to the gap at the K and K ′ points.
As shown in Fig. 4(a), as the atomic number of X increases,
the gap at the K and K ′ points gradually decreases to zero in
VSiGeN4. The fitting curve shows that the band gap at the K
and K ′ points would reach zero when X is Ge, which is the
phase-transition point. We further analyzed the built-in elec-
tric field, which is caused by the asymmetric Janus structure.
Therefore, as shown in Fig. S8, the built-in electric field is
defined as Ein = (
2 − 
1)/
h, where 
1 and 
2 represent
the electrostatic potential at the bottom and top of VSiXN4,
respectively [33]. The 
h is the structural height of VSiXN4.
As shown in Fig. 4(b), more surprisingly, the variation trend
of the built-in electric field is completely consistent with the
variation trend of the band gap of K and K ′. The built-in
electric field is 0.36 V/Å (VSiCN4), 0.00 V/Å (VSi2N4),
0.16 V/Å (VSiGeN4), 0.26 V/Å (VSiSnN4), and 0.31 V/Å
(VSiPbN4), respectively. This means that the built-in electric
field induces a topological phase transition. To prove this,
we analyzed the energy level assignments of V-d orbitals for
VSiGeN4 and VSiSnN4, as shown in Figs. 4(c) and 4(d).
Seeing is believing. It is a band inversion between dxy/dx2−y2

and dz2 orbitals at the K and K ′ points in VSiSnN4. Note the

built-in electric field introduced by the element, which does
not change continuously. VSiGeN4 is the critical point, thus
only VSiGeN4 is topologically nontrivial. The continuous
variation of the built-in electric field will be described in detail
below. In addition, it is well known that applied electric fields
can tune the band gap, magnetic ground state, topological
properties, and so on. In previous reports [44,45], the electric
field is an effective method to tune the topological phase
transition. The intrinsic built-in electric field that tunes the
topological phase transition is rarely reported.

E. Strain-induced topological phase transition

For a 2D material, its electronic structure can be generally
tuned effectively by strain [46–48]. In the following, we in-
vestigate the effect of biaxial strain on the spin, valley, and
topological properties of VSiXN4. Here, we focus on one
representative VSiGeN4. In the calculations, the biaxial strain
is defined as ε = (a − a0)/a0 × 100%. In the formula, a and
a0 represent a lattice constant after and before in-plane biaxial
strain is applied, respectively. As shown in Figs. 5(a)–5(c), by
increasing strain within a reasonable range (−5% ∼ 5%),
when ε < 0%, the material enters into a VSC. While ε = 0%,
the band gap at the K point is first closed, meanwhile the
band gap decreases to 70.17 meV at the K ′ point. Hence,
the VHSM states are acquired in the material. When employ
the tensile strain, the band gap at the K point reopens. At the
other critical case with ε = 0.4%, the band gap of the K ′ point
recloses, and the valleys at K ′ become a Dirac cone-shaped
linear dispersion. By continuing to apply the tensile strain
to 0.4%, the band gap at the K ′ point reopens, and it again
becomes a VSC.

To understand the mechanism of multiple topological
phase transitions, we analyze the orbital-projected band struc-
tures and Berry curvature. As shown in Fig. 5(c) and Fig. S9,
the compressive strain is 1%, the VBM is dominated by the
dxy and dx2−y2 orbitals of V atoms, while the CBM mainly
comes from the dz2 orbital [33]. The Berry curvatures at K
and K ′ have opposite signs. More interestingly, the tensile
strain is used (0.2% tensile strain is shown in Fig. 5), and the
band gap of the K point reopens. The band inversion occurs
between dxy/dx2−y2 and dz2 orbitals at the K point, while the
orbital order does not change at the K ′ point. Surprisingly,
the Berry curvature of K and K ′ becomes of the same sign.
This is a characteristic of VQAHI. It is also confirmed by the
calculation of edge states [see Fig. 5(d)]. After the band gap
at K ′ is closed (ε = 0.4%), by continuing to apply the tensile
strain, there is also a band inversion between dxy/dx2−y2 and
dz2 orbitals at the K ′ point. The signs of the Berry curvatures
around the K ′ flip. Thus, the system returns once again to the
VSC.

To further demonstrate the universality of the strain-
induced band inversion mechanism in the VSiXN4 system,
we systematically investigated the topological properties of
VSiXN4 under different strains (band structure shown in
Figs. S10–S14) [33]. As shown in Figs. 6(a) and 6(b), it is
found that the strain can induce band inversions, which lead
to the topological phase transition in these systems. Note
that the range of the VQAHI states is different in VSiCN4

(4.5–4.8 %), VSi2N4 (2.5–2.9 %), VSiGeN4 (0.0–0.4 %), and
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FIG. 7. Schematic diagrams of valley-dependent topological phase transitions. (a) Schematic diagram of the evolution of the band
structures with the atomic number of X element increasing for VSiXN4 monolayers. (b) Schematic diagram of the evolution of the
band structures for the VSiGeN4 monolayer as a function of strain. These results were obtained with Ueff = 3 eV.

VSiSnN4 (−2.9% to 2.5%). To facilitate the reader’s under-
standing, we also provide a table, as listed in Table SII [33].
Most important of all, the valley-related multiple topological
phase transitions originate from the change of the sign of the
Berry curvatures at the K and K ′ points. How the band gaps
and the topological phase vary with the various strains for the
VSiXN4 monolayers is summarized in Fig. 6(c). It is found
that the strain magnitude required to achieve topological phase
transition is highly dependent on the built-in electric field.
We also found that the strain can effectively tune the built-in
electric field, and then it induces the band inversion to realize
the topological phase transition. In addition, we calculated
the results for different U values, as shown in Fig. S15 [33].
When Ueff is 1 and 2 eV, the VSiXN4 system does not have
topological properties, while when Ueff increases to 3 and
4 eV, the VSiXN4 system will create the topological phase
with the built-in electric field and strain. Therefore, the band
structures vary with the built-in electric field, and strain for
VSiXN4 monolayers is summarized in Fig. 7.

To characterize the valley-contrasting physics in VSiXN4

monolayer, we take the VSiGeN4 of −1% strain as an ex-
ample. The Berry curvatures �(k) of −1% strain VSiGeN4

in the entire 2D BZ and along the high-symmetry line are
shown in Figs. 8(a) and 8(b). Clearly, the Berry curvatures at
the K and K ′ points have opposite signs, showing the typical
valley polarization characteristic. By integrating the Berry
curvature over the BZ, one can further calculate the AHC.
As shown in Fig. 8(c), a valley-polarized Hall conductivity
clearly exists in the −1% strain VSiGeN4 monolayer. Specif-
ically, when the Fermi level lies between the VBM or CBM
of the K and K ′ valleys, as denoted by the cyan region, a fully
spin- and valley-polarized Hall conductivity is generated. This
result confirms the existence of the valley anomalous Hall
effect in the −1% strain VSiGeN4 monolayer. Moreover, in
the hole-doping condition, when the magnetism direction of

VSiGeN4 is in the +z direction, the spin-up holes from the K ′
valley will be generated and accumulate on one boundary of
the sample under an in-plane electrical field [upper plane of
Fig. 8(d)]. On the other hand, when the magnetism direction
is in the −z direction, the spin-up holes from the K valley
will be generated and accumulate on the opposite boundary of
the sample under an in-plane electrical field [lower plane of
Fig. 8(d)]. This feature shows that monolayer VSiGeN4 is an
ideal candidate for high-performance valleytronic devices.

FIG. 8. (a) The Berry curvatures of VSiGeN4 with the strain of
−1% in the Brillouin zone and along the high-symmetry line (b).
(c) Calculated AHC σxy as a function of Fermi energy. The light
blue shadows denote the valley splitting between the K and K ′ valley.
(d) Schematic diagram of tunable VQAHE in hole-doped VSiGeN4

monolayer at the K and K ′ valley, respectively. The holes are denoted
by the + symbol. Upward and downward arrows refer to spin-up and
spin-down carriers, respectively. These results were obtained with
Ueff = 3 eV.
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IV. CONCLUSION

In conclusion, we have demonstrated the rich multifield-
induced physics in VSiXN4 (X = C, Si, Ge, Sn, Pn)
monolayers. The rich topological phase transitions can be
realized through the built-in electric field and strain. Tak-
ing the VSiGeN4 monolayer as an instance, when ε < 0%
and ε > 0.4%, it is a valley semiconductor. Moreover, the
quantum anomalous Hall insulator is obtained with tensile
0.0–0.4 %. At the two critical cases with ε = 0.0% and 0.4%,
the valleys at K and K ′, respectively, become a Dirac cone,
and the quantum anomalous Hall insulator becomes a valley
half-semimetal. We reveal that the nature of the topological
phase transition is a built-in electric field, and strain induces

band inversion between the dxy/dx2−y2 and dz2 orbitals at the
K and K ′ valleys. The abundant topological phase transitions
make VSiXN4 monolayers a very promising material to de-
velop intriguing spin-valley-topology devices.
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