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Interaction models and configurational entropies of binary MoTa
and the MoNbTaW high entropy alloy
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We introduce a simplified method to model the interatomic interactions of high entropy alloys based on a
lookup table of cluster energies. These interactions are employed in replica exchange Monte Carlo simulations
with histogram analysis to obtain thermodynamic properties across a broad temperature range. Kikuchi’s cluster
variation method entropy formalism is applied to directly calculate entropy from statistics on short- and long-
range chemical order, and we discuss the convergence of the entropy as clusters of differing size are included. A
high temperature series expansion aids in our understanding of the convergence. Computer codes implementing
these methods, and supporting data, are freely available on the internet.
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I. INTRODUCTION

High entropy alloys (HEAs) are multicomponent solid so-
lutions that randomly distribute chemical species among the
sites of a crystal lattice [1,2]. The high configurational en-
tropy arising from random chemical substitution may help to
stabilize single phases at elevated temperatures. Substitutional
disorder increases the possible composition range of a phase,
allowing for the tuning of mechanical or other properties. The
possibility to find alloys with favorable properties in previ-
ously unexplored compositions has motivated intensive study
of equiatomic high entropy and other concentrated alloy sys-
tems, with strong recent focus on refractory alloys that exhibit
high strength and other useful properties at high temperatures
[3–6]. Many excellent reviews survey the recent developments
[7–9].

Although the distribution is nominally random, prefer-
ences in chemical bonding correlate the chemical identities
of nearby atoms, creating short-range chemical order that
reduces the entropy below the ideal value of kB ln (Ns) for
Ns species. In the case of strong bonding preferences or in
equilibrium at low temperatures, long-range chemical order
and even phase separation may arise [10–12]. The stability
of the high entropy solid solution has been discussed through
qualitative models [13,14] and simulation [15–17].

Computer simulation provides powerful techniques to pre-
dict and quantify chemical order for a given model of
interatomic interaction. Models range from accurate, but ex-
pensive, first principles methods, through reasonably accurate,
but complicated, machine learning and cluster expansion ap-
proaches, to simplified empirical formulas such as embedded
atom or pair potentials. Here we introduce a simple, but accu-
rate, approach based on a lookup table of precalculated first
principles energies. We then apply replica exchange Monte
Carlo simulation [18] to reach equilibrium over a broad range
of temperatures.

The resulting data set allows us to calculate thermody-
namic quantities, including the entropy, through the use of

the multiple histogram method [19,20]. We compare our re-
sults with formulas adapted from the cluster variation method
[21–23] (CVM) that express the entropy in terms of simulated
cluster probabilities and show the convergence of the CVM
entropy with respect to the included clusters. The pattern of
convergence is interpreted through the use of a high tem-
perature series expansion [24,25] that confirms the sequence
of optimal clusters [26]. Because we employ Monte Carlo–
simulated cluster probabilities in the CVM formulas [27,28],
we obtain the (approximate) entropy without the need for
thermodynamic integration.

Our approach is illustrated through application to
the widely studied body centered cubic (bcc) refractory
MoNbTaW high entropy alloy [3]. This compound is believed
to exhibit strong short-range chemical order in equilibrium
(although this is difficult to achieve experimentally) due to
strong binding of Mo and Ta at nearest neighbors. Our model
exhibits the expected Strukturbericht A2 to B2 (Pearson type
cI2 to cP2) ordering transition at intermediate temperatures
and phase separation at low temperatures [11,29–31]. Finite
size variation of the specific heat and susceptibility peaks
indicate that the transition is of the three-dimensional (3D)
Ising type. We compare the behavior of the four-component
HEA with the binary solid solution MoTa, which provides a
simpler picture of similar behavior.

II. METHODS

This section describes our interaction model, the replica
exchange simulation method, histogram analysis of simula-
tion data, the cluster variation method entropy formulas, and
the high temperature series expansion. Several of our codes
and other data are available from [32].

A. Interaction model

Each of the four chemical species (Mo, Nb, Ta, and W)
individually takes the bcc crystal structure. In combination
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FIG. 1. bcc unit cell (left) and bcc tetrahedron (right). Nearest-
neighbor bonds are in yellow and next-nearest-neighbor bonds are in
blue. Tetrahedron sites a and b are “even” (cube vertex), while c and
d are “odd” (body center) sites.

they occupy sites of the bcc lattice to form a disordered solid
solution at high temperatures, but they order and eventually
phase separate at low temperatures, all the while maintain-
ing the underlying bcc sites. We are interested in clusters
containing nearest- and next-nearest-neighbor pairs, including
triangles and the bcc tetrahedron (see Fig. 1). This four-point
cluster may be considered the primitive cell of the quaternary
Heusler crystal type [33] (Strukturbericht L21, Pearson cF16)
and hence may be repeated periodically to fill space.

We enumerated the complete set of 44 = 256 arrangements
of the four species on the four tetrahedron sites, of which
55 are symmetry inequivalent, and calculated the correspond-
ing Heusler structure energies using density functional theory
(DFT). Specifically, we employ VASP [34] with projector aug-
mented wave potentials [35] in the Perdew-Burke-Ernzerhof
generalized gradient approximation [36]. The cubic symme-
tries of the structures prevented atomic relaxation, and we held
the lattice parameters fixed at 3.2305 Å, which is representa-
tive of both the quaternary and the binary; the precise value
has no qualitative impact. Although the individual elements
will relax to different volumes, the low lattice distortion of
the high entropy alloy [31,37] shows that volume and dis-
placement relaxation effects will be limited, including in its
separated low temperature phases.

The resulting energies provide a lookup table (available in
Ref. [32]) that can be used to quickly evaluate the energy
of any arrangement of the chemical species on bcc lattice
sites. To evaluate the total energy, we decompose the structure
into its constituent tetrahedra {t}. Let α(t ), β(t ), γ (t ), and
δ(t ) designate the chemical species at vertices a, b, c, and
d , respectively, of tetrahedron t . This tetrahedron contributes
energy E (α, β, γ , δ)/24 per atom to the total energy, where
E (α, β, γ , δ) is the energy per primitive cell of the four-atom
Heusler crystal with species α, β, γ , and δ. An additional
factor of 6 arises because the bcc structure has six tetrahedra
per atom. The total energy

E = 1

24

∑
t

E (α(t ), β(t ), γ (t ), δ(t )), (1)

is equivalent in form to the energy model of Refs. [22,23]. It
can be reexpressed as

E/N = 1

4

∑
α,β,γ ,δ

E (α, β, γ , δ)zαβγ δ, (2)
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FIG. 2. Parity plot for tetrahedron model energy/atom vs full
(unrelaxed) DFT energy/atom for (a) MoTa and (b) MoNbTaW.
All structures are equiatomic; black shows random 16-atom struc-
tures, red shows random 128-atom structures, and green shows
MC-generated 128-atom structures. See the Appendix for a discus-
sion of the skew.

with N being the total number sites and zαβγ δ being the
frequency of the four-point cluster with species αβγ δ nor-
malized to sum to 1. Our energies are calculated relative to
the atomic fraction weighted energies of elemental Mo, Nb,
Ta, and W, so they represent the energy of formation. We may
think of this energy as being analogous to a cluster expansion
[38] containing just a single four-point cluster.

To test the accuracy of this model we created parity plots of
model energy vs full DFT energy/atom as shown in Fig. 2(a)
for equiatomic binary MoTa and Fig. 2(b) for equiatomic
quaternary MoNbTaW. The model energies lie close to parity
with a mean absolute error of 21 meV/atom for MoTa and
14 meV/atom for MoNbTaW. Crucially, the lowest energy
structures lie very close to parity, so we accurately capture the
low temperature properties. We observe a systematic skewing
of model energy above the parity line and give a heuristic
interpretation of its origin in the Appendix.

B. Replica exchange simulation

Replica exchange simulations [18], also known as parallel
tempering, aim to accelerate the sampling of configuration
space by sharing multiple configurations (replicas) among
multiple temperatures in a manner that preserves the properly
weighted ensemble at each temperature. When configura-
tions are swapped between temperatures, the diversity of
the equilibrium ensemble at each temperature is enriched by
the addition of a new independent configuration. From the
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perspective of a single configuration, getting swapped to a
higher temperature may facilitate its evolution by raising the
likelihood of escape from a local energy minimum.

The probability for a configuration Ci of energy Ei to
occur in equilibrium at temperature Ti (inverse temperature
βi = 1/kBTi) is Pi = exp (βiEi )/Z (Ti ), with Z (T ) being the
partition function for temperature T . The joint probability for
a pair of configurations Ci of energy Ei and Cj of energy Ej at
respective temperatures Ti and Tj is

P(Ci,Cj |Ti, Tj ) = e−(βiEi+β j E j )/Z (Ti )Z (Tj ). (3)

The joint probability for Ci to occur at temperature Tj and Cj

to occur at temperature Ti is given by the same formula with
energies Ei and Ej interchanged. The ratio of probabilities is

P(Ci,Cj |Ti, Tj )/P(Cj,Ci|Ti, Tj ) = e�β�E , (4)

with �β = βi − β j and �E = Ei − Ej . Hence, the equilib-
rium ensemble probabilities at temperatures Ti and Tj are
preserved if the configurations are swapped with the proba-
bility given by the ratio in Eq. (4). Note that, conveniently, the
partition functions (which are usually unknown in computer
simulations) cancel in the ratio.

In addition to replica swaps we must evolve the configura-
tions at each temperature. We apply a Monte Carlo process
to attempt discrete swaps of chemical species. Equilibrium
at temperature T is maintained if the attempts are accepted
with probability exp (−�E/kBT ), with �E being the energy
change created by the swap. Recall that the swapped configu-
rations are appropriately weighted members of the ensembles
at their new temperatures—no minimum period of annealing
following a swap is required, so the duration of conventional
Monte Carlo can be chosen at liberty.

Figure 3(a) illustrates a portion of the time evolution of
thermostat temperatures. Each configuration is represented
by a different color. Temperatures are spaced so that po-
tential energy distributions of adjacent temperatures overlap
sufficiently [see Fig. 3(b)] to achieve temperature swap prob-
abilities of 20% or greater. Data collection began following
lengthy preannealing during which energy and order param-
eter distributions relaxed to steady states. By calculating
averages and fluctuations of energy at each temperature, we
obtain the energy and specific heat at the simulated tem-
peratures. We also gather statistics on the frequencies of
occurrence zαβγ δ for tetrahedra with chemical species αβγ δ

that we need for our CVM entropy calculations.

C. Histogram analysis

The probability that any configuration has en-
ergy E in equilibrium at temperature T is P(E ) =
�(E ) exp (−βE )/Z (T ), where �(E ) is the configurational
density of states. If we knew �(E ), we could evaluate the
partition function

Z (T ) =
∫

dE �(E ) e−E/kBT (5)

and could then obtain the free energy as F = −kBT ln Z .
Given F (T ), we may obtain the internal energy U =
−∂ (βF )/∂β, entropy S = (U − F )/T , and the specific heat
as c = ∂U/∂T = −T ∂2U/∂T 2.
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FIG. 3. Illustration of the quaternary MoNbTaW replica ex-
change simulation in an L × L × L supercell with L = 4. (a) T (t )
graph illustrating the replica exchange. Each color represents the
time evolution of a single initial configuration whose temperature
is repeatedly swapped with its neighbors; (b) energy histograms at
selected temperatures.

During a simulation at temperature T the frequency with
which energy E occurs is proportional to the density of states
�(E ) times the Boltzmann factor exp (−βE )/Z (T ). Hence,
we may express the density of states as [19]

�T (E ) ≡ HT (E ) eβE , (6)

where the subscript T on the histogram HT (E ) reminds us
that the density of states �T (E ) is an approximation obtained
from a simulation at temperature T and that it differs from
the true � by an unknown constant factor that is equivalent
to setting the zero of entropy. Substituting �T into Eq. (5)
and taking the logarithm, we can evaluate the free energy
F (T ′) as a continuously varying function of temperature T ′.
The unknown constant factor in �T results in an unknown
additive constant in β ′F (T ′). This does not impact the internal
energy U or specific heat c, but it shifts the entropy S by a
uniform constant. The derivatives to obtain U , S, and c may
be taken analytically (holding � constant), and their values
also become continuously varying functions of T ′.

The free energy F (T ′) is most accurate for T ′ in
the vicinity of the simulated temperature T because the
histogram is best resolved over the range of highly prob-
able energies. Luckily, the method generalizes to include
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multiple histograms accumulated at different temperatures T ,
with [20,39]

�(E ) =
∑

T HT (E )∑
T e(F (T )−E )/kBT

. (7)

The free energies F (T ) must be obtained self-consistently
with �(E ). Starting with an arbitrary F (T ), we obtain �

from Eq. (7) and then an improved estimate of F (T ) through
Eq. (5). We iterate this procedure until F has sufficiently con-
verged. In this manner the relative free energy can be extended
across the entire range of simulated temperatures.

D. CVM

We exploit the formalism of Kikuchi’s cluster variation
method to define a hierarchy of approximate entropy mod-
els based on the sequence of single-, two-, three-, and,
ultimately, four-point cluster frequencies. Starting with the
four-point frequencies zαβγ δ already introduced in Eq. (2),
we define three-point frequencies uαγ δ , uβγ δ , uαβγ , and uαβδ

by summing zαβγ δ over one of its four indices. Similarly, we
introduce pairs for nearest neighbors, yαγ , yαδ , yβγ , and yβδ;
next-nearest neighbors vαβ and vγ δ; and points xα , xβ , xγ , and
xδ .

The entropy associated with a given cluster 	 is 
(	) =
−∑

	 ln 	, where the sum is over the cluster variables. For
example,


(xα ) = −
∑

α

xα ln xα. (8)

We also introduce shorthand notation 
(X ) = [
(xα ) +

(xβ ) + 
(xγ ) + 
(xδ )]/4, 
(Y ) = [
(yαγ ) + 
(yαδ ) +

(yβγ ) + 
(yβδ )]/4, 
(V ) = [
(vαβ ) + 
(vγ δ )]/2, 
(U )
= [
(uαγ δ ) + 
(uβγ δ ) + 
(uαβγ ) + 
(uαβδ )]/4, and 
(Z )
= 
(zαβγ δ ). As discussed in [17,22,33,40,41], we build up
higher approximations to the entropy through inclusion of
entropy-reducing information contained in successively larger

clusters, while correcting for the overcounting of subclusters.
Specifically, we obtain (in units of kB)

SPoint = 
(X ),

SNN = −7 
(X ) + 4 
(Y ),

SNNN = −13 
(X ) + 4 
(Y ) + 3 
(V ),

STri = 23 
(X ) − 20 
(V ) − 9 
(Y ) + 12 
(U ),

STetra = −
(X ) + 4 
(Y ) + 3 
(V ) − 12 
(U ) + 6 
(Z ).

(9)

Coefficients of the highest order cluster equal the numbers
of such clusters per site, while the lower order coefficients
reflect the systematic exclusion of subclusters. For example,
SPoint is the Bragg-Williams ideal mixing entropy [42], while
SNN reduces SPoint by the mutual information contained in the
nearest-neighbor cluster frequencies [33].

Usually, in the CVM, the cluster frequencies are derived by
minimizing the free energy E − T S. Since we already have
cluster frequencies in hand from our simulation, we simply
substitute their values into Eq.(9).

E. High T expansion

In order to model the convergence of the CVM entropy
with respect to maximum cluster size in Eq. (9), we carry
out a high temperature series expansion [24,25] of the cluster
frequencies and apply the CVM formalism to these series.
For our purpose it suffices to consider the Ising model, H =
J

∑
〈i j〉 σiσ j . Here J is the nearest-neighbor coupling constant,

and σi = ±1 is the spin at site i = a − d [see Fig. 1(b) for
site labels]. We could consider this to be a model for binary
MoTa, in which the spin value denotes chemical species and a
negative value of J would favor bonding of unlike species. To
evaluate Eq. (9) we need cluster frequencies up to four-point
zσaσbσcσd expanded up to fourth order in t ≡ tanh (J/kBT ),

zσaσbσcσd = 1

Z
cosh4N (J/kBT )2N−4{1 + t (σaσc + σbσc + σaσd + σbσd ) + t2[4(σaσc + σbσd ) + 2σaσbσcσd ]

+ t312(σaσc + σbσc + σaσd + σbσd ) + t4[12N + 56(σaσb + σcσd ) + 12σaσbσcσd ] + · · · }. (10)

Fewer-point cluster frequencies are obtained by summing
over spins, including the partition function itself,

Z =
∑

σaσbσcσd

Z zσaσbσcσd (11)

= cosh4N (J/kBT )2N−4(1 + 12Nt4 + · · · ). (12)

Setting the free energy F = −kBT ln Z and expanding in pow-
ers of 1/T , we obtain entropy per site

S/kB = ln 2 − 2

(
J

kBT

)2

− 35

(
J

kBT

)4

+ · · · . (13)

The cluster frequencies and the entropy are exact up to fourth
order in J/kBT and consistent with prior results [43,44].

Inserting the cluster frequencies obtained from the expan-
sion (10) into the CVM formulas, we obtain the following
expansions for the entropy (in units of kB):

SNN = ln 2 − 2

(
J

kBT

)2

− 47

(
J

kBT

)4

+ · · · , (14)

SNNN = ln 2 − 2

(
J

kBT

)2

− 79

(
J

kBT

)4

+ · · · , (15)

STri = ln 2 − 2

(
J

kBT

)2

− 29

(
J

kBT

)4

+ · · · , (16)

STetra = ln 2 − 2

(
J

kBT

)2

− 35

(
J

kBT

)4

+ · · · . (17)
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FIG. 4. Binary MoTa of size L = 8 (1024 atoms). (a) Occupation
xα of even sites a and b (dotted, short-dashed, and long-dashed lines
are for sizes 2, 4, and 6, respectively). (b) ac site pair frequencies
yαγ normalized by global mean concentrations x̄α and x̄γ . (c) Simu-
lated histogram and CVM-predicted entropies (inset: residuals with
respect to the histogram). The dashed line shows S/kB = ln 2.

Notice that we obtain the correct quadratic term already using
simply the nearest-neighbor (NN) frequencies yαγ . However,
the quartic term is too large in magnitude, so that the NN ap-
proximation underestimates the entropy as temperature drops.
This overcorrection is due to the presence of closed loops
of NN bonds causing the same information to be counted
multiple times [45,46]. For example, the correlation propa-
gated from a to d passing through c and b augments the
direct correlation of a with d [see Fig. 1(b)]. Including the
next-nearest-neighbor (NNN) term makes the problem worse
because we are subtracting the mutual information between
a and b yet again. Inclusion of the Tri term overcompensates
and, consequently, overestimates the entropy, while, finally,
inclusion of the Tetra term restores the proper quartic coeffi-
cient. In summary, NN pairs yields entropies that are exact up
to second order in the inverse temperature, while Tetra clusters
are required to achieve improved accuracy.

III. RESULTS

A. MoTa

Figure 4(a) plots the temperature-dependent a site occu-
pation xα over the range from 800 K up to the approximate
melting temperature of 3000 K. We adopt a convention where
we shift the simulated structure so that the maximum Mo
occupation occurs on the “even” sublattice (site classes a
and b). Evidently, a transition to long-range order occurs in
the vicinity of Tc ≈ 2020 K, with xα converging towards the
global mean concentration x̄α = 1/2 above Tc but diverging
away below. Even above Tc the NN pair frequencies yαγ

deviate from the independent expectation xαxγ , as shown in

Fig. 4(b), with an enhanced frequency of MoTa pairs. The
discrepancy grows rapidly below Tc.

Notice that a slight bias of order 1/
√

N artificially raises
xMo relative to xTa, even above Tc, due to fluctuations for
finite system sizes N . The bias grows in the vicinity of Tc

due to diverging fluctuations at the phase transition. The same
bias causes yMoTa to differ slightly from yTaMo above Tc. The
identity yMoMo = yTaTa is forced by the equality of x̄α = x̄γ .

CVM cluster-based estimates of entropy and our histogram
values are shown in Fig. 4(c). Because of the unknown par-
tition function discussed in Sec. II C, the histogram method
yields only relative entropy, so we adjust it to match the
CVM tetrahedron value at 3000 K. The fact that it vanishes
at low temperature indicates the histogram values should be
accurate across the full temperature range. Even above Tc,
where sublattice occupations remain equal, the deviations of
cluster frequencies from independence cause the entropy to
fall below its ideal mixing value of kB ln 2. The entropy loss
accelerates below Tc, and the net entropy tends towards zero
for all of our CVM estimates.

The inset shows entropy residuals relative to the histogram
method. Note that the point values undercorrect the ideal
mixing, while the pair value overcorrects it and the two-pair
value strongly overcorrects it. As seen in our discussion of the
high temperature series (Sec. II E), this can be attributed to
the cumulative effect of correlations extending around closed
loops. The deviations are maximal around Tc, supporting the
role of longer-range correlations. The triangle approximation
undercorrects, while the tetrahedron values lie close to the
multiple histogram at all temperatures. Our high temperature
series expansions reproduce each of those details of conver-
gence of approximations at temperatures above Tc, notably the
qualitative improvement upon including the Tetra term. As the
CVM is a generalized mean field theory [46], the errors are
maximal around Tc, then fall off again as temperature drops.

Owing to the finite sizes of our simulated systems, all
thermodynamic functions vary smoothly. To confirm the pres-
ence of a genuine thermodynamic phase transition, we must
examine their system size dependence. We plot the specific
heat and generalized susceptibility in Fig. 5. The generalized
susceptibility is defined as

χ = N

kBT
(〈M2〉 − 〈M〉2), (18)

where we define M = xMo − xTa on the even sites. Diver-
gences in c and χ reveal thermodynamic singularities. In
order to determine the character of the phase transition, we
apply standard methods of finite size scaling [47] and plot
the scaled specific heat c/Lα/ν and the scaled susceptibility
χ/Lγ /ν as a function of the scaled reduced temperature t =
L1/ν (T − Tc)/Tc in the insets. We set Tc as the peak suscepti-
bility temperature for L = 8, and we take the established 3D
Ising values of the critical exponents [48], α = 0.110, γ =
1.2372, and ν = 0.6301. The convergence towards common
scaled functions indicates the transition is in the Ising class,
as expected for a binary alloy.

The low temperature phase takes the CsCl structure (Struk-
turbericht type B2, Pearson cP2). The actual ground state
according to full first principles calculations [11] is Pearson
type oC12, which is locally B2 with periodic antiphase faults;
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FIG. 5. Binary MoTa. (a) Specific heat c(T ) and (b) susceptibil-
ity χ (T ) vs temperature T for system sizes L = 2 (black), 4 (red), 6
(green), and 8 (blue). Insets show scaling functions as defined in text.

the B2 phase lies above oC12 by just 1 meV/atom. A total of
10 distinct ordered phases are predicted at varying composi-
tions, all based on an underlying bcc lattice. Experimentally,
only a solid solution is reported, with no ordered phases.

B. MoNbTaW

The MoNbTaW quaternary behaves similarly to the MoTa
binary. As seen in Fig. 6, the dominant ordering occurs be-
tween Mo and Ta on the even and odd sites, respectively. The
Nb occupation and correlations generally follow Ta, and W
generally follows Mo, as previously seen [11]. Likewise, the
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FIG. 6. Quaternary MoNbTaW of size L = 8 (1024 atoms).
(a) Occupation xα of the a site. (b) ac site pair frequencies yαγ

normalized by global mean concentrations x̄α and x̄γ . (c) Simulated
histogram and CVM-predicted entropies (inset: residuals with re-
spect to the histogram). The dashed line shows S/kB = ln 4.
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FIG. 7. Quaternary MoNbTaW. (a) Specific heat c(T ) and
(b) susceptibility χ (T ) vs temperature T for system sizes L = 2
(black), 4 (red), 6 (green), and 8 (blue). Insets show scaling functions
as defined in text.

accuracy of the CVM entropy estimates closely resembles the
binary case. The specific heat and susceptibility also show
an Ising-like transition (Fig. 7), although at a lower critical
temperature of Tc ≈ 1110 K compared with the binary case.
The lower critical temperature can be attributed to dilution
of the strongly interacting MoTa pairs by the more weakly
interacting Nb and W. Dilution is known to reduce Tc for Ising
models [49], and a related frustration effect has been reported
in high entropy alloys with varying numbers of components
[23].

The strength of the Mo-Ta interaction may be due to the
relatively strong variation in the electronegativity and atomic
volume compared with Nb and W: for electronegativity χe (in
Pauling units), Ta (1.5) � Nb (1.6) � Mo (2.16) � W (2.36),
and for atomic volume (in Å3/atom), Ta (18.00) � Nb (17.97)
	 W (15.85) � Mo (15.55). Electronegativity differences
create net charge transfer from group V elements (Nb and Ta)
to group VI elements (Mo and W). See the Appendix for fur-
ther discussion of the impact of electronegativity. Interaction
strengths of elements in group V with elements in group VI
range from 2 to 10 times stronger than among elements of the
same group [12], with Mo-Ta being the strongest by nearly a
factor of 2.

At temperatures below 300 K the quaternary undergoes
a second transition [30] to a two-phase mixture of B2-type
MoTa and B32-type NbW (see Fig. 8). Because the separated
structure we obtain is no longer single phase, the CVM for-
mulas do not apply. The specific heat and histogram entropy
remain above zero, suggesting incomplete ordering at the
lowest temperatures. The interface between the B2 and B32
phases is not sharp in Fig. 7(b), reflecting the high residual
entropy and possibly indicating a lack of complete equilibra-
tion. Full first principles calculations predict a more complex
low temperature structure consisting elemental Nb coexisting
with a quaternary phase Mo2NbTa2W2 Pearson type hR7 [12].
Our simple model does not capture this behavior accurately.
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FIG. 8. L = 8 quaternary MoNbTaW at T = 390 K (top) show-
ing the B2 phase and at T = 100 K (bottom) showing phase
separation. The color scheme is chosen so that purple (Mo) and
magenta (W) alternate with cyan (Nb) and blue (Ta) in the B2 phase.
Lighter colors (NbW in the B32 structure) separate from dark colors
(MoTa in the B2 structure) at low T .

IV. CONCLUSIONS

This work introduced an approach to modeling interatomic
interactions based on a lookup table of precalculated cluster
motifs. The interaction is quick to create from high throughput
first principles total energy calculations. It can be readily
generalized to a wide variety of high entropy alloys, and it
scales as the factorial of the number of species employed
but remains quite tractable up to five or six chemical species
because the initial calculations are so fast and no subsequent
fitting is required.

We applied the model to replica exchange Monte Carlo
simulations that efficiently sample the equilibrium ensembles
across a broad range of temperatures. The data accumu-
lated during the simulation were analyzed using the multiple
histogram method that reveals thermodynamic properties as
continuous functions of temperature. We also took simu-
lated cluster frequencies as input to directly evaluate the

entropy within the approximations of Kikuchi’s cluster vari-
ation method. If a Monte Carlo simulation was performed, the
CVM formalism yielded entropy with almost no additional
computational cost. In addition, thermodynamic integration
is not required, so a simulation at a single temperature will
directly reveal the entropy at that temperature. Our computa-
tional tools are available in the public domain [32].

Our use of the CVM entropy formulas differs from the
usual application, where the energy and entropy models are
combined to create a free energy functional whose minima
yield cluster frequencies and other thermodynamic informa-
tion. Although we could have done the same using our energy
lookup table, the approach we take generalizes readily to full
ab initio Monte Carlo and hybrid Monte Carlo/molecular
dynamics, in which an energy model is not available. The
usual CVM approach was applied to MoNbTaW [23], using
an energy model with more precise values, and our results are
largely consistent with the earlier one. Directly incorporating
simulated cluster frequencies into the CVM entropy formulas
was previously studied for simple model systems [27,28].

We carried out a high temperature series expansion for
the bcc Ising model in order to analytically model the con-
vergence of the CVM entropy formulas. We found that the
tetrahedron approximation is exact through fourth order in
inverse temperature, while pair and triangle approximations
are exact only through second order, confirming the recom-
mended site:NN:tetrahedron sequence of maximal clusters
[26]. Lengthy simulations are required to obtain sufficient
accuracy in the tetrahedron frequencies, so we suggest that
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energy/atom vs full DFT energy/atom for (a) MoTa and
(b) MoNbTaW. All structures are equiatomic; black shows random
16-atom structures, red shows random 128-atom structures, and
green shows MC-generated 128-atom structures.
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stopping at the pair level (also known as the Bethe approxima-
tion [10,40,46]) should provide sufficient accuracy for most
purposes.

The results of our simulation confirm that the A2 to B2
transition lies in the Ising universality class both for the binary
MoTa and for the quaternary MoNbTaW. Our results for the
temperature-dependent entropy show that despite the presence
of short-range order above Tc, as revealed by the pair frequen-
cies yαγ , the entropy loss is less than 20%, around 0.1kB for
MoTa and 0.2kB for MoNbTaW. Below Tc, with the onset of
symmetry breaking in the single-site occupation, the entropy
drops rapidly.
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APPENDIX: POLARIZATION CORRECTION

The skewing of tetrahedron model energies above parity
with DFT requires discussion. Because our lookup table is

based on primitive cells of the cubic Heusler structure, every
atom is in an environment of perfect cubic symmetry, while
in a random structure most atoms are in environments of
low symmetry. Anisotropic charge transfer can create local
electric fields that will polarize the atoms. Hence, we propose
a heuristic correction to the energy of the form

�E = −|P|2
2χP

, (A1)

applied to each atom, where χp is an adjustable parameter that
mimics dielectric susceptibility and the “polarization”

P =
∑

r

rχe(r) (A2)

is a measure of the anisotropy of Pauling’s electronegativity
χe. Here r is taken relative to the atom in question, and
the sum extends over nearest neighbors (|r| = 1/

√
2). This

one-parameter correction results in improved agreement with
a mean absolute error of 1 meV/atom relative to the full DFT
energies for MoTa (setting χP = 125) and 3 meV/atom for
MoNbTaW (setting χP = 250). Our success in removing the
skew (see Fig. 9) suggests our explanation may possess some
validity.
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