
PHYSICAL REVIEW MATERIALS 7, 063404 (2023)

Stochastic model and kinetic Monte Carlo simulation of solute interactions with stationary
and moving grain boundaries. II. Application to two-dimensional systems
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In Part I of this work, we proposed a stochastic model describing solute interactions with stationary and
moving grain boundaries (GBs) and applied it to planar GBs in 1D systems. The model reproduces nonlinear
GB dynamics, solute saturation in the segregation atmosphere, and all basic features of the solute drag effect.
Part II of this work extends the model to 2D GBs represented by solid-on-solid interfaces. The model predicts
a GB roughening transition in stationary GBs and reversible dynamic roughening in moving GBs. The impacts
of the GB roughening on GB migration mechanisms, GB mobility, and the solute drag are studied in detail.
The threshold effect in GB dynamics is explained by the dynamic roughening transition, which is amplified in
the presence of solute segregation. The simulation results are compared with the classical models by Cahn and
Lücke-Stüwe and previous computer simulations.
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I. INTRODUCTION

In many alloys, the chemical components strongly in-
teract with grain boundaries (GBs), reducing their mobility
and, in some cases, pinning the GBs in place. The most
common mechanism of the solute-induced retardation of GB
motion is the solute drag effect, in which the GB moves
slower when it carries a solute segregation atmosphere [1].
As a result, a larger driving force must be applied to sustain
the GB motion compared with the force required to move the
GB with the same velocity in the pure solvent. The difference
between the two forces is called the solute drag force, and its
strength is controlled by competition between GB migration
and solute diffusion. If the solute diffusivity is high, a heavy
atmosphere is dragged by the moving GB, drastically reducing
its mobility. If the solute diffusivity is low, the GB can break
away from the atmosphere and move faster.

The classical solute drag models by Cahn [2] and Lücke
et al. [3,4], and more recent computer simulations [5–21],
predict a highly nonlinear relation between the GB velocity
v and the solute drag force Fd . In particular, they predict a
maximum of Fd at a critical velocity v∗ separating two kinetic
regimes: the segregation drag at v < v∗ and a breakaway from
the atmosphere at v > v∗. Several open questions remain in
this field. For example, Cahn [2] predicted a morphological
instability of the moving GB in the breakaway regime, which
was not observed in simulations. It is also known that GBs can
undergo a roughening transition at high temperatures [22–25].
There is evidence that GB roughness increases GB mobility.
However, it is less clear how the GB motion affects the rough-
ness. Furthermore, the impact of the roughening transition on
the solute drag effect remains unexplored.

In Part I of this work [26], we proposed a simple stochas-
tic model describing solute interactions with stationary and
moving GBs. The model is solved by kinetic Monte Carlo
(KMC) simulations with time-dependent transition barriers.

The time dependence captures the increase in the GB displace-
ment barriers when the solute atoms diffuse toward the GB to
form a segregation atmosphere. The increasing barriers reduce
the GB mobility in a process that we call GB pinning [26].
The model was applied to a planar GB driven by an external
force [26]. It was shown that the model reproduces all basic
features of the solute drag effect, including the maximum of
the drag force at a critical velocity. By contrast to the clas-
sical models [2–4], which also assume planar GB geometry,
the present model describes nonlinear GB dynamics and the
solute saturation in the segregation atmosphere. While the
classical models predict that the maximum drag force must
be independent of the solute diffusivity, the simulations have
shown a significant increase in the maximum drag force with
increasing diffusivity. This increase should be expected: when
the solute diffusivity is fast, the segregation atmosphere can
follow the moving GB up to higher velocities, extending the
solute drag branch of the force-velocity relation toward larger
drag forces.

In the present paper (Part II), we extend the model to 2D
systems. This will allow us to study the GB shape fluctuations
in the form of either kink pairs or capillary waves. In Sec. II,
we formulate the 2D version of the model representing the
GB as a solid-on-solid interface with an adjustable interface
energy. The model reproduces a roughening transition in both
stationary and moving boundaries. This allows us to study the
dynamic roughening effect and its impact on GB migration
mechanisms and the solute drag process.

II. MODEL FORMULATION AND SIMULATION METHOD

In the 2D version of the model, the GB is a 1D object
(curve) separating two 2D grains. The model is illustrated
in Fig. 1(a). The GB is composed of N straight segments
connecting the nodes of an imaginary a × a grid. The nodes
are at xi = ia, zi = ja, where i = 0, 1, . . . , N − 1 and j are
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FIG. 1. (a) 2D GB composed of straight segments connecting
nodes of an a × a square grid. The GB can migrate under an applied
force F by stochastic displacements of the nodes by ±a at a time
parallel to the z axis. (b) Elementary excitation of a planar GB.
(c) The excitation grows when a neighboring node makes a jump
forward, forming a double kink. (d) Another jump causes further
growth of the kink pair.

integers. The periodic boundary condition zN = z0 is imposed.
The nodes can be interpreted as structural units of the GB.
Each GB segment [i, i + 1] is assigned the excess energy

εi = γ a[
√

a2 + (zi+1 − zi )2 − a], (1)

where γ is the GB energy per unit area assumed to be the same
for all segments. For a planar interface all εi = 0.

Each GB node i is acted upon by two forces: (1) external
force F applied parallel to the z axis, and (2) local interface
tension εi−1 + εi. At a finite temperature, each node executes
a driven random walk along the z axis.

The model falls in the category of solid-on-solid (SOS)
models [22,27–29], which were originally developed for sur-
face roughening and crystal growth from a vapor phase. SOS
models have several versions, depending on the algorithm for
computing the excess energy. The best known of them are the
discrete Gaussian SOS (DGSOS) model with

εi = γ (zi+1 − zi )
2, (2)

and the absolute SOS (ASOS) model with

εi = γ a|zi+1 − zi|. (3)

A 3D DGSOS model was recently used to simulate solute
drag by moving GBs [14]. There is no compelling physical
reason to prefer one SOS version over another. The ansatz in
Eq. (1) interpolates between the DGSOS and ASOS versions.
It converges to the ASOS version when |zi+1 − zi| � a but
regularizes the discontinuity of the energy derivative with
respect to the inclination angle at zi = zi+1.

To describe the GB dynamics, we adopt the harmonic
transition state theory [30], by which the forward (+) and
backward (−) transition (jump) rates of any GB node i are
ω±

i = ν0P±
i , where ν0 is the attempt frequency assumed to be

constant,

P±
i = exp

(
− E±

i

kBT

)
(4)

are the jump probabilities, and kB is Boltzmann’s constant.
The jump barriers E±

i are given by

E±
i =

⎧⎨
⎩

Eti exp
( u±

i
2Eti

)
, u±

i � 0,

u±
i + Eti exp

(− u±
i

2Eti

)
, u±

i > 0,
(5)

where u±
i is the total energy change due to the jump. This

energy change includes the work ∓Fa against the external
force F and the energy changes, �εi−1 and �εi, of the two
GB segments connected to node i:

u±
i = ∓Fa + �εi−1 + �εi. (6)

As discussed in Part I [26], the exponential terms in Eq. (5)
ensure that the barriers decrease with increasing force −u±

i /a
but never become strictly zero. Previous models [31–34] as-
sumed that a barrier could be suppressed to zero at a critical
value of the force. In the present model, the zero-barrier point
is regularized by replacing it with an exponential decay as the
force increases.

The variable Eti in Eq. (5) is the unbiased (when u±
i = 0)

jump barrier. In the absence of pinning, the unbiased barrier is
E0, which is a model parameter. The unpinned and unbiased
residence time of any GB node is

t0 = 1

2ν0
exp

(
E0

kBT

)
. (7)

The pinning raises the unbiased jump barrier to Eti > E0.
Accordingly, the biased jump barriers E±

i given by Eq. (5)
also increase. In the KMC simulations, the increase of the
barriers due to the pinning effect is implemented by the fol-
lowing algorithm. After arriving at the current state i, the GB
node attempts to make a new jump. After each unsuccessful
attempt, we penalize the node by increasing the jump barriers
for both escape routes from the state i. After n unsuccessful
attempts, the unbiased barrier becomes

Eti = E0

(
1 + (α − 1)

√
t/tp

1 + √
t/tp

)
, (8)

where t = n/2ν0 is the discrete time variable. Here, α > 1
is the pinning strength coefficient and tp > 0 is the pinning
time, both model parameters. After the node finally makes a
successful jump, the attempt counter n is reset to zero and the
process repeats from the new state. When t � tp, the barri-
ers grow with time as

√
t . The square root time dependence

reflects the diffusion kinetics of the solute supply to the GB,
causing its pinning. If a successful jump takes a long time
t � tp, the barrier plateaus at Eti = αE0 ≡ E∞ > E0. This
long-time limit represents the saturation of the segregation
atmosphere. Once the atmosphere is saturated, the GB dis-
placements are controlled by the fully pinned barrier E∞.
The most interesting and complex is the intermediate kinetic
regime in which tp is close to the escape time t0. We refer to
this kinetic regime as active pinning.

The process described above was implemented in KMC
simulations. At each KMC step, three random numbers
(r1, r2, r3) are drawn uniformly from a unit interval. The first
number r1 chooses a GB node, say i, for an attempt. All
nodes can be chosen with equal probability. Then r2 chooses
between a forward jump or a backward jump, also with equal
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probability. Finally, r3 decides if the attempt is successful
according to the jump probability P±

i . If the attempt fails, the
counter of unsuccessful attempts at site i is advanced by 1 and
Eti is raised according to Eq. (8). If the jump is successful, the
node i is shifted by ±a along the z axis, the counter of failed
attempts is reset to 0, and the jump probabilities at nodes
i − 2, i − 1, i, i + 1, and i + 2 are updated. After 2N KMC
attempts, the clock is advanced by ν−1

0 . Other details of the
KMC algorithm were discussed in Part I [26].

III. EQUILIBRIUM GRAIN BOUNDARY PROPERTIES

We will first investigate GB properties in the absence
of external forces (F = 0). The GB is then only subject to
equilibrium thermal fluctuations. Analysis of this case will
create a baseline for comparison with moving GBs discussed
later in Sec. IV. In addition, since the present SOS model is
distinct from previous versions, a detailed characterization of
equilibrium GB properties will inform future applications of
the model

A. Theoretical background

Without external forces, the average GB position

z∗ = 1

N

N−1∑
i=0

zi (9)

executes an unbiased random walk while the GB shape fluc-
tuates due to energy exchanges with the thermostat. The GB
properties can be characterized by the following quantities:

(i) Excess GB energy

ε ≡ 1

N

(
N−1∑
i=0

εi

)
(10)

and the mean squared excess GB energy

ε2 ≡ 1

N

(
N−1∑
i=0

ε2
i

)
, (11)

where the bar indicates averaging over a long time.
(ii) GB heat capacity per node computed from the energy

fluctuation formula

C = N
ε2 − ε2

kBT 2
. (12)

Note that the GB heat capacity can also be calculated directly
by C = dε/dT .

(iii) Excess GB area s̄ ≡ ε̄/γ .
(iv) Mean squared GB width

w2 ≡ 1

N

(
N−1∑
i=0

w2
i

)
, (13)

where

wi ≡ zi − z∗. (14)

(v) The GB “flatness” parameter f defined as the fraction
of parallel segments (zi = zi+1) relative to the total number of
segments.

(vi) Energy self-correlation function

K (t ) = 〈ε(t )ε(0)〉 − ε2

ε2 − ε2
, (15)

where ε(t ) is the instantaneous interface excess energy per
node and the angular brackets indicate averaging over initial
states (t = 0) along a long simulation trajectory.

The GB structure is expected to be nearly planar with a
small number of thermal kinks when kBT � γ a2 and rugged
and wavy when kBT � γ a2. A transition from the first struc-
ture, called “smooth,” to the second one, called “rough,” can
be expected to occur when γ a2 is comparable to kBT .

A smooth GB contains kinks as thermal excitations of the
perfectly planar structure. In the present model, the lowest-
energy excitation is the triangular bump shown in Fig. 1(b).
Its excess energy is

u2k = 2uk = 2(
√

2 − 1)γ a2 (16)

and the formation barrier in the absence of pinning is

E2k = u2k + E0 exp

(
− uk

E0

)
, (17)

where uk = (
√

2 − 1)γ a2 is the single-kink energy. One of
the base nodes of the triangular bump can jump forward to
form a double kink [Fig. 1(c)]. The barrier of this jump is
E0 < E2k and the GB energy does not change. The next jump,
shown in Fig. 1(d), causes further separation of the kinks; it
has the same barrier E0 and does not change the GB energy
either. Thus, the triangular bump is the critical nucleus of the
kink pair formation. Since the kink pair nucleation barrier E2k

is higher than the kink migration barrier E0, the kink pair
formation at a smooth GB is a nucleation-controlled process.

The thermal kink concentration (probability per node) on a
smooth GB is [35,36]

nk = 2 exp

(
− uk

kBT

)
, (18)

from which the excess GB energy is

ε = 2uk exp

(
− uk

kBT

)
. (19)

The GB heat capacity calculated from this energy,

C = dε

dT
= 2u2

k

kBT 2
exp

(
− uk

kBT

)
, (20)

reaches a maximum at kBT/γ a2 = (
√

2 − 1)/2 ≈ 0.21. This
maximum can be associated with the GB roughening transi-
tion. Note that the kink concentration corresponding to this
maximum is nk = 2e−2 ≈ 0.27, which is no longer small.

Above the roughening transition, the GB develops sig-
nificant shape fluctuations and can be better described by
the capillary wave theory [27,36,37]. For 2D interfaces, the
capillary wave amplitude diverges to infinity with increasing
lateral size L = Na. The relevant results of the theory are
summarized in Appendix A. The theory predicts the mean
squared GB width

w2 = kBT L

12�a
, (21)
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TABLE I. Physical and normalized (dimensionless) variables in
the 2D GB model.

Variable Physical Normalized

Coordinates x, z ξ = x/a, ς = z/a
Time t τ = tν0

Velocity v η = v/aν0

Temperature T θ = kBT/E0

Driving force F ϕ = Fa/E0

GB energy γ σ = γ a2/E0

GB stiffness � λ = �a2/E0

Mean squared GB width w2 ω2 = w2/a2

where

� = f0 + (∂2 f /∂β2)0 (22)

is the GB stiffness, f is the GB free energy per unit area, and
β is the small angle between the local GB orientation and the
x axis. The first term on the right-hand side of Eq. (22) is
the GB free energy in the β → 0 limit (perfectly planar GB).
The second (“torque”) term is the second angular derivative
of f taken in the β → 0 limit. It should be emphasized that
the underlying assumption of the theory is that β � 1, i.e.,√

w2 � L.

B. Simulation results

The KMC simulations were performed in normalized vari-
ables obtained by dividing the time, the coordinates, and all
energies by ν−1

0 , a, and E0, respectively. The normalized tem-
perature, force, and GB energy become, respectively,

θ = kBT

E0
, ϕ = Fa

E0
, σ = γ a2

E0
.

Other normalized variables used in the simulations are sum-
marized in Table I. The results presented in this subsection
were obtained at σ = 1.

1. GB properties in the absence of pinning

We first consider the simulation results in the absence of
pinning. Recall that the GB is not acted upon by any external
force (ϕ = 0).

Figure 2 shows typical structures of a smooth GB with
a small concentration of kinks, a rough GB with capillary
waves, and a moderately rough GB in between. As expected,
the GB evolves from smooth to rough with increasing temper-
ature.

To understand the nature of the roughening transition, we
examine the temperature dependence of the GB heat capacity
computed from the fluctuation formula (12). Figure 3 shows
that the heat capacity obtained by the simulations reaches a
maximum when θ/σ is reasonably close to 0.2, as predicted
by the kink model mentioned above. The simulations accu-
rately follow Eq. (20) at low temperatures when the GB is
fairly smooth. The agreement worsens with temperature, and
the maximum predicted by Eq. (20) significantly overshoots
the simulation results. This is unsurprising given that the GB
structure near the maximum is intermediate between smooth

FIG. 2. Typical interface shapes at σ = 1. (a) Smooth interface
(θ = 0.083). (b) Moderately rough interface (θ = 0.095). (c) Fully
rough interface (θ = 0.285). The GB is composed of N = 1024
nodes.

FIG. 3. GB heat capacity as a function of temperature θ at σ = 1
for several system sizes N indicated in the key. The boundary is not
subject to external forces or solute pinning. As N increases by nearly
an order of magnitude, the heat capacity curves coincide within the
statistical scatter. The solid curve is predicted by Eq. (20) based on
the kink model.
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and rough, and the kink model is a crude approximation. For
a true phase transformation, the height of the heat capacity
maximum must increase with the system size and diverge to
infinity in the thermodynamic limit (N → ∞). By contrast,
the heat capacity obtained by the simulations is virtually inde-
pendent of the system size. Thus, in the present model, the
GB roughening is a continuous transformation. Continuous
roughening was also predicted by other models of 2D inter-
faces [27,29,36].

In the capillary wave regime, Eq. (21) predicts that the
mean squared GB width ω2 increases with the system size
N and diverges to infinity at N → ∞. This divergence is con-
sidered a formal definition of a rough interface. The expected
increase of ω2 with N is indeed observed in the simulations
[Fig. 4(a)], confirming that the GB is officially rough above
θ ≈ 0.2. Furthermore, the plots of ω2/N versus θ for different
N values collapse into a single master curve [Fig. 4(b)] as
predicted by Eq. (21). This curve allows us to extract the
normalized interface stiffness λ using the dimensionless form
of Eq. (21):

λ = θ

12(ω2/N )
. (23)

The stiffness obtained from this equation is plotted as a func-
tion of temperature in Fig. 5. The sharp increase in λ below
the roughening transition is an artifact because the capillary
wave model is only valid for rough interfaces. The fact that λ

decreases with increasing temperature points to a significant
contribution of the configurational entropy to the GB free
energy associated with the GB shape fluctuations.

Figure 6(a) illustrates typical energy self-correlation func-
tions K (τ ) at several temperatures including both smooth and
rough GB structures. The correlation decay rate increases with
temperature, as it should for a thermally activated process. The
decay rate can be quantified by extracting the relaxation time
τr by fitting the short-time portion of K (τ ) with the expo-
nential relation K = K0 exp(−τ/τr ), where K0 is a constant.
The relaxation times obtained are plotted in the Arrhenius
coordinates ln τr versus 1/θ in Fig. 6(b). Observe that the
curves corresponding to different system sizes coincide within
the scatter of the points, confirming the local nature of the
short-time relaxation. The Arrhenius plots are fairly linear at
low temperatures but develop a significant upward deviation
above the roughening transition. The low-temperature por-
tions of the curves, corresponding to smooth GB structures,
were fitted with the Arrhenius relation

τr = τ 0
r exp

(
−εa

θ

)
, (24)

where τ 0
r is a constant. The activation energies εa extracted

from the fits were found to be practically the same for all sys-
tem sizes and equal to εa = 0.821. This number is reasonably
close to the normalized kink pair energy u2k/E0 = 2(

√
2 −

1)σ = 0.828; see Eq. (16) above and recall that σ = 1 in
the simulations. This agreement confirms that the dominant
relaxation mechanism in a smooth GB is the nucleation and
recombination of thermal kink pairs. The non-Arrhenius devi-
ation at high temperatures reflects the gradual transition from
the smooth to the rough GB structure when the fluctuations
form capillary waves. Under such conditions, the relaxation

FIG. 4. (a) Mean squared GB width ω2 as a function of temper-
ature θ at σ = 1 for three system sizes N indicated in the key. The
monotonic increase of ω2 with N proves the GB roughness. (b) The
plots of ω2/N versus θ for different N values collapse into a single
curve, confirming the size scaling predicted by Eq. (21).

mechanism involves collective rearrangements of the high
concentration of geometrically necessary kinks accommodat-
ing the GB curvature. Such rearrangements occur on a greater
length scale than in a smooth GB, causing the significant
increase in the relaxation time.

2. GB properties with pinning

The effect of pinning on the equilibrium GB properties is
controlled by the relative pinning time τp/τ0, where τ0 = t0ν0

is the unpinned residence time. To investigate the pinning
effect, the KMC simulations were performed at several fixed
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FIG. 5. GB stiffness λ as a function of temperature computed
from Eq. (23) at σ = 1 for three different system sizes N . The dashed
line marks the approximate location of the GB roughening transition.

values of τp/τ0 spanning the range from 0.01 to 100. As
temperature was increased, τ0 decreased [cf. Eq. (7)] but τp

was adjusted to keep τp/τ0 constant. The GB energy and the
pinning strength were fixed at σ = 1 and α = 1.5, respec-
tively.

The general trend observed in the simulations is that the
active pinning promotes GB roughness. For example, Fig. 7(a)
presents the mean squared GB width ω2 plotted as a function
of temperature for a set of τp/τ0 values. At temperatures well
above the roughening transition, ω2 is practically independent
of τp/τ0 and increases as a linear function of temperature,
as predicted by the capillary-wave equation (21). Thus, the
pinning has little effect on the rough GB structure. As temper-
ature decreases and the GB becomes smoother, ω2 deviates
from the linear behavior. At large and small τp/τ0 values, ω2

approaches the simulation results obtained in the absence of
pinning (the curve labeled ∞). At intermediate τp/τ0 values
corresponding to the active pinning regime (e.g., τp/τ0 be-
tween 1 and 10), ω2 displays upward deviations that grow
as temperature decreases. The GB becomes wider and thus
rougher compared with the unpinned and fully pinned cases.
At even low temperatures, ω2 converges to zero as the GB at-
tains a smooth structure. In other words, the pinning effect on
the GB width is strongest at temperatures near the roughening
transition and when the pinning time τp is on the order of τ0.

These observations are consistent with the temperature
dependence of the heat capacity shown Fig. 7(b). It should
be reminded that the fluctuation formula (12) does not
necessarily give the correct heat capacity under the active
pinning conditions because the KMC simulations become
non-Markovian [26]. Nevertheless, the heat capacity obtained
from Eq. (12) can be used as simply a measure of energy
fluctuations, which are expected to grow near the rough-
ening transition. As with the mean squared GB width, at

FIG. 6. (a) Energy self-correlation function K (τ ) for N = 256
and σ = 1 at several temperatures θ indicated in the labels.
(b) Arrhenius diagram of the energy relaxation time τr for different
system sizes indicated in the key. The straight lines are linear fits to
the low-temperature portions of the curves.

temperatures above the roughening transition, the heat ca-
pacity is unaffected by pinning: the results obtained at all
τp/τ0 values converge to the same curve obtained by unpinned
simulations. At large and small τp/τ0 values, the heat capacity
continues to follow the unpinned curve. However, in the active
pinning regime, the heat capacity displays significant upward
deviations at temperatures close to the roughening transition.
Taking the peak position as the transition temperature, we
observe that active pinning shifts the roughening transition
temperature down and makes the transition sharper.
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FIG. 7. Effect of pinning on GB properties without driving
forces. The KMC simulations were performed at N = 256, σ = 1,
and several values of the relative pinning time τp/τ0 indicated in the
key. The curve labeled ∞ corresponds to the absence of pinning.
(a) Mean squared GB width ω2 as a function of temperature θ . (b) GB
heat capacity as a function of temperature θ .

IV. GRAIN BOUNDARY DYNAMICS

A. GB dynamics in the absence of pinning

Now suppose that the GB is acted upon by an external
force F . We first disregard the pinning effect and consider the
motion of a chemically pure GB.

Examples of velocity-force functions obtained by the simu-
lations are shown in Fig. 8 for several values of the normalized
GB energy σ . The simulation temperature is fixed at θ = 0.2,

FIG. 8. Velocity-force relations in the 2D GB model with N =
512 nodes at the temperature of θ = 0.2 for several values of the GB
energy σ indicated in the key. The GB is not subject to pinning.

which is close to the roughening transition in a stationary
GB. Since large GB energy enforces planar GB shape, one
would expect that, as σ increases, the velocity-force curves
should approach those predicted by the 1D model. Contrary
to this expectation, it is the lowest-energy curve (σ = 0.1)
that is practically indistinguishable from the curve computed
previously [26] within the 1D model (not shown in the figure).
As σ increases, the 2D results increasingly deviate from the
1D model. The curves develop a nearly flat portion at low
velocities, followed by a rapid rise as the driving force in-
creases. Similar shapes of velocity-force functions were seen
in some of the previous 2D and 3D simulations of inter-
face dynamics [5,6,14,38,39]. Note that a stationary GB with
σ = 0.1 is rough, a stationary GB with σ = 1 is transitional
between rough and smooth, and stationary GBs with σ = 2,
3, 4 and 5 are smooth. Two conclusions can be drawn from
these observations:

(i) 1D models, including the classical models [2–4],
should be interpreted as representing driven motion of the
average plane of a rough GB.

(ii) Smooth GBs strongly deviate from the classical mod-
els by displaying much lower mobility.

The mechanism of the latter deviation is as follows.
Smooth GBs undergo a dynamic roughening transition as the
velocity increases at a fixed temperature. This transition alters
the migration mechanism and increases the GB mobility. The
migration mechanism is mediated by the motion of kink pairs
when the GB is smooth and by a biased random walk of the
average GB plane when the GB becomes rough. As mentioned
above, a rough GB contains a high concentration of geomet-
rically necessary kinks accommodating the capillary waves.
Their motion is responsible for both the capillary fluctuations
and, in the presence of a driving force, for the drift of the
average GB plane. Due to the large kink concentration, the GB
mobility is high. By contrast, a smooth GB contains a small
concentration of thermal kinks that can only support slow
GB migration. A large enough force can cause the nucleation
of additional (nonequilibrium) kinks and eventually cause a
dynamic roughening transition. The latter, in turn, accelerates
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FIG. 9. Excess GB area s (normalized by a2) as a function of
driving force at the temperature of θ = 0.2 for three values of the
GB energy σ . At each value of the force, s was obtained by averaging
over a long time in the steady-state regime. The system size is N =
512 and the GB is not subject to pinning.

the GB migration and is responsible for the sigma shape of the
velocity-force curves at large σ values (Fig. 8).

The dynamic roughening transition is illustrated Fig. 9
using the excess area s as a measure of GB roughness. In
the stationary state (F = 0), the three GBs shown in this
plot are, respectively, smooth (σ = 5), intermediate (σ = 1),
and rough (σ = 0.1). When a force is applied and causes
GB motion, the GB roughness increases with the force. The
initially smooth GB develops nonequilibrium kinks and even-
tually reaches the excess area characteristic of rough GBs.
The initially rough interface becomes even rougher. Figure 10
visually represents the dynamic roughening transition with
increasing velocity. As in the stationary case, this transition
is continuous.

We next discuss the kink-mediated migration of a smooth
GB in more detail. Several models of interface migration by
the kink pair mechanism were proposed [35,38,40,41]. (We
note in passing that the problem is similar to kink-mediated
dislocation glide if elastic effects are neglected.) We assume
that the kinks only nucleate by pairs and their thermally equi-
librium concentration is small. The driving force reduces the
barrier of forward GB jumps and creates a relatively high con-
centration n2k of nonequilibrium kink pairs (number per unit
area) bounding GB segments displaced in the force direction.
The force also biases the barriers of kink jumps parallel to the
GB plane, driving kink separation in each pair. The kink pair
growth velocity is 2v, where v is the single-kink drift velocity
along the planar boundary given by

v = aν0

[
exp

(
−E (+)

kBT

)
− exp

(
−E (−)

kBT

)]
, (25)

where

E (+) = E0 exp

(
− Fa

2E0

)
(26)

is the forward jump barrier and

E (−) = Fa + E0 exp

(
− Fa

2E0

)
(27)

FIG. 10. Demonstration of dynamic GB roughening at the tem-
perature of θ = 0.2 without pinning. The initially smooth GB (σ =
5) remains smooth under a force of ϕ = 0.2 (a) but becomes rough at
ϕ = 4 (b). The initially rough boundary (σ = 0.1) remains equally
rough at ϕ = 0.2 (c) but becomes much rougher at ϕ = 4 (d). The
system size is N = 512. Note the difference in the scale of the
ς axes.

is the backward jump barrier. The velocity-force relation pre-
dicted by Eq. (25) is linear under a small force and becomes
nonlinear as the force increases.
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Suppose the GB is initially planar and the applied force
causes the nucleation of J kink pairs per unit area per unit
time. After a time t , the pair concentration becomes n2k = Jt .
During this time, the nuclei grow to the average size 2vt . The
time required to form a contiguous new layer is found from
the condition 2vt = l2k , where l2k = 1/n2ka is the average
distance between the nucleation centers. This crude estimate
gives the time t = 1/

√
2avJ in which the GB displaces a

distance a (one layer thickness) in the force direction. For the
GB velocity v2k = a/t we then have

v2k = a
√

2avJ, (28)

where the subscript 2k indicates that this velocity is specific
to the kink pair mechanism. Equation (28) was previously
derived by Bertocci [40] by a different method.

The next step is to calculate the nucleation rate J . This rate
is controlled by the nucleation rate of triangular bumps shown
in Fig. 1(b):

J = ν0

a2
P01Ps, (29)

where

P01 = exp

(
−u2k − Fa + E0e−(u2k−Fa)/2E0

kBT

)
(30)

is the probability per one attempt that a given node on a planar
GB (call it state 0) pops up to form a triangular bump (call it
state 1). The factor Ps in Eq. (29) is the probability of survival
of the bump. Indeed, the bump can disappear by a reverse
jump 1 → 0 whose probability per attempt is

P10 = exp

(
−E0e−(u2k−Fa)/2E0

kBT

)
. (31)

Alternatively, the triangular bump can expand into a kink pair
containing two GB nodes (state 2) as shown in Fig. 1(c).
This kink pair can collapse back into the triangular bump
(jump 2 → 1) or expand further. The kink separation will then
execute a driven random walk in which it will most likely
keep expanding indefinitely. But there is a chance that the kink
pair eventually collapses back into a triangular bump. Ps is the
probability that such a collapse does not happen. As shown in
Appendix B,

Ps = 2(P12 − P21)

P10 + 2(P12 − P21)
. (32)

Here,

P12 = exp

(
−E0e−Fa/2E0

kBT

)
(33)

and

P21 = exp

(
−Fa + E0e−Fa/2E0

kBT

)
(34)

are the 1 → 2 and 2 → 1 jump probabilities (per attempt),
respectively. Note that they are related to the single-kink drift
velocity (25) by

v = aν0(P12 − P21). (35)

FIG. 11. Zoom into the low-velocity portions of the velocity-
force curves shown in Fig. 8. The GB energies σ are indicated in the
key. The points represent KMC simulation runs. The orange curves
are predicted by Eq. (36) based on the kink pair GB migration model
neglecting the system size effect. The black curves are predicted by
Eq. (39) including the system size correction.

Putting all pieces together, the GB velocity by the kink pair
mechanism becomes

v2k = 2v

(
P01

P10 + 2(P12 − P21)

)1/2

. (36)

Figure 11 shows that Eq. (36) compares with the KMC
simulations reasonably well when the GB energy is not too
high. However, it increasingly overestimates the velocity as
the GB energy increases. This is understandable because the
nucleation rate decreases with increasing GB energy, and the
nuclei spacing l2k eventually reaches the system size L = Na
(N = 512 in the simulations). The GB migration becomes
strongly nucleation-controlled. A single nucleation event trig-
gers rapid expansion of the kink pair to the system size before
another pair has a chance to nucleate. The expectation time of
the nucleation event is t = (JaL)−1. Thus, instead of Eq. (28),
the GB velocity becomes

v2k = a/t = Ja2L. (37)

Note that Eq. (28) can be written in the form v2k = Ja2l2k ,
showing that the nucleation-controlled case is obtained by
replacing l2k with L.

It was proposed [35,41] to capture the system size de-
pendence by multiplying v2k by the interpolating function
L/(L + l2k ) with l2k calculated for an infinitely large system.
It is easy to show that

l2k =
(

2v

aJ

)1/2

= a

(
P10 + 2(P12 − P21)

P01

)1/2

. (38)

Comparison with the KMC simulations shows that this inter-
polating function overcorrects the model by underpredicting
the GB velocity (not shown in Fig. 8). Note that the choice
of the interpolating function is arbitrary as long as it gives the
correct values of 1 and L/l2k in the limits of l2k � L (infinitely
large system) and l2k � L (small system), respectively. For
example, we find that the function L/(L2 + l2

2k )1/2 provides
much better agreement with the simulations of high GB
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energies (Fig. 11). The respective GB velocity is

v2k = 2v

(
P01

[P10 + 2(P12 − P21)]
(
1 + l2

2k/L2
)
)1/2

(39)

with l2k given by Eq. (38).
The demonstrated agreement between the kink pair model

and the simulation results corroborates our explanation that
the peculiar S shape of the velocity-force relations in Fig. 8 is
caused by a transition of the GB migration mechanism from
(1) kink pair nucleation and growth under a small force to (2)
driven random walk of a rough GB structure under a larger
force.

B. GB dynamics with pinning

We now consider a GB subject to the pinning effect. It is
convenient to discuss the impact of pinning in terms of the
normalized solute diffusivity D/D0 rather than the normalized
pinning time τp/τ0 as in Sec. III B 2. The relation between
the two is D/D0 = τ0/τp [26]. In the simulations presented
below, D/D0 was varied while the pinning strength was fixed
at α = 1.5.

As expected, we find that the pinning always reduces
the GB velocity under a given driving force relative to the
unpinned case (Fig. 12), which is a manifestation of the
solute drag effect. As also expected, faster solute diffusion
(larger D/D0) causes stronger retardation of the GB motion.
This is understandable because a faster solute can keep up
with the moving GB and slow it down. The S shape of the
velocity-force curves becomes more pronounced, especially
for high-energy GBs [Fig. 12(b)]. As discussed in the previous
subsection, the S shape is caused by the dynamic roughening
effect. Since the pinning reduces the GB velocity, it partially
suppresses the dynamic roughening. The slow kink pair mi-
gration mechanism continues to operate until larger forces,
causing the nearly flat portion of the curves in the low-velocity
regime.

The solute drag force is defined as the difference between
the force required to drive the GB in the presence of pin-
ning and the force to drive an unpinned GB with the same
velocity [26]. In Fig. 12, the drag force is the horizontal
distance between the pinned curves and the unpinned curve
corresponding to D/D0 = 0. The velocity dependence of the
normalized drag force ϕd is shown in Fig. 13 for several values
of D/D0. For the low-energy GB (σ = 0.1), the drag-velocity
curves look qualitatively similar to those in the 1D model [26],
except that the magnitude of the drag force is systematically
higher. As long as the solute diffusivity is not too high, the
drag force reaches a maximum at a critical velocity, as pre-
dicted by the classical solute drag models [2–4] and confirmed
in the 1D version of the present model [26]. Recall that on
the left of the maximum, the GB drags the segregation atmo-
sphere, while on the right of the maximum, it breaks away
from it.

As in the 1D case [26], some results of the 2D simula-
tions deviate from predictions of the classical models. This
includes Cahn’s [2] prediction that the maximum drag force
is independent of the solute diffusivity. Figure 13 shows that
the maximum value of ϕd strongly depends on the solute

FIG. 12. Velocity-force relations for the 2D GB with N = 512
nodes at the temperature of θ = 0.2 for several values of the nor-
malized solute diffusivity D/D0 indicated in the key. The curve for
D/D0 = 0 was obtained by simulations without pinning. (a) σ = 0.1;
(b) σ = 4.0.

diffusivity. Fast solute diffusion amplifies the drag by in-
creasing the height of the maximum and shifting it toward
larger velocities. When D/D0 is large enough, the maximum
smooths out. The breakaway regime disappears, and the drag
force becomes a monotonically increasing function of GB
velocity. The atmosphere remains permanently attached to the
GB and evolves continuously from heavy when the GB moves
slowly to light when it moves fast.

An important effect revealed by the present simulations and
not captured by 1D models is the impact GB roughness on
the solute drag. As shown in Fig. 13, the drag-velocity curves
for the high-energy GB (σ = 4) have a significantly different
shape than those for the low-energy boundary (σ = 0.1). Re-
call that the former is smooth in the stationary state while the
latter is rough. The difference between the two cases increases
as the solute diffusivity decreases. For the high-energy GB,
the low-velocity portions of curves become nearly vertical
and exhibit a behavior akin to a threshold effect. Namely,
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FIG. 13. Solute drag force ϕd as a function of velocity η for the
2D GB with N = 512 nodes at the temperature of θ = 0.2 for several
values of the normalized solute diffusivity D/D0 indicated in the key.
(a) σ = 0.1; (b) σ = 4.0.

the GB velocity remains extremely low until the drag force
reaches a critical (threshold) level. At the critical force, the GB
abruptly accelerates, producing the nearly horizontal portion
on the curves. This transition is continuous but very sharp. It is
further illustrated in Fig. 14, where it is especially pronounced
for the high-energy GB at D/D0 = 0.05. Observe that the
transition occurs on the low-velocity side of the drag-force
maximum where the atmosphere is attached to the GB. Note
also that, on the high-velocity side of the maximum, the

FIG. 14. Solute drag force ϕd as a function of velocity η for the
2D GB with N = 512 nodes at the temperature of θ = 0.2 for two
values of the normalized solute diffusivity D/D0. The GB energies σ

are indicated in the key. The points mark the maxima of ϕd .

high- and low-energy curves converge to each other, demon-
strating similar dynamics.

Analysis shows that the threshold behavior of the solute
drag is caused by the dynamic roughening effect. The latter
was previously demonstrated for unpinned GBs (see Figs. 9
and 10). It was shown that a smooth GB becomes rough
when driven by an external force. This effect is reproduced
in Fig. 15, where we use the excess GB area and the GB
flatness parameter f as measures of roughness. This time
we include the simulation results obtained in the presence of
pinning. The plots show that the excess area increases and the
flatness decreases with the GB velocity in all cases, which is
a manifestation of dynamic roughening. We also observe that
pinning increases the GB roughness relative to the unpinned
GB moving with the same velocity.

Furthermore, in the presence of pinning, the curves in
Fig. 15 tend to develop a threshold behavior in the low-
velocity limit. The nearly vertical portion of the curves
indicates that the GB resists the motion. As the driving force
increases, so does the GB roughness due to the reduced barri-
ers for kink pair nucleation. The GB remains nearly pinned in
place until it develops a sufficient degree of roughness. Once
a high enough level of roughness is reached, the GB motion
accelerates, which in turn causes further roughening. Even-
tually, the GB enters a kinetic regime in which its dynamic
roughness increases gradually with the velocity.

Although the dynamic roughening transition is continuous,
it seems reasonable to associate it with the point of maximum
curvature on the roughness-velocity curves. In Fig. 15, such
points are marked by vertical arrows. We emphasize that the
dynamic roughening transition differs from the previously dis-
cussed static roughening transition (which is thermodynamic
in nature) both conceptually and in the degree of roughness
reached at the transition point. Dynamic roughening also oc-
curs without pinning when it is more diffuse (spread over a
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FIG. 15. (a) Excess GB area s/a2 and (b) GB flatness parameter
f as a function GB velocity η for the GB energies σ = 0.1 (black
curves) and σ = 4.0 (red curves). s, f , and η were obtained by
averaging over a long period of time after the GB motion reaches a
steady state. The solid curves represent an alloy with the normalized
solute diffusivity D/D0 = 0.1. The dashed curves were obtained
by solute-free simulations. The points mark the velocities at which
the solute drag force reaches a maximum. The vertical blue arrows
indicate approximate locations of the dynamic roughening transition.
The temperature is θ = 0.2 and the system size is N = 512.

wider interval of velocities). The pinning shifts the transition
toward smaller velocities and makes it much sharper. This
causes the threshold behavior of the solute drag seen in Figs. 9
and 10. Thus, the dynamic roughening transition in GBs can
strongly impact the solute drag dynamics, especially for high-
energy GBs that are smooth under stationary conditions.

V. DISCUSSION AND CONCLUSIONS

We have developed a stochastic model of solute-GB
interactions aiming to better understand the solute drag phe-
nomenon. The model is very simple and contains only a small
number of parameters but still captures the main physics of
solute interactions with both stationary and moving GBs. The
model describes the kinetic competition between GB migra-
tion and solute diffusion, which is the key mechanism of the
solute drag. The solute diffusion is included in the model
indirectly through the square root time dependence of the GB
jump barriers. The GB dynamics is represented more accu-
rately than in the linear approximation commonly employed
in the modeling of GB migration.

Since the model is stochastic, its numerical solution re-
quires KMC simulations. At variance to the traditional KMC
simulations, the present random walk algorithm does not im-
plement a Markov chain. As discussed in Part I [26], the
transitions between the GB states are memoryless but the
residence time does not follow the exponential distribution,
making the random walk a semi-Markov process [42–44]. As
a consequence, the steady-state occupation probabilities of the
GB states do not follow the Boltzmann distribution. This does
not contradict the equilibrium statistical mechanics because
the GB never reaches the true equilibrium. It is not only cou-
pled to a thermostat but also interacts with a reservoir of solute
atoms in a rate-dependent manner. The impact of this interac-
tion on the steady-state occupation probabilities is strongest
when the pinning timescale τp is close to the timescale t0
of equilibrium thermal fluctuations, a situation that we call
active pinning. We expect that non-Markovian behavior is a
common feature of all systems exhibiting diffusion-controlled
interactions with segregating solutes.

The 2D version of the model represents the GB as a solid-
on-solid (SOS) interface. This choice is not the only possible
option: some of the previous simulations of GB migration
utilized the Ising model [5,6,38,39]. The latter has certain
advantages as well as drawbacks relative to SOS models.
One advantage is that the results can be mapped more easily
onto other applications of the Ising model in many areas
of physics. This can help interpret the results and borrow
computer algorithms and experience from other fields. Fur-
thermore, the Ising model can represent a smooth or faceted
shape of an entire 2D or 3D grain. On the other hand, the
Ising model can create GB protrusions with overhands and,
in some cases, isolated inclusions (“bubbles”) of one grain
inside the other. Such features do not reflect the typical mor-
phologies of moving GBs. SOS models describe the GB shape
by a single-valued function z(x, y) avoiding overhangs and
inclusions. This description is appropriate for individual mod-
erately curved portions of a GB, but an entire grain cannot
be represented. It should also be noted that SOS models are
computationally faster because the KMC attempts are only
made at the interface, whereas in the Ising models the “spin
flip” attempts have to be made across the entire system. The
computational efficiency of SOS models provides access to
larger systems and enables a broader exploration of the pa-
rameter space.

The model reproduces a roughening transition in stationary
GBs as temperature increases. This is a continuous transition
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that can be identified with the peak of the GB heat capacity.
Active pinning reduces the roughening transition temperature
and makes the transition sharper. The model also predicts
dynamic roughening, a process in which a smooth GB be-
comes rough as the migration velocity increases at a fixed
temperature. This is another continuous and fully reversible
transition: the GB returns to the smooth state if it comes to
rest. Without pinning, the dynamic roughening transition is
spread over a broad velocity range. The pinning shifts this
transition toward lower velocities and makes it significantly
sharper.

The mechanism of dynamic roughening has been studied
in great detail. In a stationary state or when the velocity is
low, GB migration occurs by the kink pair mechanism, which
can only sustain slow motion. The driving force reduces the
barrier for kink pair nucleation in the forward direction, boost-
ing the population of nonequilibrium kinks and increasing
the GB mobility. In Sec. IV A, we proposed an analytical
model of this process that agrees well with the simulation
results. The growing kink concentration and its spatial vari-
ations eventually cause capillary waves. The GB structure
becomes rough and the GB migration mechanism changes
from kink-mediated to a random walk of the average GB
plane. The dynamic roughening transition is responsible for
the threshold behavior in GB dynamics, in which the GB
moves very slowly until the driving force reaches a critical
level at which the motion sharply accelerates. This threshold
effect is especially strong for high-energy GBs. The solute
pinning sharpens this effect and increases the force required
to “unlock” the GB mobility. Somewhat similar shapes of
drag-velocity curves were observed in prior KMC simulations
using different methodologies [5,6,14,38,39].

To put our results in perspective with the literature, dy-
namic roughening of open surfaces is known in the field
of crystal growth [45,46]. For GBs in materials, a threshold
behavior similar to the one found in this paper was observed
experimentally; see examples in Figs. 2 and 5 in Ref. [47],
where the GB structures below and above the threshold were
characterized as faceted (smooth, atomically ordered) and
rough, respectively. The impact of roughening on GB mobility
was studied by molecular dynamics (MD) simulations [24].
The GB mobility in Ni was found to be much higher above the
roughening transition than below. In another MD study [48],
screw dislocations in body-centered cubic metals underwent
a dynamic transition from kink pair mediated glide at small
strain rates to jerky motion of a rough dislocation line at high
strain rates. Of course, dislocations present a different case
for many reasons, including the prominent role of the elas-
tic strain field and the kink-kink interactions. Nevertheless,
this transition is likely another manifestation of the dynamic
roughening phenomenon discussed here.

Observing static or dynamic roughening in simulations or
experiment requires a particular combination of parameters,
such as the GB energy, GB mobility, and (in alloys) solute seg-
regation and solute diffusivity. Some GBs can remain smooth
all the way to the melting point, while others premelt before
they could undergo a roughening transition. GB faceting is an-
other transition that can interplay with roughening but remains
beyond the scope of this paper.

Both the 1D and 2D versions of the model reveal effects
that were not in the classical models [2–4]. One of them
is the increase of the maximum drag force with the solute
diffusivity. Further, the classical models do not capture the
GB roughening and its impact on the GB migration mecha-
nisms. Another difference is related to the breakaway branch
of the drag-velocity relation. Cahn [2] considered this branch
unstable with respect to velocity variations. He reasoned that,
if the GB momentarily moves faster, it will lose some of the
segregation atmosphere, which will allow it to move even
faster. Recall that Cahn’s model treats the GB as a rigid plane.
In the 2D version of our model, velocity fluctuations do occur
locally, but they are suppressed by the interface tension and
do not develop into a morphological instability. GB motion in
the breakaway regime remains perfectly stable. The GB shape
fluctuations indeed grow with the GB velocity, as seen on the
roughness-velocity plots (Fig. 15). However, this increase is
gradual and occurs at about the same rate as without pinning.

It should be recognized that the discreteness of the GB
displacements imposed by the underlying a × a grid is a crit-
ical ingredient of the model capturing the existence of the GB
structural units. It is due to this discreteness that the GB can be
smooth or rough and can migrate by the kink pair mechanism.
Details of the kink structure and energy may depend on the
grid structure and symmetry. However, without the grid, there
would be no kinks and no roughening transition.

Being very simple, the proposed model is not intended
for accurate quantitative predictions for a particular material.
Nevertheless, the numerical values of the parameters cho-
sen for this work are quite realistic. For example, it was
found above that the roughening transition temperature Tr

satisfies the condition θr/σ = kBTr/γ a2 ≈ 0.2. Taking Cu as
an example, we can estimate a ≈ 0.3 nm (between the first
and second neighbors). GB energies in Cu vary widely from
∼0.2 J m−2 for low-angle GBs to ∼1 J m−2 for some of
the high-angle, high-energy GBs [20,49–53]. Taking γ =
0.6 J m−2 as a representative value, we obtain γ a2 ≈ 0.48 eV
and thus Tr ≈ 780 K = 0.57Tm. This is a meaningful temper-
ature at which high-angle GBs in Cu are just beginning to
develop structural disorder [49–52,54]. The GB displacement
barrier E0 can be associated with the activation energy of GB
migration. The latter also varies widely, depending on the GB
crystallography, temperature, and the presence of extrinsic de-
fects [20,55–58]. Analysis of literature data for Cu and other
metals (rescaled by the melting temperature) shows that E0

for Cu lies roughly between 0.2 and 1.5 eV. GB segregation is
known to strongly increase the migration energy. For example,
adding only 1 at. % Ag increases the migration barrier of
the �17 [001] tilt GB in Cu from 0.47 eV to 1.5 eV [20].
Assuming that the GB segregation is close to saturation, the
respective pinning factor α varies between 1 and 3.2. Most
of the simulations in this work used α = 1.5, which is well
within the range of physically meaningful values.

In conclusion, we presented a model that provides useful
insights into GB interactions with solutes in general and the
impact of GB roughening on the GB dynamics, GB migration
mechanisms, and the solute drag. It is hoped that this model
can inform future modeling studies targeting specific materi-
als and possibly motivate new experiments. It would also be
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interesting to extend the model to 3D, in which case the GB
roughening becomes a real phase transformation.
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APPENDIX A: THE CAPILLARY FLUCTUATION THEORY

In this Appendix, we briefly summarize the main results of
the capillary fluctuation theory for 1D interfaces.

The starting point is the free energy of a L × a (L � a)
interface lying in the (x, y) plane [27,36,37]:

F = f0La + 1

2
�a

∫ L

0

(
∂w

∂x

)2

dx, (A1)

where f0 is the free energy per unit area of a planar interface,
� is the interface stiffness defined by Eq. (22) in the main
text, and w(x) = z(x) − z∗ is the local shape deviation from
the planar geometry. Suppose the interface fluctuation profile
w(x) is periodic with the period L and is represented by
N points {x j,w j}, where x j = ja, j = 0, 1, . . . , N − 1, and
wN = w0. This profile can be approximated by the discrete
Fourier series

w(x) =
(N−1)/2∑

n=−(N−1)/2

ŵne−iknx, (A2)

with the wave numbers kn = (2π/L)n. (We assumed for sim-
plicity that N is odd.) The complex Fourier amplitudes ŵn

satisfy the relation ŵ−n = ŵ∗
n with ŵ0 = 0. Inserting the

Fourier expansion (A2) in Eq. (A1) and using the orthogo-
nality of the basis functions, we obtain

F = f0La + 1

2
�La

(N−1)/2∑
n=−(N−1)/2

|ŵn|2k2
n . (A3)

The (N − 1) nonzero terms in this expansion represent decou-
pled vibrational modes. Since each term is quadratic in the
fluctuation amplitude |ŵn|, the canonical ensemble-averaged
square fluctuation is given by [59]

|ŵn|2 = kBT

�Lak2
n

, n = −N − 1

2
, . . . ,

N − 1

2
. (A4)

Inserting this fluctuation spectrum into Parseval’s theorem

1

N

(N−1)/2∑
n=−(N−1)/2

w2
n =

(N−1)/2∑
n=−(N−1)/2

|ŵn|2, (A5)

we obtain the mean squared interface width

w2 =
(N−1)/2∑

n=−(N−1)/2

kBT

�Lak2
n

= 2
kBT L

4π2�a

⎛
⎝(N−1)/2∑

n=1

1

n2

⎞
⎠. (A6)

Note that
∞∑

n=1

1

n2
= π2

6
. (A7)

FIG. 16. Event diagram for calculating the survival probability
of a kink pair nucleus (triangular bump) on a planar GB moving
under an applied force pointing upward. The formulas on the diagram
represent the probabilities of different states of the kink pair and
transitions between them.

In the thermodynamic limit (N → ∞), Eq. (A6) converges
to Eq. (21) of the main text. Accordingly, the interface free
energy per unit area becomes

F
La

= f0 + kBT

a2
, (A8)

where the second term represents the capillary-wave
contribution.

APPENDIX B: SURVIVAL PROBABILITY OF A KINK PAIR

In this Appendix we derive Eq. (32) of the main text
for the survival probability Ps of the triangular bump, which
represents a kink pair nucleus on a planar GB driven by an
applied force. We will first calculate the probability Pc that
the triangular bump disappears creating a planar GB. Then
Ps = 1 − Pc.

The calculation is explained on the event diagram in
Fig. 16. The following notation is used. A planar GB, a tri-
angular bump, and a two-node kink pair are referred to as
states 0, 1, and 2, respectively, according to the number of
nodes above ground level. These states are labeled by red
numerals. The formulas represent the probabilities of different
states and transitions (jumps) between the states. The applied
force is pointing upward, and the initial state of the system is
a triangular bump (state 1) shown on top of the diagram. Only
nodes belonging to the kinks are allowed to jump and only
in a manner that preserves the single-layer height of all kinks
above the ground.

It is convenient to describe the system evolution as occur-
ring during a KMC simulation. At the first KMC step, one of
the three nodes of the triangular bump is selected at random.
The subsequent events are represented by the solid green
arrows (Fig. 16). The tip node is selected with a probability
1/3. Once selected, the tip node can jump down with the
probability P10 or remain intact with the probability (1 − P10).
If the jump attempt is successful, the triangular bump dis-
appears. The probability of this outcome is (1/3)P10. If the
attempt fails, the triangular bump survives the first KMC step
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with the probability (1/3)(1 − P10). In this case, the bump
can still collapse during the subsequent evolution with the
(still unknown) probability Pc. This collapse can happen after
a chain of jumps shown on the diagram by the dashed blue
arrow. The collapse probability of the triangular bump along
this route is (1/3)(1 − P10)Pc.

Returning to the first KMC step, there is a 2/3 chance
that one of the two base nodes of the triangular bump is
selected. This node will then attempt to jump upward and
create a two-node kink pair (state 2). The success probability
of this jump is P12, so a two-node kink pair can form with
the probability of (2/3)P12. Once formed, this kink pair can
grow further or transform back into a triangular bump. The
back transformation can happen immediately (probability P21)
or after some period of growth represented by the dashed red
arrow. Let Pr be the probability of returning into the triangular
bump. The latter can then collapse into a planar GB. The col-
lapse probability along this route is thus (2/3)P12PrPc. Finally,
if the selected base node cannot make a successful jump, the
triangular bump remains but eventually collapses into a planar
GB with the probability (2/3)(1 − P12)Pc.

The bottom row on the diagram (Fig. 16) summarizes the
probabilities of disappearance of the initial triangular bump
along the four different routes. Since their sum must be equal
to Pc, we have the equation

Pc = 1
3 P10 + 1

3 (1 − P10)Pc + 2
3 P12PrPc + 2

3 (1 − P12)Pc,

which is solved for Pc:

Pc = P10

P10 + 2P12(1 − Pr )
. (B1)

The remaining unknown is the return probability Pr . The
problem of finding Pr can be formulated as follows. A kink
pair attempts to grow starting from a two-node state. The
growth can be described as a driven random walk of the
number of nodes in the pair starting from two. At each step,
the number of nodes can increase by one with the probability
P12, decrease by one with the probability P21 < P12, or not
change. We must find the probability that the kink pair eventu-
ally collapses into a single-node state (triangular bump). This
problem is equivalent to the cliff-hanger problem of a man
making random steps starting one step away from a cliff [60].
The probabilities of steps away from and toward the cliff are
p > 1/2 and (1 − p) < 1/2, respectively. The known solution
of this problem is that the probability of falling off the cliff is
(1 − p)/p [60]. This solution maps onto our kink pair problem
by identifying p = P12/(P12 + P21). It follows that

Pr = P21

P12
. (B2)

Inserting this solution into Eq. (B1), we obtain

Pc = P10

P10 + 2(P12 − P21)
, (B3)

and thus

Ps = 1 − Pr = 2(P12 − P21)

P10 + 2(P12 − P21)
, (B4)

which is Eq. (32) of the main text.
Equation (B3) was verified by independent KMC simula-

tions implementing the process presented in Fig. 16.
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