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Screened range-separated hybrid (SRSH) functionals within generalized Kohn-Sham density functional theory
(GKS-DFT) have been shown to restore a general 1/(re) asymptotic decay of the electrostatic interaction in
dielectric environments. Major achievements of SRSH include an improved description of optical properties of
solids and correct prediction of polarization-induced fundamental gap renormalization in molecular crystals.
The density functional tight-binding method (DFTB) is an approximate DFT that bridges the gap between
first-principles methods and empirical electronic structure schemes. While purely long-range corrected RSH
are already accessible within DFTB for molecular systems, this work generalizes the theoretical foundation
to also include screened range-separated hybrids, with conventional pure hybrid functionals as a special case.
The presented formulation and implementation is also valid for periodic boundary conditions (PBC) beyond
the I' point. To treat periodic Fock exchange and its integrable singularity in reciprocal space, we resort
to techniques successfully employed by DFT, in particular a truncated Coulomb operator and the minimum
image convention. Starting from the first-principles Hartree-Fock operator, we derive suitable expressions for
the DFTB method, using standard integral approximations and their efficient implementation in the DFTB+
software package. Convergence behavior is investigated and demonstrated for the polyacene series as well as
two- and three-dimensional materials. Benzene and pentacene molecular and crystalline systems show the correct
polarization-induced gap renormalization by SRSH-DFTB at heavily reduced computational cost compared to

first-principles methods.

DOI: 10.1103/PhysRevMaterials.7.063802

I. INTRODUCTION

As a semiempirical method, density functional tight bind-
ing (DFTB) [1,2] fills the gap between methods such as
Hartree-Fock [3,4] or Kohn-Sham density functional theory
(DFT) [5,6] and fully empirical force fields in the domain
of computational chemistry, condensed matter physics, and
materials science. Its high ratio of accuracy to computational
cost renders DFTB well suited for extended systems with
large unit cells or long timescale molecular dynamics (MD).
Over the last three decades, the original DFTB formalism by
Seifert et al. [1] has been expanded by a number of extensions,
including self-consistent charge SCC-DFTB [2] and its exten-
sion to third order DFTB3 [7], spin and spin-orbit interactions
[8], time-dependent TD-DFTB [9], real-time rTD-DFTB us-
ing propagation of the reduced one-body density matrix and
Ehrenfest dynamics [10,11], machine-learning enhanced re-
pulsive potentials [12,13], as well as nonequilibrium Green’s
function based electron transport [14].

For molecular calculations, range-separated hybrid func-
tionals (RSH) [15-19] which constitute a mixture of nonlocal
Fock-type and (semi)local exchange of DFT have been
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established as standard technique to address the inherent elec-
tronic self-interaction error (SIE) [20] of DFT and restore
the piecewise-linear [21,22] behavior of the exact exchange-
correlation functional between integer occupations. Niehaus
and Della Sala [23] generalized the DFTB formalism to non-
periodic long-range corrected hybrid functionals (LC-DFTB),
based on GKS-DFT and the density matrix as basic vari-
able in the expansion of the Kohn-Sham energy functional,
which was later implemented in the DFTB+ [24,25] software
package.

For periodically repeating structures, difficulties due to the
Coulomb singularity of Fock exchange initially prevented an
immediate and widespread adoption of hybrid functionals for
solids. The CRYSTAL [26] software package, based on the work
of Pisani and Dovesi [27], provided the first publicly available
implementation of periodic Fock exchange, paving the way
for making periodic hybrid functionals readily accessible for
solids. In recent years, effort has been made to develop reli-
able schemes for treating the singularity, including pioneering
work by Gygi and Baldereschi [28] who lifted the singularity
by introducing auxiliary functions, Spencer and Alavi [29]
resorting to a truncated Coulomb operator that is relatively
simple to implement and does not possess a singularity in
reciprocal space, and most recently the Sundararamanand-
Arias [30] analytical proof of Wigner-Seitz truncation as an
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ideal method for regularizing the Coulomb potential in the
exchange kernel.

General range-separated hybrid functional implementa-
tions have been developed for plane-wave [31-35] and
localized numerical [36—38] or Gaussian-type [39—42] orbital
based DFT codes. Here we derive suitable expressions for
the DFTB method and implement a real-space formulation of
periodic Fock exchange in the DFTB+ software package. We
compare two algorithmic solutions that follow the footsteps
of the truncated Coulomb interaction (TCI) by Guidon et al.
[41] as well as the minimum image convention (MIC) by
Tymczak et al. [42] that utilizes the full, unscreened, Coulomb
interaction.

This work is structured as follows. In Sec. II, we outline
the basic periodic hybrid-functional DFTB theory, starting
from the expansion of the total energy functional, deriving
the periodic Fock exchange Hamiltonian within DFTB [by
imposing Born—-von Karméan (BvK) periodic boundary con-
ditions for the density matrix of a finite mesh of k points].
Section III translates the equations into a formulation that
is compatible with the neighbor list concept of DFTB+, and
additionally gives expressions optimized for I'-point only k-
point sampling, enabling efficient simulation of large systems
with thousands of atoms. This section also contains bench-
marks covering the scaling of the I'-point implementation
with system size and the parallel performance of the k-point
implementation. Total energy and band-gap convergence be-
havior is then investigated and demonstrated by Sec. IV for
the polyacene series, complemented by armchair graphene
nanoribbons, two-dimensional h-BN monolayers, and GaAs
bulk in the Supplemental Material [43]. In Sec. V, benzene
and pentacene molecular and crystalline systems are shown to
exhibit the correct polarization-induced gap renormalization,
that occurs if the surrounding dielectric medium is properly
taken into account. We close this work with a summary of our
findings and by providing a brief outlook in Sec. VI.

We should note that the focus of this work lies in the theory
and implementation of the method, rather than an in-depth
benchmarking of its accuracy. The latter will be the topic of a
forthcoming paper.

II. THEORY

A. Periodic GKS-DFT formalism

In the following we outline the basic periodic KS-DFT
formalism, including Fock exchange. This provides the nota-
tion and forms the basis for the DFTB approach described in
Sec. II B. All quantities are given in atomic units throughout
and we will denote the crystal momentum as k and k', while
real-space lattice vectors are denoted as g, k, I, and m.

According to the Coulomb-attenuating method (CAM)
[18], based on pioneering works by Gill [44] and Savin
[45], the electron-electron interaction is partitioned into short-
and long-range contributions using the adiabatic connection
theorem [46]
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where the short-range part is handled by a modified purely
density functional, that ensures mutual error cancellation of
local exchange and correlation, while the exact Fock exchange
enforces the correct asymptotic decay in the long-range limit.
The parameters o, B, and w determine the fraction of global
and long-range exact Fock exchange, as well as the value
of the smooth range-separation function, which we have as-
sumed to be of Yukawa type.

Complementing the usual kinetic energy Ty[p] of the aux-
iliary system of noninteracting electrons in GKS-DFT with
the classical Coulomb interaction Ey[p] (Hartree term), ex-
ternal potential v**'(r), and nuclear-repulsion energy Exn, the
above partitioning leads to the total energy expression per unit
cell (UC)

=T"[p] +

1
E[p] = / v (r)p(r)dr + Eulp]

N
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with N the total number of such cells in the crystal. This
expression can be shortened by introducing the local part of
the exchange-correlation (xc) functional

Excioclpl :=[1 — (@ + BIEDTT + BECDFT + EPT. (3)

Note that Exc joc[p] = Efc’.’f(;z’[p], but we refrain from explic-
itly stating the additional parameter dependencies for brevity.
Expressing the individual contributions of Eq. (2) in terms of
orbitals v (r), with additional quantum number k, the total

energy reads as

A
E=) we) fu / w,i(r)[—g + v“‘(r)]l/fikm dr
k i

Wik ()1 e (7 )I2

+ = %: Wrwy Z fufw / P drdr
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+ Exc.loc [10] + ENN~ (4)

We describe a spin-unpolarized formalism for closed-shell
systems, where the spin degrees of freedom have already
been summed up. The occupation of eigenstate i at crystal
momentum k is denoted as fj € [0, 2]. The number of states
i is given by the number of basis functions in the UC. We
further introduce weights wy, with normalization ), wx = 1,
that arise from sampling the Brillouin zone by only selecting
a subset of all wave vectors compatible with the BvK cell.
For a crystal that is invariant with respect to cell trans-
lations, the GKS orbitals are expected to obey the Bloch
theorem and extend throughout the whole crystal. We in-
troduce Bloch functions ﬁﬁ(r), that emerge from a unitary
transformation of the atomic orbitals ¢, (r) for orbital u cen-
tered on an atom in the reference cell, when shifted by any
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real-space lattice vector g
1 .
k ik-
r)=— (r —g)e*s. (®)]
B ~ Eg Gur—g

Expressing the wave functions as a linear combination
of crystalline orbitals leads to states that equally possess
Bloch-wave character, therefore satisfying the Bloch condi-
tion Y (r + g) = Y (r)e™s,

Vi) =Y culOphr), (6)
"

with eigenvector coefficients c,;(k) attributed to orbital . and
eigenstate i. By exploiting the translational symmetry, O(r +
g.r+g= O(r, r’), of an operator O, folding operations for
transitions from direct to reciprocal space (and vice versa) are
obtained:

O;Lv (g) =

O;w(k) =

(¢ (r — @)10¢ (1)) = Oy (—g), (N

D 0u(@)e 5. ®)
4

The special case O = 1 refers to the overlap matrix elements
S,v. We introduce the convention that the real-space shifts in
the arguments of Hamiltonian and overlap refer to the first
orbital, while the second remains in the reference cell. In re-
ciprocal space, the density matrix is built from the eigenvector
coefficients and occupations

Puu() =) fixcuilorct (), ©)
i |

Pu(k) =" Pu(g)e ™%, (10)
4

Pu(g) =Y wiPyy ()™, (1)
k

while transformations according to Egs. (7) and (8) apply.

For the two-electron, four-center integrals we resort to
Mulliken’s notation and distinguish between an unscreened
and screened, long-range Coulomb kernel:

@hotlore) = [[ drarsio - Do —m

1
X —— @i —m)g,(F —g),  (12)
r—r]

(¢ ¢ |graps)"" = / [ drdr' ¢, (r — D (r — )
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Pi(r' —m)p, (r — g,
(13)
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with shorthand notation ¢f, := ¢, (r — g). We represent the
total energy of Eq. (4) in terms of the new Bloch basis
and exploit the translational symmetry of an arbitrary (in
general, nonlocal) operator in direct space to choose the ref-
erence (zeroth) cell and carry out a trivial lattice summation,
resulting in

E= Z Wi Y by ()P (k) + Exe toclp] + Exn + = Z wewy Y Pou(k)Puc (k)Y X Em (0 gl g1 g8 ) ™

v
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a(@20" @ g8) + B(0! [ a?) " ]e*s. (14)

Here, h,,, (k) refers to the one-electron integral matrix elements of the kinetic energy and external potential.
By applying the variational principle to Eq. (14) we obtain the secular equation

> k) Hy (k) — £:8,, (k)] =0, Vi (15)

with k-dependent Hamiltonian matrix elements

Hy (k) = hy, (k) + Z VIS (g)e T8 + Z wy ZPM(k D Rl ot o
ghm
- —Zwk ZPM(MZ 8 I [ (39 2 ¢ p8) + (002 9 %) "], (16)

ghm

where the local part of the exchange-correlation potential (i.e.,
the functional derivative of Fx joc) is introduced as

VI ] (g) = / P veerael 1OV (17)

Bloch functions are bases for the irreducible representa-
tions of the translation group and supermatrices in reciprocal
space, such as H,,(k), can be transformed into a block-
diagonal form by unitary transformation [47]. This gives rise

(

to an independent diagonalization of Eq. (15) for each differ-
ent k point.

B. Density functional tight binding

In the following we outline the periodic RSH-DFTB
formalism of second order in the energy expansion. The
minimal valence-only basis set {¢,} of atomic orbitals en-
tering the eigenfunction ansatz of Eq. (6) is obtained by
performing first-principles RSH calculations for neutral and
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spin-unpolarized pseudoatoms, as described in Refs. [7,24].
We continue by approximating the local part of the exchange-

J

correlation functional, by expanding around the reference up
to second order in the perturbation

1 1
Exc,loc[pO +d6p] = Exc,loc[pO] + N / ch,loc[Po](")S'O(")dr + ﬁ /:/ fxc,loc[pO](rv r/)S,o(r)Sp(r’)drdr’ + ﬁ(CS)OS)s (18)

thus linearizing the exchange-correlation potential. The density matrix of Eq. (9) is decomposed into reference and perturbation,
such that P = P® + AP. Usually, the reference P”) = }_, P, is constructed as a superposition of densities of noninteracting
atoms, where the sum runs over all atoms (A) in the unit cell. Representing Eq. (18) in the Bloch basis of Eq. (6) then yields

Excloclo] ~ E

xedoclpo] + Y we D AP, ()5 (k)

k Hv
+= Z wewy Y AP () AP (k') Z Z KE MU prole0, ¢, 1), (19)
kk’ JLVKA
o g 1Ll = / f dr dr' @8 (r)* ¢% (1) fuc 1o (r, I )OL (Y 0 (1), (20)
where the matrix elements of first and second functional derivatives are denoted as v} lo¢ and f, xil(lic, respectively.
We continue by inserting Eq. (19) into the original energy functional of Eq. (14), leading to
E =Y w Y HUK)Pyk)+ ESy + Ef + Exep. 1)

with Ei, covering all terms that solely depend on the reference density and E]()2F)'I‘

and E}(12F) being of second order in AP:

1 I
Efir = 5 D wiwe Y AP, ()APL(K) Y &M EM (90l 026F) + £ 0. m. g)], 22)
kk' VK ghm
E]({ZF) — aEx,fr + ﬂEx,lr (23)
/ i Ir,w ik (h—
= ——Zwkwkr D APLUOAPL(K) Y e 5 [a(ph ol g ef) + B(ghor|ores) e B (24)
kk' VK ghm
Further, Eq. (21) introduced the zeroth-order Hamiltonian H ;(L%) (k), that is defined as follows:
HO) () =y () + ) v Lool@)e™ + ) " wy ) PLUD Y™ (¢l g of) e
g 14 Ak ghm
1 i i Ir,w
— 5 2w D PR Y et (gl 0 0f) + P08 0 0f) ] (25)
)4 Ak ghm

As usual in the DFTB framework, we adopt the two-center ap-
proximation and replace onsite blocks in the Hamiltonian by
diagonal matrices with free atom eigenenergies ef““'e ensuring
the correct limit on dissociation and leading to

6free w=v

il
HOpa+psl, neA veB (26)

0, else.

0) —
HM\) (g) -

pa = pa(r —g) and pg = pp(r) denote atomic densities, de-
rived from appropriate pseudoatom calculations. effee, as
well as the nondiagonal elements of Eq. (26), are obtained
from RSH-DFT calculations. The latter are stored for high-
symmetry orbital configurations as a function of distance
between atoms A and B in Slater-Koster tables [48]. The ma-
trix elements H ) (k) are recovered by transforming according
to Eq. (8).

In line with conventional DFTB and as generalized to
periodic boundary conditions, the repulsive energy is approx-
imated by a sum of fast-decaying pair potentials [49]

Erep =~ Z > Vi Ras - g), 27)

ABg

either determined by a higher level of theory [7] or fitted to
empirical data [50]. The sums over atoms A, B are restricted to
the reference unit cell, while an additional direct lattice sum g
also accounts for contributions of images in neighboring cells.

The term EDFT, defined in Eq. (22), is treated by applying
the Mulliken approximation

B PP () ~ 18, (6, O + 16, (28)
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to the four-center integrals
(G.80]650%) ~ 1S = WSucm — )] (91,85 |#707) + (9.5 |#0%) + (evgl|el'el) + (siel#fel)] 29
= 1Sl = m)Sycm — )y —m) + Yl — 8) + yor(h —m) + yy (h — g)1. (30)

In line with the convention introduced by Eq. (7), the real-space shifts in the arguments of y are associated with the first
orbital, while the second orbital remains in the central cell. We follow the reasoning of conventional second-order DFTB, by
approximating the orbital products |¢,|*> as exponentially decaying spherically symmetric charge densities, leading to three
integral parametrizations:

Vuv = AB( AB) (8 )2 // drdre i RA|:|r | +fxc,loc[po]}e_rBlr/_Rslv (31)
)’,ErUHF = J//S;HF(RAB) = (T;T;gz // drdre ™Rl |r—r’| eI Rsl (32)

Ir,HF Ir,HF TATB rAlr—RA\ —olr—| o8l —Rs|
P = i R = (8 | [Ldrarer Rl , (33)

with analytical expressions [2,24]. A distinction is made between screened long-range (Ir) and unscreened full-range (fr) kernels.
The parameter t, is obtained from requiring RSH-DFT and RSH-DFTB yield the same second derivative of the total energy for
an atom with respect to orbital occupation, i.e., predicting the same chemical hardness [24]. A detailed derivation is provided in
Appendix A.

Now we have all the prerequisites to treat the semilocal energy contribution E]()2F>T. To this end we compute Mulliken
populations ¢, of orbital u,

Gu =) Wi y_ Puy()Sy,, () (34)
k v

=3 Pu@Su(). (35)
g v

evaluated in direct or reciprocal space. The net charges of atom A are obtained by comparing the populations with the neutral
atom (Z,)

Aga=) Aqu=aqs—Za. (36)
ulA]

The final result is obtained by summing over all atoms A, B in the unit cell and accounting for any periodic images of B, as
captured by the sum over direct lattice vectors g extending throughout the crystal

Efgr =15 Z > Vi@ AgaAgs. 37)

ABg

C. Periodic Fock exchange in DFTB

To complete the theoretical foundation of periodic RSH-DFTB, the energy contributions due to the additional Fock terms
require special treatment. We restrict the derivation to the screened, long-range Coulomb kernel since its full-range counterpart
is contained as the limiting case of a large value of the range-separation parameter w.

First, the (back) Fourier transformation of Eq. (11) is identified in order to simplify the expression, leading to

BN = ‘i S w3 > AP AP (D) ($00k ¢ 98) " e*E, 1 i=m —h. (38)

k vk ghl

We now apply the Mulliken approximation and arrive at an expression that is compatible with the DFTB formalism

1
EMN=— e Y w0 Y APy (AP (DS (S +h —g)
k nvik ghl
[ylirvHF( g)+y]rHF( h— l)+)/erF(h g)+)/erF( l)]eik'g' (39)
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For later implementation using a neighbor list, as discussed in Sec. III A, it is advantageous to carry out an index shift I —
g — h — [ that simplifies the arguments of the real-space overlaps

1
EMT ==Y Twn ) Y APy (AP (h — 1 = 283, (1)S (1)
k vk ghl
x [y (—g) + v (—g =D+ v —g) + it (h — 1 — g)]e™*e. (40)

By applying the variational principle and writing the above expression with respect to the density matrices, the corresponding

ground-state Hamiltonian emerges as

AH) (k)
Ak ghl

This illustrates that the evaluation of the associated en-
ergy contribution becomes straightforward once the exchange
Hamiltonian AHY;" (k) is available:

1
EXIr — 3 Z Wi Z AHS(K)AP,, (k). (42)
k v

Deriving the energy and Hamiltonian for global Fock-type
exchange, instead of a range-separated expression, simply

requires substituting y);"" with y [LHF.

II1I. IMPLEMENTATION

The extension of the DFTB formalism, according to
Secs. IIB and IIC, requires modifications to (a) the
parametrization suite SKPROGS [51] and (b) the main DFTB+
[25] code. The newly developed routines are publicly avail-
able in (a) the main branch of the official repository and (b) a
pull request of the respective development branch to the main
branch of the official repository [52], currently under code
review by the maintainers.

For the zeroth-order Hamiltonian construction, we gener-
alized the scheme of Lutsker and coworkers [24] to handle
global Hartree-Fock exchange in addition to the already avail-
able screened kernels. This enables pretabulation of the H®
and S matrix elements for general CAM xc functionals and
further includes a generalized scheme to determine the decay
constants according to Eq. (A12).

The central performance critical task of developing an effi-
cient implementation to construct the Fock exchange matrix,
as provided by Eq. (41), is based on the neighbor-list-based
design of DFTB+. This utilizes the sparsity [53] pattern in-
duced by the spatial decay of the real-space overlap matrix
elements in the Slater-Koster tables.

A. Neighbor-list-based algorithm

In order to reformulate Eq. (41), utilizing the concept
of neighbor lists, we first introduce the notation L € N (M)
which refers to atom L being a neighbor of atom M, where
atom M is located in the central cell but L could be inside a
periodically repeated neighboring unit cell, with L being the
corresponding atom in the central cell. In a similar fashion, the
atomic orbitals A[L] are not restricted to atoms in the central
cell, but the corresponding orbital in the central cell is labeled

1
= = Y3 APl — 1 = 9SS D[ () + 7

Ir, HF

(—g—D+ 7y h—g) +yS -1 —g)]e*=.

(41)

(

as A[L]. This enables us to drop the cell index of the real-space
overlap matrices since they are implicitly included for atoms
located outside the central cell.

We also follow DFTB+ specific conventions, such that the
real-space shift of the overlap S refers to its first index, in line
with the notation of Sec. Il A, and in particular Eq. (7). The
same reasoning also applies to the real-space density matrix
elements. Let A denote an orbital that is folded back into the
central cell from a periodic image, we may then write S, =
Sy (h), leading to

1
AH;U;]U[N] (k)

§ > S, w§ e *EAPL(9)
LeN(M) A[L]
KeN(N) k(K]

Ir, HF Ir,HF

<[ @ + vper @ + vt @ + v @] 43)
Equation (43) exploits the fact that, except in the case of
shell-resolved DFTB, the y functions depend only on the

atomic species and not the individual orbitals, i.e., ylr:HF (&) =

lr HE (g) with A[L] and #[K]. Analytic expressions for atomic

forces i.e., the negative derivative of Eq. (43) with respect
to the ion positions, have been derived and implemented as
well. Although the force expressions for the general k-point
implementation have already been validated against numerical
derivatives, their algorithmic optimization is subject to ongo-
ing development and the current implementation is of limited
use for production applications. However, optimized forms of
Eq. (43) for calculations restricted to the I' point, including
the energy gradients, are provided in Appendix B.

So far, two of the three previously infinite lattice summa-
tions have been replaced by well-defined finite summations
over the neighbor list, leaving the yet unbounded g summation
to discuss.

Practical calculations employ a finite set of k points to
sample the first Brillouin zone, with N unit cells spanning the
BvK supercell. Restricting the Bloch basis to a finite BvK su-
percell leads to finite-size errors since it is not complete with
respect to all possible wave vectors k of the infinite crystal.
The density matrix as introduced in Eq. (11) is by construction
BvK periodic: P,,(g) = P,,(g + G), with G denoting a BvK
superlattice vector. This means it repeats at the boundaries
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of the BvK supercell without a phase factor. As shown by
Irmler et al. [39], this artificial periodicity causes lattice sums
in the Fock exchange energy expression to diverge. We have
implemented two of the widespread schemes to remedy this
issue, namely, a truncated Coulomb interaction [29] (TCI) and
an adaption of the minimum image convention (MIC) [42].
These enable a robust implementation of periodic Fock ex-
change. A more pleasant consequence of the BvK periodicity
is that the real-space formulation only requires N, density
matrices P,,(g) to be kept in storage. This is because every
lattice shift g may be folded back into the central BvK cell.

B. Truncated Coulomb interaction

In RSH-DFTB, truncating the Coulomb kernel of the four-
center integrals is equivalent to limiting the range of the y
integrals

if RMN < RC

) else

yan " Ruw),

Vit (F) = : 0 (44)

with an adjustable real-space cutoff radius R.. To avoid inter-
actions with the neighboring BvK supercells in simple-cubic
systems, Spencer and Alavi [29] linked R, to the number of £
points (which determine the BvK supercell volume). A more
robust scheme for arbitrary lattice geometries, as implemented
in this work, is to determine the maximum radius of a sphere
that still fits within the BvK supercell [39].

During self-consistent cycles the geometry and therefore
also the y integrals do not change. Our implementation
pre-tabulates all nonvanishing yun(Ryn) within the cutoff
sphere to speed up the Hamiltonian construction.

C. Minimum image convention

Another way of preventing divergent lattice sums was sug-
gested by Tymczak et al. [42] by restricting the sum over
superlattice vectors according to the minimum image con-
vention. Later, Irmler and coworkers [39] generalized this to
arbitrary k points. In this scheme the Coulomb interaction is
unaltered and fully taken into account.

We adopt this idea by restricting the argument of the den-
sity matrix AP,,(g) of Eq. (43), such that it does not involve
orbitals outside its Wigner-Seitz cell. This naturally restricts
the g summation which, depending on the size of the BvK
cell, in turn depends on the k-point sampling employed. To
determine the unit cells within the Wigner-Seitz cell of the
BvK cell we employ an algorithm that does not assume a
specific lattice geometry and works for arbitrary (linearly
independent) lattice vectors.

D. Integral prescreening

Regardless of whether the TCI or MIC algorithms are used,
integral prescreening targeting the density and overlap matri-
ces has the potential to drastically reduce the computational
cost of constructing the exchange Hamiltonian.

In direct self-consistent-field [54,55] calculations, the
Hamiltonian is often constructed iteratively. Following
Lutsker and coworkers [24], the linearity of the Hamiltonian
with respect to the density matrix allows representation of the

Hamiltonian at the nth self-consistent iteration as a sum of
the Hamiltonian at the previous iteration AH(AP"~!) plus a
correction AH(A,(AP)). The change in the density matrix
with respect to the previous iteration is denoted as A,(AP),
resulting in

AH(AP") = AH(AP"™! + AP" — AP"™)  (45)
A, (AP)

= AH(AP" ") + AH(A,(AP)).  (46)

This approach therefore exploits the rapid decay of A, (AP)
with increasing cycles of self-consistency. During the Hamil-
tonian construction, matrix-matrix products of the form

1@ =" ) SiSebn(APL(@) (4]
L] k(K]
occur. The upper bound of Eq. (47) is provided by taking the
individual absolute values of the factors

I(g) < Z Z 85,1120 [| An(AP; ()]

AIL] k(K]

< Spaxgmax A (AP)™ Z Z 1, (48)
ML) k(K]

where maximum estimates for the overlap S7PF:=
maxy iy m(Si,]) and density matrix A, (AP)™ =
max,[|A,(AP(g))]] have been defined. If S‘L-“Aj"SI%‘;"
AL (AP)™ < green, Where the trivial summations over
orbitals A, & have been absorbed by the integral screening
parameter Egcreen, the evaluation of the corresponding diatomic
subblock of AH(A, (AP)) is omitted. In preparation for the
evaluation of Eq. (43), all occurring S(AP)S products are
estimated and the terms requiring an explicit evaluation are
distributed to available processors [provided that a message
passing interface (MPI) parallelized version of DFTB+ is
being used].

E. Scaling with system size

While supercells of several hundreds of atoms are often
unattainable for proper long-range corrected hybrid function-
als within RSH-DFT, we demonstrate that such cases are
well within reach of RSH-DFTB, even on a single proces-
sor core and for relatively densely packed materials such as
GaAs. Figure 1 compares the total wall-clock time of a RSH-
DFTB TI'-point calculation using the LCY-PBE functional
and Yukawa-type range-separation function, to a conven-
tional PBE-parametrized DFTB (referred to as PBE-DFTB)
run. GaAs is computationally challenging due to its large
number of interacting neighbors. The computational cost of
LCY-PBE-DFTB turns out to be considerably higher than
for conventional PBE-DFTB. However, considering that the
benchmark was performed on a single CPU core only, cal-
culations of large supercells with roughly 1000 atoms can
be accomplished in reasonable time. The higher cost of
LCY-PBE-DFTB mainly originates from three facts: (a) the
pre-tabulation of all ¢ to build the supermatrix 7#T¢ (see
Appendix B), (b) the actual time spent on constructing the
Hamiltonian of Eq. (B2), and (c) a higher number of total
self-consistency steps, compared to traditional DFTB. Reason
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FIG. 1. Total wall-clock time of a RSH-DFTB I'-point cal-
culation with the LCY-PBE xc functional, in comparison with
conventional PBE-DFTB, as performed on a single CPU core (AMD
Ryzen 7 PRO 5850U). For LCY-PBE-DFTB, the total time spent
on an average self-consistent cycle, the construction of the RSH
contribution to the total Hamiltonian and atomic force evaluation is
indicated as well. GaAs supercells are employed as model system.
LCY-PBE-DFTB exhibits slightly subcubic scaling, which might

indicate that the asymptotic limit is not yet reached.

(c) is expected since (semi)local DFTB requires only self-
consistency with respect to the Mulliken populations, while
RSH-DFTB introduces terms that depend on the full density
matrix. Its self-consistency is with respect to the (real-space)
matrices AP,,(g). In other words, traditional DFTB mixes the
input and output Mulliken populations to propagate the self-
consistent cycles, while RSH-DFTB mixes AP,,(g), which
proves to be more challenging and leads in most cases to
an increased number of self-consistency steps, and therefore
diagonalizations of the total Hamiltonian.

F. Parallel performance

The relatively high cost of constructing the exchange
Hamiltonian in RSH-DFTB requires an efficient paralleliza-
tion of this step, in order to exploit modern computing
infrastructures and HPC facilities. While Sec. IITE already
demonstrated the suitability for large supercells, another com-
mon task is the calculation of smaller systems with a dense
k-point sampling. Figure 2 illustrates the parallel performance
for the energy evaluation of a primitive GaAs unit cell. The
scaling of the total wall-clock time with MPI processes is
quite satisfactory and only saturates from about 100 cores on-
wards for this system. One bottleneck that causes the parallel
efficiency to drop when exceeding this core count, at least
in the current implementation, concerns the mixing of input
and output density matrices in the self-consistency loop of
DFTB+, which is not yet MPI parallelized. This also affects the
memory consumption. For some mixers (e.g., modified Broy-
den’s method [56]) the history of all previous AP, (g) is kept
in storage, which becomes unfeasible for extremely dense k-
point samplings or an unusual large number of self-consistent
steps to reach convergence. Fortunately, mixing schemes with

r100
2
1024 Logg @
c O
= Y
E %
2 9
= 180 ©
s g
o 4
S 10 . %
E [ 7 -
= o
o
(0]
r60 <
10° —— perfect scaling
100 101 102

Number of MPI processes

FIG. 2. Parallel performance of DFTB+, when performing range-
separated calculations beyond the " point (ggcreen 1S set at 1077 a.u.).
The primitive GaAs unit cell, sampled by a 9 x 9 x 9 Monkhorst-
Pack k-point set, served as model system to obtain the (I/O time
removed) wall-clock time of the entire DFTB+run (with one MPI
process corresponding to one processor core). Up to about 100 cores
the parallel efficiency is excellent, however, a slight change in slope
due to incipient internode communication between 20 and 30 cores is
observed. The parallel efficiency then decreases to about 50%—60%
when further increasing the core count. Considering the extremely
small test system of only two atoms, this saturation is expected. The
employed HPC provides nodes of two Intel Xeon E5-2690v4 CPUs
(2.6 GHz, 14 cores each), resulting in 28 cores per node, whereas
internode communication is based on Intel’s Omni-Path network
architecture.

limited memory (e.g., modified Anderson’s method [57]) are
readily available within DFTB+-.

IV. CONVERGENCE BEHAVIOR

A. Polyacene series

The important class of m-conjugated polymers has
spawned numerous successful candidates for devices like
organic light-emitting diodes (OLEDs) [58-60], organic
field-effect transistors (OFETs) [61-63], polymer solar cells
(PSCs) [64-66], and the growing field of organic elec-
tronics in general. One representative of this class is the
Cant+2Honya series, forming the polyacene oligomers. We
choose this linear molecular chain due to its relevance as
a previous benchmark system for range-separated DFT. For
many mw-conjugated polymers (semi)local DFT fails to de-
scribe the bond length alternation (BLA) and band gap
correctly. While Hartree-Fock (HF) overestimates BLA sig-
nificantly, (semi)local DFT is known to underestimate it. In
fact, Korzdorfer er al. [67] suggested that the many-electron
self-interaction error (MSIE) of HF and DFT approaches cor-
relates with the BLA error and MSIE minimization is key (but
not the only issue) to obtaining accurate BLAs. These quasi-
one-dimensional systems with low environmental screening
also provide a stringent test for the removal of the divergence
in the exchange interaction. In addition, the polyacenes fea-
ture a well-defined finite molecular limit, which can be used
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FIG. 3. Band-gap convergence behavior of the periodic im-
plementations (I' point, TCI, MIC) for the polyacene series, in
comparison with the nonperiodic algorithm. In the limit of dense k&
points or large clusters and supercells, respectively, all implementa-
tions agree (Ey, = 2.9 €V).

to verify the periodic RSH-DFTB implementation proposed
here.

Since (semi) local DFTB is directly derived from DFT, it
also inherits its shortcomings. A particularly severe deficiency
of PBE-DFT(B) is that the polyacene series becomes metal-
lic for increasing chain length [68]. We employ the ob2-1-1
parameters [69], created for the purely long-range corrected
LCY-BNL functional, to demonstrate that our implementation
of periodic RSH-DFTB converges to the same, finite band gap
as the already available nonperiodic formalism. We provide
an estimate of the polyacene band gap for the family of purely
long-range corrected functionals, as calculated by the FHIAIMS
code [37,38,70] on the LC-wPBE [71] level of theory using
intermediate basis settings and a range-separation parameter
of w=0.3 agl, yielding Egy, = 2.8 €V [72]. Since the spe-
cific LC-BNL functional is not yet available through FHIAIMS
(release version 221103) [73], this value does not allow for a
quantitative comparison with results obtained by the ob2-1-1
parameters, however, offers valuable guidance from first prin-
ciples. Figure 3 illustrates the convergence of the polyacene
band-gap convergence for the present periodic I'-point and
k-point implementations, in direct comparison to the nonpe-
riodic case. The calculations are based on the (unrelaxed)
primitive unit cell of polyacene (k-point implementation), as
listed in structure S1 of the Supplemental Material [43], and
supercells (the I'-point implementation) built from it. In the
case of the nonperiodic implementation, the supercells are
converted into clusters and properly passivated by additional
hydrogen atoms at the chain ends (bond length of C-H units:
1.1 A). The k-point sampling 1 x 1 x (2 < n < 100) is chosen
according to the Monkhorst-Pack [74] scheme, where the
polyacene chain is oriented along the z direction and vac-
uum inserted in x and y directions. What immediately stands
out is that all implementations converge towards the same
Kohn-Sham gap, which is an essential step in the validation
[75] of the present method. A closer look at the convergence
behavior of the general k-point implementations of the TCI

=
T~ k-point sampling:
—— 1x1x6 (TCl)
— 1x1x15 (TCl)

PSS 0 1x1x15 (MIC)

Energy E — Eygm [eV]

FIG. 4. Band structures of the primitive polyacene unit cell,
aligned at their respective valence band maximum (VBM). Fully
converged RSH-DFTB calculations, with 1x1x15 k-point sam-
pling in the self-consistent run that produced the ground-state
density, performed in the TCI and MIC schemes, are compared to
a band structure that exhibits artifacts due to an insufficient trun-
cation of the Coulomb interaction for small BvK supercells. The
first Brillouin zone was sampled between B’ = (0.0, 0.0, —0.5) and
B =(0.0,0.0,40.5).

and MIC schemes reveals strong fluctuations of the band gap
for nonconvergent k-point samplings 1 x 1 x n, where n < 20.
These fluctuations originate from artifacts in the band struc-
ture and can be avoided by either manually reducing the
Coulomb truncation cutoff in TCI or removing outer shells
of unit cells inside the Wigner-Seitz cell of the BvK supercell
in MIC. We take the opportunity of this specific case to high-
light the pitfalls of periodic Fock exchange in RSH-DFT(B).
Figure 4 explicitly shows two fully converged band structures
of Fig. 3, demonstrating that not only the gap size, but also
all bands, calculated with TCI or MIC are virtually identi-
cal. Additionally, a nonconvergent band structure, originating
from a density calculation with 1 x 1 x 6 k-point sampling is
included. For this choice of parameters the band gap collapses
and individual bands exhibit an unphysical dispersion. Too
small a BvK supercell does not allow for a natural decay of
the density matrix, but rather introduces a spurious periodic-
ity as described in Sec. IIl A. The extent to which artifacts
of nonconvergent calculations based on coarse k-point sam-
plings manifest themselves is system specific. As an example
shown in Fig. S1 of the Supplemental Material [43], armchair
graphene nanoribbons (AGNRs) turn out to be a much more
benign system and convergence is achieved rapidly. We refer
to structures S3—S5 and Figs. S2 and S3 of the Supplemental
Material [43] to obtain further investigations covering two-
dimensional h-BN monolayer and GaAs bulk.

B. Total energy convergence

The total energy is often considered to provide a solid
indication of the convergence behavior of a system. In the
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FIG. 5. Absolute deviation in the total energy and band gap with
respect to their fully converged reference. For periodic RSH-DFTB
calculations, the total energy of a system is empirically found to
converge more rapidly than the Kohn-Sham band gap. For GaAs bulk
it was found that setting the TCI cutoft as half of the minimum lattice
vector norm (TCI'), the total energy and band gap converge more
quickly when compared to the scheme described in Sec. III B. The
choice of coupling the TCI cutoff to the k-point sampling can there-
fore significantly influence the convergence behavior of a system.

literature [29,39,41] it is used for the sake of comparing im-
plementations and to demonstrate convergence. However, this
measure proved to be unreliable in many cases with regard
to other properties, including band gaps. We would therefore
like to point out that, at least for periodic RSH-DFTB, further
quantities of interest should also be considered when checking
convergence. Figure 5 illustrates that the absolute deviation
in the total energy and band gap with respect to their fully
converged reference decreases at different rates, with slower
convergence of the band gap. This phenomenon appears to be
independent of the dimensionality of the system and applies,
e.g., for three-dimensional GaAs bulk and two-dimensional h-
BN monolayer included in Fig. 5. To obtain a fully converged
total energy and band structure as reference, we employed
a GaAs density calculation with a 20 x20 x20 and h-BN
monolayer calculation with 20 x20 x 1 Monkhorst-Pack k-
point sampling, respectively.

V. POLARIZATION-INDUCED GAP RENORMALIZATION

Renormalization of the fundamental band gap in molec-
ular crystals by electronic polarization [76] is of central
importance for organic electronics [58—63] and photovoltaics
[64—66]. Going from the molecule in gas phase to a molecular
crystal with relative dielectric constant &., (orientationally
averaged and ion clamped) leads to shrinkage of the funda-
mental gap. This renders the resulting material well suited
for practical applications that require reduced optical gaps.
Due to the electronic polarization of the crystalline dielec-
tric medium, the energy required to create a quasihole is
reduced compared to its molecular phase, whereas creating
a quasielectron releases more energy [77]. In other words, the
ionization potential (IP) and electron affinity (EA) decrease
and increase, respectively.

Today’s standard repertoire of exchange-correlation func-
tionals within DFT, including (semi)local LDA/GGA as well
as global and range-separated hybrids [15], do not properly
treat long-range correlation effects and fail to describe the
aforementioned gap renormalization, even qualitatively [78].
While many-body perturbation theory, especially Hedin’s GW
approximation [79] to the electron’s self-energy 3, captures
these renormalization effects, only recent screened range-
separated hybrid functionals [77] include this effect at the
considerably cheaper level of DFT.

According to the general CAM partitioning of the electron-
electron interaction introduced by Eq. (1), the limiting
behavior of the long-range part, that we treat in an exact
Fock-type manner, is determined by the parameters o and B.
For small distances as r — 0, the «/r contribution prevails,
whereas the limiting case of r — oo scales like (o« + 8)/r.
In the gas phase, the correct 1/r asymptotic decay is ob-
tained if the condition o + 8 =1 is fulfilled. In fact, this
only represents the special case of €., = 1 and a general-
ization to arbitrary dielectric environments with asymptotic
potential of 1/(e.r) requires that o + 8 = 1/e. For the
gas-phase fundamental gap to coincide with the HOMO-
LUMO gap of generalized Kohn-Sham RSH-DFT [80,81],
the Fock-type exchange term is required to be asymptot-
ically correct [82,83] and the range-separation parameter
w should be tuned to obey the ionization-potential (IP)
theorem [21,84-86]. We follow Refaely-Abramson et al.
[77] by nonempirically determining o, through minimizing
the function

Pra) = (59 +TP2%)° + (60 +1P24)°  (49)
for the gas phase. Here &7y, &fy; denote the energies asso-
ciated with the HOMO of the neutral (n) and anionic (a)
systems, tuned to match the respective IP obtained from
total energy differences as closely as possible. Additional fig-
ures outlining the optimization process are provided in Sec. S4
of the Supplemental Material [43]. For the sake of comparing
our results with Ref. [77], we do not attempt to optimize o
from first principles, but rather chose o« = 0.2, which proved
to yield satisfactory results for small organic molecules. The
employed exchange-correlation functional is CAMY-PBEh
[87] (with Y indicating the range-separation function is of
Yukawa type). In order to consistently compare the results
obtained with our RSH-DFTB method, we resort to the molec-
ular and crystalline geometries of Ref. [77], covering the
prototypical conjugated molecules benzene and pentacene.
The same reasoning applies to the choice of the scalar di-
electric constant, which is also taken from the cited reference.
A full overview of the resulting functional parametrization,
including the optimally tuned range-separation parameters w,
is provided in Table S2 of the Supplemental Material [43].
To avoid time-consuming reparametrization, the generated
Slater-Koster files are based on the ob2-1-1 [69] parame-
ters, which are expected to perform well in combination
with long-range corrected functionals. Additionally, results
obtained by a slight modification to the ob2-1-1 parameters
are shown, this decreases the density compression radius of
the carbon species to a value of rge"s = 3.3 ay. We refer to
Table S1 of the Supplemental Material [43] for a detailed
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FIG. 6. Fundamental gaps of gaseous and crystalline benzene and pentacene, as obtained by conventional PBE-DFTB and optimally tuned
screened range-separated hybrid functionals (OT-SRSH-DFTB), compared with GyW, calculations. To maintain comparability with Ref. [77],
crystalline gaps were aligned to the middle of their respective gas-phase gap. GoW, values were taken from Refs. [83,88] (gas phase) and

Ref. [77] (bulk).

listing of the electronic parametrization. Figure 6 compares
the fundamental gaps obtained using different levels of the-
ory. The PBE-DFTB calculations were carried out based on
the pbc-0-3 parameters [89]. Since the hydrogen and carbon
electronic structure of pbc-0-3 is virtually identical to mio-1-1
[90] (the usual choice for biological or organic molecules
within second-order DFTB) only one of the two options is in-
cluded for comparison. In line with expectations, PBE-DFTB
is unable to capture changes in the surrounding dielectric
medium and severely underestimates not only the molecular
but even the crystalline fundamental gap. In stark contrast,
optimally tuned screened range-separated hybrid (OT-SRSH)
DFTB as derived and implemented in this work captures the
renormalization phenomenon at least qualitatively. However,
the gas-phase HOMO is slightly too low in both systems,
which also affects the bulk phase due to the chosen crystalline
gap alignment. To maintain comparability with Ref. [77],
the crystalline gap was aligned symmetrically around the
middle of the respective gas-phase gap. Quantitative agree-
ment would require a more in depth reparametrization,
which is outside the scope of this work. We emphasize that
OT-SRSH-DFTB is systematically extending the domain of
accessible exchange-correlation functionals within (periodic)
DFTB by only introducing system-specific adjustable param-
eters. These are determined from first principles in a well-
founded tuning process, rather than being subject to empirical
fitting.

VI. SUMMARY AND OUTLOOK

We have derived, implemented, and tested Hartree-Fock
exchange in the density functional tight-binding (DFTB)
method for periodic systems beyond the I" point. By applying
the usual DFTB approximations to matrix elements of the
Fock exchange operator, we arrived at a real-space formu-
lation of the exchange Hamiltonian that allows for efficient
implementation in the DFTB+ code. To avoid artifacts owing
to the artificial Born—von Karmén periodicity of the density
matrix, we resort to either a truncated Coulomb interaction
or a minimum image convention. These two methods proved
to converge to the same limit, when coupled to accurate Bril-
louin zone samplings. Scaling with system size and parallel
performance of the developed routines indicate that systems
with thousands of atoms are well within reach of RSH-DFTB
and that computational resources are exploited efficiently.
Prescreening of products of density matrix and overlaps, in
combination with an iterative construction of the Hamiltonian,
allows us to further reduce the computational cost. Conver-
gence behavior and the pitfalls of periodic RSH-DFTB are
demonstrated for the polyacene series, showing that periodic
and nonperiodic implementations converge towards the same
limits, and that the total energy is often not a reliable indicator
for the convergence of other properties like the band gap. In
line with GoW, calculations, screened RSH-DFTB shows the
correct polarization-induced gap renormalization in benzene
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and pentacene molecular crystals, at a heavily reduced com-
putational cost compared to first-principles methods.

An in-depth benchmarking of the accuracy of periodic
RSH-DFTB is currently subject of ongoing investigations and
will be the topic of a future paper.

The data that support the findings of this study are available
within the paper and its Supplemental Material [43].
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APPENDIX A: HUBBARD PARAMETER OF RSH-DFTB

In analogy to conventional DFTB, the Hubbard U of RSH-
DFTB is derived by requiring its equality with RSH-DFT.
Further, the xc kernel fycjoc 1S assumed to vanish [24] for
off-site elements A £ B, whereas the onsite elements A = B
cover the full exchange-correlation contributions and read as

im i (Ran) = 15—6rA, (A1)
8
RPAIE o YA (Ran) = 15—61'A — (tAzi—sz)‘l
y |:5‘L’/§’ + 15t{0’ = 5730 +0® w]
1673
(A2)
Note that, by definition, the function y™HF = lim,,_, ., y'HF

is always contained in the results for the more general
screened Coulomb kernel. Since the Hubbard U is obtained
from a single-atom RSH-DFT calculation, the following con-
ditions apply:

S;u) = 8/1.1)’ (A3)
Y =y, (A4)

J

U}SH—DFTB

_ 3 1 ! 1
=16 T aaen |* T

) _ free
H, =6,

> CuiCuj = 8ij.
n

By utilizing Eqgs. (A3)—(A6), the total RSH-DFTB energy of
the single atom in terms of occupation numbers #; is [24]

(A5)

(A6)

Eatom _

1
> Puere + Vi > APy AP,
Iz K

1
— 2™+ BY) Y APLAPL (AT)
Ay

I g
5 Do minvi = 3 2 (i + By
ij i

+ O(ny), (A8)

with terms linear in n; indicated by &(n;). For the highest
occupied shell it holds that for n electrons, equally distributed
over the shell, give an orbital occupation n; = n/d;, where
the shell degeneracy is d; = 21 + 1. Inserting d; into Eq. (A8)
yields

1 L, g N
Eatom _ Eyjqurﬁ _ Z( J/AfAHF + ﬁyfiAHF)E + ﬁ’(n) (A9)

Calculating the second derivative of Eq. (A9) with respect to
the shell occupation n then becomes straightforward:

82Eatom &
on? = Vaa

yfr,HF + ﬂVJ{AHF) (AlO)

“ 3@
In practice, the Hubbard U of RSH-DFT is obtained by nu-
merically calculating the second derivative of the eigenvalue
oo Of the highest occupied atomic orbital of species A with
respect to its occupation ngoao:

A
{/RSH-DFT _ 9€H0A0
i = 22

(A11)
0nHoAO

By enforcing URSH-DFTB L [/RSHDFT ' \we finally end up with
the Hubbard U of RSH-DFTB,

5 + 3t80? — ot + %aﬁrﬁ — '—S(’tXa)> }:| (A12)

(v} —?)

an equation that should be solved numerically to obtain the decay constant z4.

APPENDIX B: I'-POINT APPROXIMATION

For periodic RSH-DFTB calculations that are restricted to
only the I' point, we resort to the TCI scheme exclusively. In
the I"-point-only approximation, any phase factors vanish and
the g summation of Eq. (43) is carried out in advance, yielding
new y integrals

Py = Y vam@+1D). (B1)
g

With y,)§; truncated spherically and the g summation cover-
ing the entire crystal, the value of )7,3,%, eventually becomes

(

independent of the shift I, which greatly facilitates the pretab-
ulation of 7,7¢ for all element combinations.

From this we infer that the exchange Hamiltonian at the
I' point AH*"(T) can be constructed from matrix-matrix
multiplications of dense overlap and density matrices

AH"M(T) = — HIS(DAPT)S(T)] © 7™
+ [(S(T)AP(T)) © #TCIS(T)
+S(M(APT)S(I)) © 7™
+ S(T)(APT) © 779)S(I)}, (B2)
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with #T¢ denoting a supermatrix with the same shape as
S(I') and AP(T). Element-wise multiplication is indicated
by ©, i.e., the Hadamard product. Equation (B2) is a direct
generalization of the nonperiodic algorithm that is already
implemented in the DFTB+ [25] code. Establishing 7€ is
straightforward as all elements of the diatomic block be-
tween atoms M and N, containing orbitals { u[M], v[N]}, take
the same value: 75, i.e., 7 57,v) = Pary- This algorithmic
solution is appealing since it is exact in the sense that no
integral screening, as described in Sec. III D, is required and
since dense matrix-matrix multiplications can be performed
efficiently and are easy to parallelize. A neighbor-list-based
algorithm for I"-point calculations that includes integral pre-
screening is implemented as well. However, for the systems
so far tested, we observed a significantly higher efficiency
for the matrix-multiplication-based algorithm, therefore, we
refrain from discussing the list-based approach in detail.

Analogously to Eq. (B2), the total energy and its gradients,
i.e., atomic forces, can be expressed in a similar fashion

EF" = — L{S(D)APT)S(D)] © #C

+[(S(TAP(T)) © 7 €1S(T)

+S(M)[(AP(D)S(T)) © 7]

+S(I)(APT) © 7 ™)S(T)}AP(T), (B3)
" IENT
Fi ==& (B4)
M
1
= Y (mSw)
uIMIN#M v[N]

x [APS(AP © 7T) + ((APS) © 7)) AP]Y™

Vi
1 N
32 2 D (w7
UIM] N#M v[N]
x [(APS)" © (APS) + (SAPS)
O AP (B5)

Vi

with Cartesian coordinates R, of atom M, o € {x,y,z},
and A%™ = %(A—G-AT) denoting the symmetric part of
matrix A.
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