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The introduction of obstacles (e.g., precipitates) for controlling dislocation motion in molecular structures is a
prevalent method for designing the mechanical strength of metals. Owing to the nanoscale size of the dislocation
core (� 1 nm), atomic modeling is required to investigate the interactions between the dislocation and obstacles.
However, conventional empirical potentials are not adequately accurate in contrast to calculations based on
density functional theory (DFT). Therefore, the atomic-level details of the interactions between the dislocations
and obstacles remain unclarified. To this end, in this paper, we applied an artificial neural network (ANN)
framework to construct an atomic potential by leveraging the high accuracy of DFT. Using the constructed ANN
potential, we investigated the dynamic interaction between the (a0/2)〈111〉{110} edge dislocation and obstacles
in body-centered cubic (bcc) iron. When the dislocation crossed the void, an ultrasmooth and symmetric
half-loop was observed for the bowing-out dislocation. Except for the screw dislocation, the Peierls stress of all
the dislocations predicted using the ANN was <100 MPa. More importantly, the results confirmed the formation
of an Orowan loop in the interaction between a rigid sphere and dislocation. Furthermore, we discovered a
phenomenon in which the Orowan loop disintegrated into two small loops during its interaction with the rigid
sphere and dislocation.
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I. INTRODUCTION

Enhancing and designing the mechanical strength of met-
als is vital for building a sustainable society. In principle,
the mechanical strength of metals is governed by disloca-
tion dynamics. Accordingly, the introduction of obstacles,
e.g., precipitates, is a prevalent approach for controlling the
dislocation motion to alter the mechanical strength of met-
als. Therefore, the investigation of the interaction between
dislocations and obstacles forms the starting point for design-
ing the mechanical strength of metals. Owing to the small
size of the dislocation core—typically, <1 nm—investigating
the interaction between the dislocations and obstacles re-
quires direct treatment of atomic discreetness. Moreover,
the long-range elastic interaction of dislocations demands
atomic modeling on the scale of 1 000 000 atoms to observe
the dynamic interaction between dislocations and obstacles.
Therefore, based on the techniques of molecular mechanics
(MM) and molecular dynamics (MD), empirical interatomic
potentials such as the embedded atom method (EAM) are
used for investigating the dynamic interactions between dis-
locations and obstacles [1–12]. However, the structure and
energetics of the dislocation core predicted using empirical
interatomic potentials are often inconsistent with the results
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of first-principles calculations obtained using density func-
tional theory (DFT) [13]. The existing empirical interatomic
potential cannot accurately reproduce the screw-dislocation-
core structure and energetics of body-centered cubic (bcc)
iron, in contrast to the calculations based on DFT [14,15].
Furthermore, the energetics of M111, referred to as 70.5◦ or
71◦ mixed dislocation in bcc iron, estimated by the empirical
interatomic potentials vary significantly from that obtained
by DFT calculations [16,17]. When studying the dynamic
interactions between dislocations and obstacles, all pure and
mixed dislocation components are crucial for the crossing and
bypassing mechanism, as this enables dislocations to surpass
obstacles. Thus, the precise details of the interaction between
the dislocations and obstacles in bcc iron are still obscure.

To this end, we developed an atomic potential using an ar-
tificial neural network (ANN) framework with DFT [18–20].
In addition to the screw-dislocation-core structure and its
energetics, other mixed-dislocation-core structures and ex-
tended lattice defects predicted by the constructed ANN
potential were in excellent agreement with those calculated
by DFT [18,19]. These results demonstrated the reproducibil-
ity and transferability of the constructed ANN potential for
investigating dislocation dynamics with DFT. In this paper,
we investigate the interaction between edge dislocation and
obstacles using the constructed ANN potential by performing
1 000 000 steps of MD simulation with 1 000 000 atoms by
the highly accurate ANN potential based on DFT data.
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FIG. 1. Schematic of atomic model for simulating edge dislocation dynamics, (a) condition of surface layer to yield driving force, and
(b) positional relationship between edge dislocation and void in the initial state.

II. COMPUTATIONAL METHODOLOGY

A. Construction and framework of ANN potential

To investigate the dislocation core structure, we con-
structed an ANN potential based on the ANN method
proposed by Behler and Parrinello [21]. In this method, the
output of the ANN is the atomic energy εANN

i of the ith atom,
and the total energy EANN of the target system is expressed as
the contribution of the atomic energy as follows:

EANN =
N∑

i=1

εANN
i [G(Ri )], (1)

where N is the number of atoms in a target system; G is the
vector set of descriptors, which describes the local atomic
environment around the ith atom; and Ri represents the atomic
positions around the ith atom. We used the Chebyshev de-
scriptors proposed by Artrith et al. [22]. The total dimension
of the input vector set of descriptors was 20. The Chebyshev
descriptors and improvement of cutoff functions are described
in Appendix A. We used the swish function as the activation
function of the hidden layers in the ANN potential, with
10 neurons in each layer [23]. For training the ANN poten-
tial, we used the ÆNET package by Artrith and Urban [24],
with the limited-memory Broyden-Fletcher-Goldfarb-Shanno
method [25]. The final mean absolute and root mean square er-
rors of the ANN potential for the training dataset were 1.5 and
2.4 meV/atom, respectively. The ANN potential parameter
file is stored in our repository as Fe_v03 [26]. The QUANTUM

ESPRESSO package [27] was used to construct the reference
DFT structure energy datasets for iron. We prepared 6348
atomic structure energy datasets of iron [18]. The number of
atoms in the dataset ranges from 1 to 54. All atomic structures
and the total energy in the dataset are also freely available
online [28].

B. Dislocation dynamics setting

Herein, we investigate the dynamic interaction between
(a0/2)〈111〉{110}-edge dislocation and an obstacle in bcc
iron, where a0 denotes the lattice constant of bcc iron. We
used the 60[111] × 48[110] × 30[112] bcc bulk model, which
is periodic along the [111] and [112] directions and contains

a free surface in [110]. To create the edge-dislocation-core
structure, we removed the upper-half layer on the (111) plane.
Thereafter, we uniformly expanded and contracted the upper-
and lower-half blocks by 0.5b in the [111] direction, respec-
tively, where b denotes the length of Burger’s vector

√
3

2 a0.
Simultaneously, the periodic cell length along the [111] direc-
tion was contracted by 0.5b. Subsequently, the atomic position
of the model was optimized with constant boundary condi-
tions, and the edge dislocation core was obtained at the center
of the (112) plane. For the target obstacle, a void was set as
a soft limit obstacle, which is vital for a structural material in
nuclear fusion systems. To create the void, the atoms in the
spherical region were eliminated, and the scale of the sphere
was set as 4 × a0, as depicted in Fig. 1(a). In Fig. 1(b), the
atomic relationship between the edge dislocation and the void
was visualized using the central symmetry parameter function
of ATOMEYE [29,30]. Furthermore, the driving force for edge
dislocation motion was generated by rigidly moving the upper
and lower surface regions in proportion to the strain rate γ̇ , as
indicated in Fig. 1(a). Specifically, γ̇ was set as 107 s−1. The
applied shear stress τ was evaluated by

τ = 1

2A(110)

[∑
f upper
[111] −

∑
f lower
[111]

]
, (2)

where A(110) denotes the area of the (110) free surface, and
f[111] denotes the atomic forces applied to displace the atoms
on each surface in the [111] direction [1–3]. We set the time
step as 1 fs in the MD simulation. To avoid unexpected rare
events for thermal activation, we used a Nosé-Hoover ther-
mostat to maintain the constant temperature 10 K [31,32].
The thermal activation process plays an important role in the
mobility of dislocation and interaction between dislocation
and obstacle; however, we will study this in the future.

III. RESULTS AND DISCUSSION

A. Interaction between edge dislocation and void

By using the LAMMPS code [33], MD calculations with
500 000 steps were performed with an atomic dislocation
model containing 1 032 570 atoms to investigate the dynamics
of an edge dislocation interacting with a void. In Fig. 2,
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FIG. 2. Stress-strain curve of edge dislocation crossing the void,
as predicted by artificial neural network (ANN) and embedded atom
method (EAM) [34] potentials. The dashed line is the observed
temperature in the molecular dynamics (MD) simulation. Refer to
text for detail.

the stress-strain curves are the results of simulating by both
ANN and EAM [34] potentials. The ANN and EAM poten-
tials predicted the critical stress of the void, defined as the
maximum stress required to cross (bypass) and separate from
an obstacle, as 600 and 700 MPa, respectively. Thus, the
EAM potential overestimated the critical stress of the edge
dislocation by ∼15%. The observed temperature history in the
MD simulation using the ANN potential is shown in Fig. 2.
In the entire simulation, the temperature of the system was
maintained constant at 10 K, which was the target value of the
thermostat. This indicates that the effect of thermal activation
is small in the present simulation.

However, the atomic detail was observed for all regions be-
tween the ANN and EAM potentials. As shown in Fig. 3(a)(i),

ANN

EAM

(a)

(b)

(i) (ii) (iii)

(i) (ii) (iii)

FIG. 3. Schematic of atomic detail of edge dislocation crossing
void predicted by (a) the artificial neural network (ANN) potential
and (b) embedded atom method (EAM) potential. Roman numerals
represent the order of progression of edge dislocation. Refer to text
for detail.

in the initial stage of interaction between the edge disloca-
tion and the void, the dislocation line of the ANN potential
was highly oscillating [35]. In contrast, the dislocation line
of the EAM potential exhibited a stable motion, as shown
in Fig. 3(b)(i). Near the critical stress point in the stress-
strain curves, a discontinuous variation was observed in the
EAM potential, and at this instant, the shape of the dislo-
cation half-loop alternated for bowing out, denoted by the
blue circle in Figs. 3(b)(ii)–3(b)(iii). In all simulations of
the ANN potential, the dislocation half-loop for bowing out
exhibited an ultrasmooth and symmetric shape, as shown in
Fig. 3(a) [35]. We emphasize that our simulations of the ANN
potential are consistent with experimental observations [36].
In contrast, the dislocation half-loop for bowing out predicted
by the EAM potential manifested an asymmetric shape, which
can also be seen in Fig. 3(b) [35]. This type of asymmetric
shape of the dislocation line during the bowing process has
been commonly observed using the EAM potential and has
been troubling researchers for many years [1–12]. Thus, the
cause of these shape variations during bowing out from the
interaction between the dislocation and the void at the atomic
level must be determined for both potentials.

B. The Peierls stress of dislocation series

Accordingly, we determined the bowing-out shape of the
dislocation based on the mobility of all mixed dislocations,
including edge and screw dislocations. Therefore, the varia-
tions in mobility between various mixed dislocations can be
attributed as a cause of this difference. The Peierls stress is
defined as the minimum applied stress required to drive each
dislocation at 0 K, which is fundamental for the mobility
of several dislocations. Thus, to investigate the origin of the
variations observed in this paper, the Peierls stress of the
edge, screw, and other mixed dislocations were determined
using the ANN and EAM potentials. We selected the six
mixed a0/2〈111〉{110} dislocations, including screw and edge
dislocations. The angles of these dislocations were 0◦, 35◦,
71◦, 90◦, 125◦, and 165◦. We defined the angle θmix of the
mixed dislocations using the following relationship between
the dislocation line vector η and Burger’s vector b:

θmix = 180

π
arccos

(
η · b
|η||b|

)
. (3)

In this definition, θmix = 0◦(and 180◦) and θmix = 90◦ rep-
resent screw and edge dislocations, respectively. Except for
screw dislocation, all dislocations were generated in a manner
almost like the fabrication of edge dislocation as mentioned
above. In the case of screw dislocation, no layer was removed,
and only its displacement field was added to the initial model.
Thereafter, the dislocation core structures were optimized by
applying shear force fa on the free surface along the 〈111〉
direction according to the conjugate gradient method. Upon
obtaining the optimized dislocation core structure, the applied
shear force was step-wise increased. The Peierls stress is
defined as the critical stress at failure to optimize the dislo-
cation core structure. The applied shear stress was evaluated
as fa/A(110), as listed in Table I. For reference, the Peierls
stresses in bcc iron calculated using the Gaussian approx-
imation potential (GAP) [37–39], which is a high-accuracy
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TABLE I. Peierls stress predicted by the ANN potential,
EAM [34] potential, and GAP [37–40] in units of MPa.

0◦ 35◦ 71◦ 90◦ 125◦ 165◦

ANN 1500 13 79 2.4 47 4.2
EAM 1300 260 1300 85 1000 60
GAP 2000 25 168 14 163 15

machine-learning-based potential model, are presented in Ta-
ble I. Note that the computational cost incurred by GAP is
157 times that by the ANN potential. Therefore, the MD
simulation of dislocation dynamics on the ANN potential
scale using GAP is practically impossible. We discuss the
computational efficiency of the ANN, EAM potential, and
GAP in Appendix B. The Peierls stress of screw dislocation
by the ANN potential was 1500 MPa, which is consistent
with the DFT results (1000–1650 MPa) [14,15,41,42] as
well as the Peierls stresses calculated by the EAM potential
(1300 MPa) and GAP (2000 MPa). In contrast, the Peierls
stresses of the edge dislocations predicted by the ANN and
EAM potentials were 2.4 and 85 MPa, respectively. Compared
with the results of the EAM potential, the Peierls stress of
the edge by the ANN potential was significantly low. This
could be the possible reason causing the broad oscillations
of the dislocation line in the initial stage of the simulation
by the ANN potential. Furthermore, the Peierls stresses of
mixed dislocations exhibited highly distinctive features in
both potentials. In all cases, the Peierls stresses of the mixed
dislocations obtained using the ANN potential were <100
MPa, which is at least an order smaller than that of screw
dislocations. In contrast, the Peierls stresses of edge and other
mixed dislocations calculated by the EAM potential ranged
from 60 to 1300 MPa. More specifically, the Peierls stress
of the 71◦ mixed dislocation was 1300 MPa, which was
almost equal to the Peierls stress of the screw dislocation.
The Peierls stresses of edge and other mixed dislocations by
GAP were slightly larger than that evaluated by the ANN
potential, but its trend of the distribution was consistent with
results from the ANN potential. Moreover, the Peierls stress of
the 71◦ mixed dislocation estimated using DFT calculations
was ∼10 MPa [16,17], which is consistent with the results
obtained using the ANN potential. Experimental observations
also indicate that edge and mixed dislocations have higher
mobility than screw dislocations [36]. Thus, we can con-
clude that the Peierls stresses of dislocations in bcc iron are
�100 MPa, except for screw dislocations. In addition, we
concluded that the EAM potential significantly overestimated
the Peierls stress of the mixed dislocations [43]. As observed,
the EAM potential predicted an asymmetrical shape of the
bowing-out dislocation, which can be considered an artificial
result caused by the low transferability of the EAM poten-
tial. Surprisingly, despite the large differences between the
Peierls stresses predicted by the ANN and EAM potentials,
the critical stress required to cross the void varied only by
15%. We believe that this phenomenon was influenced by the
linear elastic interactions occurring between the dislocations
at critical stress. However, we emphasize that the motion and
reaction of the dislocations predicted by the ANN potential
differed from that of the EAM potential. Overall, these results
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FIG. 4. Stress-strain curve of edge dislocation bypassing rigid
sphere predicted using the artificial neural network (ANN) potential
compared with the void case.

suggest that more careful investigations of the dislocation
dynamics at the atomic level are required to construct the
input parameter for such discrete dislocation dynamics. As
the Peierls stress of edge dislocation was on the order of
a few megapascal, the Peierls barrier was estimated in the
sub-meV/b scale [16,17]. At least 100 atoms are required to
evaluate the Peierls stress and barrier [16]. Therefore, DFT
cannot be used in practice to calculate the potentials at the
atomic scale with such accuracy.

C. Interaction between edge dislocation and rigid sphere

The final aim of this paper is to investigate the dynamic in-
teraction between the (a0/2)〈111〉{110}-edge dislocation and
the rigid sphere as hard limit obstacles. To create the rigid
sphere, the atoms in the spherical region were fixed, and the
scale of the sphere was set as 4 × a0, as depicted in Fig. 1(a).
We explore the interactions occurring between the dislocation
rigid sphere as well as those between the dislocation and the
dislocation loop, which remains after the dislocation bypasses
the rigid sphere. Accordingly, we performed 1 000 000 steps
of MD calculation using a dislocation model with 1 032 570
atoms. Therefore, in this calculation, we performed 1 trillion
atomic force evaluations with the accuracy level of DFT,
which cannot be achieved with direct DFT calculations. In
Fig. 4, the stress-strain curves are the results of a simulation
by the ANN potential. The ANN potential predicted that a
critical stress of 730 MPa is required to bypass the rigid
sphere, which is slightly greater than that of the void. The
formation of the Orowan loop around the rigid sphere is de-
picted in Figs. 5(a)(i) and 5(a)(ii). After bypassing the rigid
sphere, the edge dislocation smoothly transited away from
the rigid sphere. However, owing to the periodic boundary
condition of the migration of the edge dislocation, the edge
dislocation would further encounter the rigid sphere. As the
Orowan loop prevailed around the rigid sphere at this instant,
the interaction between the Orowan loop and the approach-
ing edge dislocation could be investigated. As displayed in
Fig. 5, in the initial stage of interactions between the Orowan
loop and edge dislocation, the edge dislocation line exhibited
broad oscillations. Thereafter, the edge dislocation started
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FIG. 5. Schematic of atomic detail of the edge dislocation by-
passing the (a) rigid sphere and (b) Orowan loop predicted by the
artificial neural network (ANN) potential. Roman numerals represent
the order of progression of edge dislocation. Refer to text for detail.

to bow out to bypass the Orowan loop, whereas the screw
component of the Orowan loop started to progress toward the
repulsive elastic interactions between the edge dislocation and
the Orowan loop [35]. Subsequently, the Orowan loop disinte-
grated into small loops at the front and rear of the rigid sphere.
The formation mechanism of these small loops was initially
proposed by Hirsch as an alternative to that of the Orowan
loop [44,45]. Thus, these small loops are hereinafter referred
to as Hirsch loops [44–47]. The critical stress required to
bypass the Orowan loop was 730 MPa, which is equal to
that required to bypass the rigid sphere. The Hirsch looping
mechanism for bypassing the Orowan loop has already been
reported for hexagonal close-packed and face-centered cubic
metals [46,47]. In this paper, we report the observation of
the Hirsch looping mechanism in bcc iron. Furthermore, as
stated in the previous studies as well as in this paper, the
Hirsch looping in edge dislocation does not occur directly but
materializes via Orowan looping [44–47].

IV. CONCLUSIONS

In summary, in this paper, we applied an ANN po-
tential to investigate the dynamic interaction between
(a0/2)〈111〉{110}-edge dislocation and obstacle in bcc iron by
leveraging the accurate calculations of DFT. Compared with
the asymmetric half-loop obtained with the EAM potential,
that obtained with the ANN potential better predicted an ultra-
smooth and symmetric half-loop for bowing-out dislocations.
In addition, these variations were apparently caused by the
significant differences in the Peierls stress between the ANN
and EAM potentials. Except for screw dislocation, the Peierls
stresses of all the dislocations predicted by the ANN were
<100 MPa. The Peierls stress of the edge dislocation was
2.4 MPa. The observations confirmed the formation of an
Orowan loop in the interaction between a rigid sphere and
an edge dislocation, which later segmented into small loops
and displayed a phenomenon that was earlier unknown. These
results were observed by leveraging the high accuracy of DFT
with the ANN potential. We believe that the obtained data

will be essential for evaluating dislocation dynamics across
several scales. Notably, high-accuracy ANN-based atomic po-
tentials have been proposed in various systems composed
of single elements as well as alloys and impurities [48–54].
We demonstrate that our constructed ANN potential has the
ability to perform dislocation dynamics with high accuracy.
By expanding our constructed ANN potential to binary and
trinity systems, we will be able to clarify not only the ori-
gin of the mechanical strength of bcc metals but also the
effect of impurities on bcc metals. In this paper, we only
used the standard parallelization method for the CPU of
LAMMPS [33]. By combining with the state-of-the-art GPU-
acceleration technique [55], the ANN potential will be able
to perform large-scale high-throughput calculation with high
accuracy. Overall, the atomic potentials derived in this paper
using an ANN will aid in advancing material design.
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APPENDIX A: DETAIL OF CHEBYSHEV DESCRIPTORS
AND THE IMPROVEMENT OF THE CUTOFF FUNCTIONS

In Chebyshev descriptors, the two-body radial contribution
is described as

Gpair
α =

∑
j �=i

Tα

(
2ri j

Rc
− 1

)
fc(ri j ), (A1)

where ri j is the atomic distance between atoms i and j, Rc is
the cutoff radius, and Tα is the Chebyshev polynomial of the
first kind [22]. The Chebyshev polynomials Tn are defined by
a recurrence relation as

Tn+1(x) = 2xTn(x) − Tn−1(x), (A2)

where T0(x) and T1(x) are 1 and x, respectively. The three-
body angle contribution is also described as

Gtriple
α =

∑
j �=i,k �=i, j

Tα

[
1

2
(cos θi jk + 1)

]
fc(ri j ) fc(rik ), (A3)

where ri j , rik , and r jk are the atomic distances between atoms
i, j, and k, and θi jk is the angle defined by the three atoms [18].
Because of the introduction of the cutoff function fc(ri j ), only
atoms within the cutoff radius Rc are considered in the sum of
Eqs. (A1) and (A3), and the calculation cost remains O(N ).
Here, fc is required to smoothly truncate both the value and
its first derivative at Rc. In the original version of our ANN
potential [18], we used a cosine cutoff function defined as

fc(ri j ) =
{

1
2

[
cos

(πri j

Rc

) + 1
]

(ri j � Rc)

0 (ri j > Rc)
, (A4)

and set Rc at 0.65 nm in both two- and three-body contribu-
tions. The computational cost increases in proportion to the
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FIG. 6. Change of square of cosine and fractional cutoff function
in range of 0.0–0.5 nm.

sixth power of Rc. Therefore, the setting of Rc and formula
of fc play critical roles in the computational efficiency and
accuracy of ANN potentials. Especially in the three-body
contribution, fc is multiplied twice. For a change in ri j(ik), the
three-body contribution changes in proportion to the square
of fc. As shown in Fig. 6, when Rc is shortened from 0.65
to 0.45 nm, the square of the cosine cutoff function becomes
very small in the range of 0.25–0.35 nm. Therefore, the ANN
cannot identify the changes in the three-body contribution in
this area. To overcome this problem, we used a fractional
cutoff function defined as

fc(ri j ) =
{

X 2

1+X 2 (ri j � Rc)

0 (ri j > Rc)
, (A5)

where X is defined as X = (ri j − Rc)/h, and h is set as
0.125 nm [53,56]. As shown in Fig. 6, the fractional cut-
off function maintains its value and gradually decreases for
distances between 0.25 and 0.35 nm. Therefore, the ANN
can identify the changes in the three-body contribution in

TABLE II. Computational times to evaluate the energy and force
of one atom on one CPU core of the ANN potential, the previous
version of the ANN potential [18], the EAM potential [34], and
GAP [37–40].

Units ANN EAM ANN [18] GAP

µs 103 1.8 2070 16 144
s−1

ANN 1 0.017 20 157

this area. For two-body contribution, we used a power cutoff
function defined as

fc(ri j ) =
{

1 + g
( ri j

Rc

)g+1 − (g + 1)
( ri j

Rc

)g
(ri j � Rc)

0 (ri j > Rc)
,

(A6)
where g is set as 3 [57]. We used Rc as 0.55 and 0.45 nm for
two- and three-body contributions, respectively. By adopting
these cutoff functions, we succeeded in reducing the compu-
tational cost while maintaining accuracy [18–20].

APPENDIX B: COMPARISON OF COMPUTATIONAL
TIMES FOR EACH POTENTIAL

Table II presents the computational time to evaluate the
energy and force of one atom on one CPU core of the ANN
potential on an Intel processor (Xeon Gold 6132, 2.6 GHz).
For reference, the computational time of the EAM [34], the
previous version of the ANN potential [18], and GAP [37–40]
are presented in Table II. The computational cost incurred by
the ANN potential is 57 times that by the EAM potential.
However, the computational time of the ANN potential is 157
times faster than that of GAP. The time spent for our typical
simulations, where atomic models include 1 000 000 atoms
and a MD step corresponds to 1 000 000 steps, was ∼22 d
using the standard parallelization method of the LAMMPS

code [33] on 56 CPU cores.
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