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Machine-learning approach for discovery of conventional superconductors
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First-principles computations are the driving force behind numerous discoveries of hydride-based super-
conductors, mostly at high pressures, during the last decade. Machine-learning (ML) approaches can further
accelerate the future discoveries if their reliability can be improved. The main challenge of current ML
approaches, typically aiming at predicting the critical temperature 7; of a solid from its chemical composition
and target pressure, is that the correlations to be learned are deeply hidden, indirect, and uncertain. In this paper,
we show that predicting superconductivity at any pressure from the atomic structure is sustainable and reliable.
For a demonstration, we curated a diverse data set of 584 atomic structures for which A and wy,,, two parameters
of the electron-phonon interactions, were computed. We then trained some ML models to predict A and wjog,
from which 7. can be computed in a postprocessing manner. The models were validated and used to identify
two possible superconductors whose 7. >~ 10-15 K at zero pressure. Interestingly, these materials have been
synthesized and studied in some other contexts. In summary, the proposed ML approach enables a pathway
to directly transfer what can be learned from the high-pressure atomic-level details that correlate with high-T;
superconductivity to zero pressure. Going forward, this strategy will be improved to better contribute to the
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discovery of new superconductors.
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I. INTRODUCTION

In the search for superconductors with high critical tem-
perature 7;, significant progress has been made during the last
decade [1-3]. Among thousands of hydride-based supercon-
ducting materials computationally predicted [4—12], mostly
at very high pressures, e.g., P 2 100 GPa, dozens of them,
e.g., H3S [1], LaH;o [2], and CSH [3], were synthesized and
tested. This active research area is presumably motivated by
Ashcroft, who, in 2004, predicted [13] that high-7. super-
conductivity may be found in hydrogen-dominant metallic
alloys, probably at high P. Another driving force is the devel-
opment of first-principles computational methods to predict
material structures at any P [14-20] and to calculate the
electron-phonon (EP) interactions [21,22], the atomic mech-
anism behind the conventional superconductivity, according
to the Bardeen-Cooper-Schrieffer (BCS) theory [23]. While
critical debates on some discoveries [24-29] are ongoing,
it seems that the one-day-to-be-realized dream of supercon-
ductors at ambient conditions may be possible. Readers are
referred to some reviews [5,6,8,30] and a recent road map [9]
for progress, challenges, and future pathways in this research
area.

The central role of first-principles computations in the re-
cent discoveries of conventional superconductors stems from
Eliashberg theory [31-34], of which the spectral function
o?F (w) characterizing the EP interactions could be evaluated
numerically. The first inverse moment A and logarithmic mo-
ment wye of &’F (), together with an empirical Coulomb
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pseudopotential u*, are the inputs to estimate 7. by either
solving the Eliashberg equations [31-34] or using the McMil-
lan formula [35-37] (see Sec. I A for more details). In a
typical workflow (Fig. 1), a search for stable atomic structures
across multiple related chemical compositions is performed at
a given pressure, usually with first-principles computations.
Then, &F (w), A, wiog, and finally T; are evaluated, identifying
candidates with high estimated 7; for possible new supercon-
ducting materials. Although structure prediction [14—17] and
a?F (w) computations [21,22] are extremely expensive and
technically nontrivial, significant research efforts have been
devoted to and shaped by this workflow.

Machine-learning (ML) methods have recently emerged in
the search for superconductors [9,10]. As sketched in Fig. 1,
existing ML efforts can be categorized into four lines, includ-
ing (i) using some ML potentials to accelerate the structure
prediction step [38], (ii) using some symbolic ML techniques

(i)

(iv), this work
Chemical comp., Atomic EP interactions Critical
pressure T structures (a?F(®), A, wiog) temperature Tc
(i Structure DFPT for electron- Eliashberg eq., (i)
prediction phonon scattering McMillan formula

FIG. 1. A typical workflow to compute 7. Existing ML efforts
are devoted to the following lines: (i) using ML potentials to acceler-
ate the structure prediction step, (ii) deriving new formulas of T, and
(iii) predicting 7; from chemical composition (comp.). This work is
in line (iv), predicting A and wjoe from atomic structures.
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to derive new empirical expressions for 7 [39,40], (iii) de-
veloping some ML models to predict 7; from a chemical
composition at a given pressure P [41-50], and (iv) devel-
oping some ML models to predict A, wjog, and &*F (w) from
the atomic structures [51]. While line (iii) is predominant,
its role remains limited, presumably because the connections
from the chemical composition and the target P to 7. are
deeply hidden. In fact, there are at least two “missing links”
between the two ends of this approach. One of them is the
atomic-level information, while the other is the microscopic
mechanism of the superconductivity, e.g., the EP interactions
in conventional superconductors. The former is critical be-
cause for a given chemical composition, the properties of
thermodynamically competing atomic structures can often be
fundamentally different, e.g., one is insulating and another is
conducting [18,52]. Therefore ignoring the atomic structure is
equivalent to adding an irreducible uncertainty into the ML
predictions [53]. Likewise, the latter cannot be overempha-
sized. In fact, bypassing oa?F (w), A, and Wiog, and using an
empirical value of u*, are intractable assumptions and, thus,
uncontrollable approximations. In line (iv), initialized re-
cently in Ref. [51], these missing links are addressed in several
ways.

In this paper, we present an initial step to bring the atomic-
level information into the ML-driven pathways toward new
conventional (or BCS) superconductors, especially at ambient
pressure. For this goal, we curated a data set of 584 atomic
structures for which more than 1100 values of A and wj,, were
computed at different values of P and reported, mostly in the
last decade. The obtained data set was visualized, validated,
and standardized before being used to develop ML models
for A and wyog. Then, these models were used to screen over
80000 entries of the Materials Project database [54], identi-
fying and confirming (by first-principles computations) two
thermodynamically and dynamically stable materials whose
superconductivity may exist at 7, >~ 10-15 K and P = 0. We
also propose a procedure to compute A and wieg, for which
convergence is generally hard to attain [51].

This scheme relies on the direct connection between the
atomic structures and A and wy,e, quantitatively described in
Sec. I A. Pressure is an implicit input; that is, P determines
the atomic structures for which A and wjeg are computed or
predicted. The design of this scheme has some implications.
First, the ML models are trained on the atomic structures
realized at high P and (computationally) proved to correlate
with high-T; superconductivity. These structures can be con-
sidered “unusual” in the sense that their high-P atomic-level
details, e.g., short bond lengths and distorted bond angles,
are not usually realized at zero pressure. Therefore we hope
that the ML models can identify the atomic structures re-
alized at P = 0 with relevant unusual atomic-level features
and, thus, that may exhibit possible high-7; superconduc-
tivity. Second, massive material databases [55] such as the
Materials Project database [54], the Open Quantum Materials
Database (OQMD) [56], and the Novel Materials Discovery
(NOMAD) database can now be screened directly with robust
and reliable ML models. Given that only a small search space
was explored in this demonstrative paper, we expect more
superconducting materials to be discovered in the next steps of
our effort.

II. METHODS

A. Eliashberg theory and McMillan formula

In Eliashberg theory [31-34], «F () is a spectral function
characterizing the EP scattering, which is defined as
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Here, N is the density of states at the Fermi level, g/, are
the electron-phonon matrix elements, v is the polarization
index of the phonon with frequency w, § is the delta-Dirac
function, and k and K’ (sf( and aii,) are the electron wave
vectors (band energies) corresponding to the band indices i
and j, respectively.

The standard method to compute a’F () is density func-
tional perturbation theory (DFPT) [21,22], as implemented in
major codes such as QUANTUM ESPRESSO [57,58] and ABINIT
[59-61]. Having «?F (), T, can be evaluated by numerically
solving a set of (unfortunately, quite complicated) Eliashberg
equations using, for example, the Electron-Phonon Wannier
(EPW) code [62—-64]. The much more frequent method to
estimate T; is using some empirical formulas derived from
the Eliashberg equations. Perhaps the most extensively used
formula is

T;: = Dlog exp [
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which was developed by McMillan [35] and latter improved
by Dynes [36] and Allen and Dynes [37]. Here,

[} 2
F
=2 / o (@) 3)
0 w
is the (averaged) isotropic EP coupling while
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Following Ashcroft [13], the Coulomb pseudopotential w*,
which appears in Eq. (2) and connects with Ny, was empiri-
cally chosen in the range between 0.10 and 0.15. Equation (2)
indicates that in general, high values of A and/or wi,, are
needed for a high value of T.. Some new empirical formulas
of T, were developed recently [39,40] using some symbolic
ML techniques. Moving forward, development of a truly
ab initio framework for computing T;. [65-67] is desirable and
currently active.

The McMillan formula (2) is believed to be good for
A < 1.5, while additional empirical parameters are needed for
larger A [37]. Nevertheless, the exponential factor of Eq. (2)
has a singular point at A = p*/(1 —0.62*), which could
lead to unwanted or unphysical divergence. If we select u* =
0.1 (or 0.15), T, — oo when A approaches 0.1066 (or 0.1654)
from below. Such values of A have been realized in many
computational works [68—71], although much larger values,
e.g., A = 0.7, are generally needed for high-T;. superconduc-
tors. Given these observations, we believe that a ML approach
for discovering conventional superconductors should focus on
A, wiog, and perhaps o?F (), from which 7, can easily be
estimated using, for example, Eq. (2).
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B. Basic idea and approach

The ML approach used in this paper focuses on predict-
ing A and wjo, from the atomic structure of the considered
materials. As visualized in Fig. 1, the role of P is embedded
in the main input of this scheme, i.e., the atomic structure,
which is determined from P. The rationale of this design is
twofold. First, what this ML approach will learn is a direct
and physics-inspired correlation from an atomic structure to
A and wyoy through o’F (), as quantitatively described in
Egs. (1), (3), and (4). Second, the training data, which include
the atomic environments and structures realized at multiple
values of (sometimes very high) pressure P that could lead
to very high values of A and wio, Will be highly diverse and
comprehensive. Differing from Ref. [51], the resultant ML
models will thus be robust, reliable, and, more importantly,
able to be used to recognize new high-T;. superconductors that
resemble unusual atomic-level details at any pressure, specif-
ically P = 0 GPa. This approach involves some challenges;
one of them is how to obtain good data sets for the learning
scheme. Our solution is described below.

C. Data curation

This work requires a data set of the atomic structures for
which A, wieg, and o?F (w) were computed and reported. The
curation of such a data set is painstaking. Scientific articles
published during the last 10—15 years, reporting computed
superconducting properties of new or known materials, were
collected. In the majority of the articles, the atomic structures
were reported in tables, while electronic files in standard
formats, e.g., crystallographic information files (CIFs), were
given in a very few cases. In some cases, important in-
formation, e.g., the angle § in a monoclinic structure, was
missing from the tables. When the provided information is
sufficient, we used the obtained crystal symmetry or space
group, lattice parameters, Wyckoff positions, and coordinates
of the inequivalent atoms to manually reconstruct the reported
structures. All the atomic structures obtained from electronic
files and/or reconstructed from data tables were inspected
visually. During this step, a good number of them were found
to be clearly incorrect, largely because of typos, number
over-rounding, and other possible unidentified reasons when
reporting the data. Incorrect structures were discarded.

Superconducting-related properties, e.g., A, wiog, and T¢,
which were computed and reported for the atomic struc-
tures at pressure P up to 800 GPa, were collected. These
properties were mainly computed by some major workhorses
such as the QUANTUM ESPRESSO [57,58], ABINIT [59-61], and
EPW codes [62-64], employing different pseudopotentials,
exchange-correlation (XC) functionals, energy cutoffs, smear-
ing widths needed to compute the é functions appearing in the
expression (1) of «?F (w), and more. We recognize that data of
A and we, curated from the scientific literature are not entirely
uniform; they rather contain a certain level of uncertainty that
will inevitably be translated into the (aleatoric) uncertainty of
the predictions [53]. However, the demonstrated reproducibil-
ity of advanced first-principles computations [72] suggests
that data carefully produced by major codes should still be
consistent and reliable.
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FIG. 2. A summary of the computed A, wy,, and 7. data set
of 584 superconducting materials reported and curated, including
(a) the periodic table coverage, (b) the ten most frequent species in
the data set, (c) 567 values of T, computed and arranged at different
pressures, and the distribution of (d) 584 computed values of A and
(e) 567 values of wj,;. Among the 53 species found in our data set,
47 of them are shown in (a), and the other 6 species are Ac, Ce, La,
Nd, Pm, and Pr. In (c), each solid circle represents a combination
of a chemical composition and a pressure, while error bars are for
cases where 7, was computed for different atomic structures, using
different methods, e.g., using the McMillan formula and solving
Eliashberg equations, and/or for different values of j1*.

To further improve the uniformity of the data, we used
density functional theory (DFT) [73,74] calculations to opti-
mize the obtained atomic structures at the pressures reported,
employing the same technical details as were used for the
Materials Project database. The rationale behind this step is
that the predictive ML models trained on the data set will then
be used to predict A and wjog for the atomic structures obtained
from the Materials Project database. Therefore the training
data should be prepared at the same level of computations
with the input data for predictions. In fact, a vast majority of
our DFT optimizations were terminated after about a dozen
steps or fewer, indicating that they were already optimized
very well. Details of the optimizations are given in Sec. II E.
Compared with the DFPT calculations for A and wie,, the
optimization step is computationally negligible.

Our data set includes 584 atomic structures for which at
least A was computed and reported. Among them, 567 atomic
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structures underwent wio, and, thus, T; calculations (there is
a trend in the community that computed A is more likely to
be reported than wj,, when discussing the superconductivity).
Our data set, which is summarized in Figs. 2(a)-2(e), contains
53 species and covers a substantial part of the periodic table.
The five most frequently encountered species are H, B, Li,
Mg, and Si, which were found in 505, 83, 57, 53, and 48 en-
tries, respectively. The dominance of H in this data set reflects
the focus of the community on superhydrides when search-
ing for high-T; superconductors. For A, the smallest value is
0.089, reported in Ref. [68] for the P4/mbm structure of LiH,
at P = 150 GPa, while the largest value is 5.81, reported in
Ref. [44] for the Im3m structure of CaHg at P = 100 GPa.
Likewise, the smallest value of wjog is 71 K, reported in Ref.
[75] for the 14 /mmm structure of TiH at P = 50 GPa, whereas
the largest value is 2234 K, reported in Ref. [44] for the P62m
structure of CaH;s at P = 500 GPa. Figures 2(d) and 2(e)
provide two histograms summarizing the A and w0 data sets.

D. Data representation and machine-learning approaches

Materials’ atomic structures are not naturally ready for ML
algorithms. The main reason is that they are not invariant with
respect to transformations that do not change the materials
in any physical or chemical way, e.g., translations, rotations,
and permutations of like atoms. Therefore we used MATMINER
[76], a package that offers a rich variety of material features,
to convert (or featurize) the atomic structures into numerical
vectors, which meet the requirements of invariance and can be
used to train ML models. Starting from several hundred com-
ponents, optimal sets of features (the vector components) were
determined using the recursive feature elimination algorithm
as implemented in the SCIKIT-LEARN library [77]. The final
versions of the A and wyo, data sets have 40 and 38 features,
respectively.

In principle, two featurized data sets of A and wjoe can be
learned simultaneously using a multitask learning scheme so
that the underlying correlations between A and wj,, may be
exploited. However, the intrinsically deep correlations in ma-
terials’ properties require a sufficiently big volume of data to
be revealed. We have tested some multitask learning schemes
and found that with a few hundred data points, they are not
significantly better than learning A and wj,, separately. In
fact, similar behaviors are commonly observed in the litera-
ture [53]. Therefore we examined six typical ML algorithms,
including support vector regression, random forest regression,
kernel ridge regression, Gaussian process regression, gradient
boosting regression, and artificial neural networks, to develop
ML models for A and weg. For each algorithm, we created
a pair of learning curves and used them to analyze the per-
formance of the algorithm on the data we have. By carefully
tuning the possible model parameters and examining the train-
ing and the validation curves, Gaussian process regression
(GPR) [78,79] was selected. Details on the learning curves
and the GPR models used for predicting A and wjog are dis-
cussed in Sec. IITA.

E. First-principles calculations

First-principles calculations are needed for two purposes,
i.e., to uniformly optimize the curated atomic structures and
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FIG. 3. Fitting procedure used to compute (a) A and (b) wjee Of
mp-24287 and mp-24208, two atomic structures identified from the
Materials Project database. Circles and inverted triangles show A and
wiog computed with some finite q-point grids, while stars represent
the extrapolated values of A and wy, at the limit of an infinite g-point
grid, i.e.,, 1/g = 0.

to compute o?F (), A, and wiog Tor those identified by the
ML models we developed. For the first objective, we followed
the technical details used for the Materials Project database,
employing the Vienna ab initio simulation package (VASP)
code [80,81], the standard projector augmented wave (PAW)
pseudopotentials, a basis set of plane waves with kinetic en-
ergy up to 520 eV, and the generalized gradient approximation
Perdew-Burke-Ernzerhof (PBE) exchange-correlation (XC)
functional [82]. Convergence in optimizing the structures was
assumed when the atomic forces became < 1072 eV/A after
no more than three iterations.

In the computations of o?F (), 1, and wiog, We used the
version of DFPT implemented in the ABINIT package [59-61],
which also offers a rich variety of other DFT-based function-
alities. Within this numerical scheme, we used the optimized
norm-conserving Vanderbilt pseudopotentials (ONCVPSP-PBE-
PDV0.4) [83] obtained from the PSEUDODOJO library [84] and
the PBE XC functional [82]. The kinetic energy cutoff we
used is 60 hartrees (=~ 1600 eV), which is twice as large as the
value suggested [83] for these norm-conserving pseudopoten-
tials. The smearing width for computing «>F (@) is 5x107°
hartrees, i.e., >~ 0.032 THz. This value was selected to be
< 0.1% of the entire range of frequency while covering more
than four (numerical) spacings of the frequency grid.

Before entering the electron-phonon calculations with
DFPT, the material structures under consideration were re-
peatedly optimized until the maximum atomic force was
below 10~ hartrees/bohr, which is ~ 5.1x10~* eV/A, af-
ter no more than three iterations. Because the optimizations
need the simulation box to change its shape, such a small
number of iterations is required so as to minimize the cell vol-
ume change, thereby limiting the Pulay stress and ultimately
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ensuring an absolute convergence of the force calculations.
This level of accuracy is generally needed for phonon-related
calculations.

Equation (1) indicates that «F (w) is evaluated on a q-
point grid of ¢ = k — k’, which must be a subgrid of the full
k-point grid used to sample the Brillouin zone for regular DFT
calculations. Therefore calculations of a>F (w) are extremely
heavy, while the convergence with respect to the q-point grid
is critical and must be examined [44,51]. For this goal, we
first computed aF (w), A, and wiog Using several q-point grids
of gxgxgq and k-point grids of kxkxk, where ¢q is as large
as possible depending on the structure size and k > 3xgq.
Then, the computed values of A and w, are fitted to a linear
function of 1/q. The values of the fitted functions at 1 /g = 0,
or, equivalently, at the limit of ¢ — 00, are the values assumed
for A and wyog. This procedure is visualized in Fig. 3 for the
computation of A and wy,, of two atomic structures reported
in this paper. Details on the g-point and k-point grids and the
corresponding computed data used for the fitting procedure
can be found in the Supplemental Material [85]. A tech-
nique of similar philosophy has been demonstrated [86] in the
computations of ring-opening enthalpy, the thermodynamic
quantity that controls the ring-opening polymerizations.

F. Candidates

We obtained the Materials Project database [54] of 83 989
atomic structures and several properties uniformly computed
at P = 0 using VASP [80,81]. Starting from this data set, we
selected a subset of 35 atomic structures that have energy
above hull Eyy; < 0.03 eV/atom, zero band gap (E; = 0 eV),
no more than 16 atoms in the primitive cell, and only the
species included in the training data, specifically H (see
Fig. 2). The first criterion “places” the selected atomic struc-
tures into the so-called “amorphous limit,” a concept defined
in an analysis of the Materials Project database [87] and used
to label the atomic structures that are (or nearly are) ther-
modynamically stable and thus may be synthesized. In fact,
some metastable ferroelectric phases of hafnia that are above
the ground state of ~ (.03 eV/atom [18,88,89] have been
stabilized and synthesized [90,91]. Next, E, = 0 eV was used
to remove nonconducting materials, while the third criterion
aims at selecting small enough systems for which computa-
tions of A and wi,, are affordable. Finally, by considering
only those having the species included in the training data,
specifically H, we expect that the ML models will only be used
in their domain of applicability. The procedure is summarized
in Fig. 4.

The set of 35 candidates has no overlap with the training
data. This set is small because the requirement of having H
is very strong. In fact, removing this requirement increases
the candidate set size to 2694. Given that the ML models are
extremely rapid, there is in fact no time difference between
predicting A and wy,, for 35 atomic structures and predicting
these properties for 2694 atomic structures. However, the
dominance of H in the training data set strongly suggests
that the smaller set of 35 candidates is more suitable for
the demonstration purpose of this work. In the next step, the
training data set will be augmented with A and wjog computed

Data from Materials Project
83,989

Energy above hull < 30
42,848 meV/atom

Computed band gap = 0 eV 2

Number of atoms < 16

(1) All species covered by
training set & (2) H included

FIG. 4. Procedure to down-select 35 atomic structures for pre-
dicting A and wig from 83989 atomic structures of the Materials
Project database.

for materials having underrepresented species, and larger can-
didate sets will be examined.

II1. RESULTS

A. Machine-learning models

Given a learning algorithm and a data set that has been
represented appropriately, learning curves can be created us-
ing an established procedure. In this paper, each data set
was randomly split into a training set and a (holdout) val-
idation set. Next, a ML model was trained on the training
set using the standard fivefold cross-validation procedure [92]
to regulate the potential overfitting. Then, the ML model
was tested on the validation set, which is entirely unseen
to the trained model. By repeating this procedure 100 times
and varying the training set size, a training curve and a
validation curve were produced from the mean and the stan-
dard deviation of the root-mean-square error (RMSE) of
the predictions of the training sets and the validation sets.
During the training and validating processes, randomness
stems from the training and validation data splitting and
the fivefold training data splitting for internal cross valida-
tion. As such random fluctuations are suppressed statistically
by averaging over 100 independent models, the learning
curves could provide some useful and unbiased insights into
the performance of the data, the featurizing procedure, the
learning algorithm, and ultimately the ML models that are
developed.

Two learning curves obtained by using GPR to learn the
(featurized) A and wi,, data sets are shown in Figs. 5(a) and
5(b). In both cases, the training curves saturate at =~ 0.15
(for A) and 110 K (for wjog). These values are small, i.e.,
they are >~ 3-5% of the data range, implying that GPR can
successfully capture the behaviors of the data. On the other
hand, the validation curves of A and wj,, data do not saturate
and keep decreasing. This behavior strongly suggests that if
more data are available, the gap between the learning and the
validation curves can further be reduced, and the performance
of the target ML models can readily be elevated.

Figures 5(a) and 5(b) reveal that an error of ~ 0.4 and
2~ 200 K can be expected for the predictions of A and wig,
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FIG. 5. Learning curves obtained by learning two data sets of
(a) A and (b) wy,g, a typical model trained on 90% of the data of (c) A
and (d) wy, and validated on the remaining unseen 10% data, and
two ML models trained on 100% of the data of (e) A and (f) wi,,. In
(a) and (b), each data point is associated with an error bar obtained
from 100 models that were independently trained.

respectively. The expected errors are roughly 7% of the whole
range of A and wy,, data; these errors are significantly small
compared with the results reported in Ref. [51]. Figures 5(c)
and 5(d) visualize two typical ML models trained on 90% of
the A and w)og data sets and validated on the remaining 10%
of the data sets. Likewise, Figs. 5(e) and 5(f) visualize two
typical ML models, each of which was trained on the entire A
or wj,e data set using exactly the same procedure. In fact, each
of them is one of 100 ML models that were trained indepen-
dently and used to predict A and wye of the candidate set.

B. Discovered superconductors and validations

We used the developed ML models to predict A and wyog Of
35 atomic structures in the candidate set and then to compute
the critical temperature 7; using the McMillan formula with
w* =0.1. The predicted A ranges from 0.31 to 0.88, and
consequently, the predicted 7. ranges from 0.16 to 21.3 K.
The six candidates with the highest predicted 7; are those
with Materials Project identification numbers mp-24289, mp-
1018133, mp-24081, mp-24287, mp-1008376, and mp-24208.
Details of these candidates are summarized in Table I, while
comprehensive information about all 35 candidates can be
found in the Supplemental Material [85].

Examining the top six candidates, we found that mp-24081
is a trigonal structure of ScCIH, whose primitive cell has
six atoms and three very small lattice angles (¢ = 8 =y =
21.38°). Computations of the EP interactions in such a struc-
ture are prohibitively expensive because the required k-point
and q-point grids must be extremely large. In addition, Ce,
the species showing up in mp-1008376, a cubic structure of
CeHj3, is not supported by the ONCVPSP-PBE-PDV(.4 norm-
conserving pseudopotential set [83]. Therefore computations
were performed for the remaining four candidates. Among
them, mp-24289, a cubic structure of PdH, and mp-1018133,
a tetragonal structure of LiHPd, are dynamically unstable. In

TABLE I. Six hydrogen-containing materials that have the highest predicted 7. among the 35 materials in the candidate set, given in the
top part of the table. For each of them, the identification number and the energy above hull Ey,; obtained from the Materials Project (MP) are
given (the pressure P and computed band gap are all zero). Predicted A, wiog, and 7. were obtained from the ML models and computed using
the McMillan formula with u* = 0.1. Among the six materials, computations were performed for four materials; two of them (mp-24287
and mp-24208) are dynamically (dyn.) stable, and thus computed A, wog, and T; are available. In the bottom part of the table, predicted and
computed values of A, wi,, and T;. are reported for two dynamically stable materials, i.e., mp-24287 and mp-24208, at 50 and 100 GPa.

Predicted Computed
Chemical Space P Enan Computation

MP No. formula group (GPa) (eV/atom) A e (K) T.(K) performed Dyn.stable 1  wie (K) T¢ (K)
mp-24289 PdH Fm3m 0 0.02 0.88 3772 21.3 Yes No - - -
mp-1018133  LiHPd  P4/mmm 0 0 0.79  321.0 14.5 Yes No - - -
mp-24081 ScCIH R3m 0 0 0.65 4459 13.0 No - - - -
mp-24287 CrH Fm3m 0 0 0.63  446.6 11.9 Yes Yes 0.89 276.2 15.7
mp-1008376 CeH; Fm3m 0 0 0.60 418.5 9.5 No - - - -
mp-24208 CrH, Fm3m 0 0 0.60 3525 8.0 Yes Yes 0.75 2644 10.7
mp-24287 CrH Fm3m 50 - 0.57 5403 10.6 Yes Yes 0.67 362.8 11.3

CrH Fm3m 100 - 0.54 6014 9.6 Yes Yes 0.61 413.7 10.1
mp-24208 CrH, Fm3m 50 - 0.52 477.6 6.9 Yes Yes 0.65 3232 9.4

CrH, Fm3m 100 - 0.53 561.6 8.4 Yes Yes 0.64 348.0 9.7
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FIG. 6. Computed superconducting properties of mp-24287 and
mp-24208, whose atomic structures are visualized in (a) and (b) and
for which the spectral function a?F (w) and the accumulative A(w)
are shown in (c) and (d). The k-point and g-point grids used for
(c) are 24x24x24 and 8x8x8, respectively, while those used for
(d) are 21x21x21 and 7x7x7, respectively. In (e) and (f), the
computed (using the extrapolation procedure described in Sec. I1 E)
and the predicted values of A, wiog, and 7. (computed from A and
wjog using the McMillan formula with u* = 0.1) at P = 0, 50, and
100 GPa are shown; solid and dashed lines show the computed and
predicted values, respectively.

principle, each of them can be stabilized by following the
imaginary phonon modes to end up at a dynamically stable
structure with lower energy and symmetry [93]. Such a heavy
and cumbersome technical procedure was reserved for future
steps. The last two candidates are mp-24287, which is a cubic
structure of CrH, and mp-24208, which is a cubic structure
of CrH,. Both of them, visualized in Figs. 6(a) and 6(b), are
dynamically stable, and thus their A and wj,; were computed
using the procedure described in Sec. II E. The phonon band
structures, which prove the dynamical stability of mp-24289,

mp-1018133, mp-24287, and mp-24208, can be found in the
Supplemental Material [85].

The predicted and computed o’F (), A, Wiog, and T (us-
ing the McMillan formula with u* = 0.1) of mp-24287 and
mp-24208 at P = 0 are given in Table I and Figs. 6(c)-6(f).
Considering the expected errors of the ML models, it is ob-
vious that the computed A and wjoe agree remarkably well
with the ML predicted values. Given that magnesium diboride
(MgB,) in its hexagonal P6/mmm phase is the highest-T;. con-
ventional superconductor with T, >~ 39 K [94], the examined
materials have respectable (computed) critical temperatures,
i.e., T. = 15.7 K for mp-24287 and T, = 10.7 for mp-24208.
By examining the electronic structures of mp-24287 and
mp-24208 reported in the Materials Project database, we con-
firmed that both of them are metallic in nature with a large
density of states at the Fermi level.

We extended our validation to the high-P domain by pre-
dicting and then computing A and wje of mp-24287 and
mp-24208 after optimizing them at P = 50 GPa and P =
100 GPa. Both of them were found to be dynamically stable at
these pressures, and the computed superconducting properties
are shown in Table I and Figs. 6(e) and 6(f). We also found
that the computed and the predicted values of A and wiog
at P =50 GPa and P = 100 GPa are remarkably consistent.
For both materials, computed A and 7. decrease while wjog
increases from 0 to 100 GPa, and the ML models capture cor-
rectly these behaviors within the expected errors given from
the analysis of the learning curves in Sec. IIT A. Specifically,
predictions of A at P = 50 GPa and P = 100 GPa are within
0.1 of the computed results, leading to a remarkably small
error of 2~ 3 K in predicting T¢.

C. Further assessments on the predictions

We attempted to verify our predictions in a few ways.
First, additional calculations for A and wog of mp-24287 and
mp-24208 using the local-density approximation (LDA) XC
functional were performed at all the pressure values examined
(see Sec. III B). The obtained results, as given in the Supple-
mental Material [85], are highly consistent with, i.e., within
2-3% of, the reported results using the PBE XC functional.

Next, we used the EPW code [62-64] to numerically solve
the Eliashberg equations on the imaginary axis and then
approximated the real-axis superconducting gap A, of mp-
24287 and mp-24208 using Pade continuation [95]. Within
this scheme, the electron-phonon interactions were computed
by QUANTUM ESPRESSO [57,58], using the ultrasoft pseu-
dopotentials from PSLIBRARY [96], an energy cutoff of 120
Ry (which is 60 hartrees, >~ 1600 eV), a k-point grid of
24 %24 %24, and a g-point grid of 6 x6x 6. During the EPW cal-
culations, we used a fine q-point grid of 12x12x12 and pu* =
0.1. The superconducting gap A (7T) computed for mp-24287
and mp-24208 and shown in Fig. 7 projects a T, >~ 22-24 K
for mp-24287 and a T, >~ 7-8 K for mp-24208. These values
are in good agreement with those reported in Fig. 6, pro-
viding a confirmation of the predicted superconductivity of
mp-24287 and mp-24208 at P = 0 GPa.

Finally, we turn our attention to the synthesizability of
mp-24287 and mp-24208 by tracing their origin. Information
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FIG. 7. Distribution of the zero-pressure superconducting gap
function Ao(T) computed by numerically solving the Eliashberg
equations for mp-24287 and mp-24208. The dashed curves, joining
the middle point of the distributions, serve as a guide to the eye. The
critical temperature 7 is estimated to be at the middle point of the
downward-sloping segment of the Ay(7) curves.

from the Materials Project database allows us to track them
down to two entries, No. 191080 and No. 26630, in the In-
organic Crystalline Structure Database (ICSD), and finally to
Refs. [97] and [98], respectively. In short, mp-24287 and mp-
24208 were experimentally synthesized and resolved [97,98]
sometime in the past. Afterwards, some experimental [99,100]
and computational [101,102] efforts followed, examining
their magnetic, electronic, and mechanical properties. Per-
haps because preparing them experimentally is challenging,
little more is known about these materials. Given the docu-
mented evidence of the synthesizability of both mp-24287 and
mp-24208 at 0 GPa, which is in contrast with the enormous
challenges of performing experiments at hundreds of gigapas-
cals, we hope that these materials will be resynthesized and
tested for the predicted superconductivity in the near future.

IV. REMARKS AND GOING FORWARD

Predicting A and wj,, from the atomic structures has
some advantages. First, the correlation between the atomic
structures and A and wj,g, Which will be learned, is direct,
physics-inspired, and intuitive, while computing 7. from A and
wiog 1s trivial. Second, the obtained ML models, which are
accurate and robust, can be directly used not only for extant
massive material databases with >10° atomic structures but
also for any structure searches performed in an on-the-fly man-
ner. Finally, by using pressure as an implicit input, the training
data can be highly diverse and comprehensive, ultimately al-
lowing the ML models to be able to handle unusual atomic
environments, frequently encountered during unconstrained
structure searches for new materials.

The accuracy demonstrated in Sec. III B for the ML models
of A and wy, is Tooted in a series of factors. The list includes at
least a reliable training data set, a featurizing procedure that
can capture the essential information encoded in the atomic

structures, a ML algorithm that can learn the featurized data
efficiently, a careful justification of the domain of applicability
of the ML models, and a good candidate set. On the other
hand, these stringent factors limit the number of candidates
used in this paper, although the ML models are already very
fast to make even 10° predictions or more.

In the next steps, we will improve the whole scheme in
several ways. First, by enlarging and diversifying the data set
while maintaining its quality, the domain of applicability of
the ML models will be systematically expanded. For exam-
ple, the candidate set obtained from the selection procedure
described in Fig. 4 will jump to 2694 atomic structures when
we can remove the requirement of having H in the chemical
composition. At that point, we believe that many more new
superconductors can be identified and validated, at least by
first-principles computations. Second, modern deep learning
techniques will be used to improve and possibly to unify
the featurizing and the learning steps. Third, the ML models
will be integrated in an inverse design strategy to explore the
practically infinite materials space in an efficient manner. Cur-
rently, (inverse) design of functional materials with targeted
properties is a very active research area with many success
stories [103—110]. We hope that superconducting material dis-
coveries can be added to this list in the near future. Finally, we
will work with experimental experts to synthesize and test the
superconducting materials discovered computationally, clos-
ing the loop of materials design.

V. CONCLUSIONS

We have demonstrated a ML approach for the discovery
of conventional superconductors at any pressure. By explor-
ing and learning the direct and physics-inspired correlation
between the atomic structures and their possible supercon-
ducting properties, specifically A and wy,g, highly accurate
and reliable ML models were developed. These models were
validated against the standard first-principles calculations of
A and we, identifying two potential superconducting materi-
als with respectable critical temperatures T; at zero pressure.
Interestingly, these materials have been synthesized and stud-
ied in some other contexts. The main implication of this
approach is that by learning the high-P atomic-level details
that are connected to high-T; superconductivity, the obtained
ML models can be used to identify the atomic structures
realized at zero pressure with possible high-7; superconduc-
tivity. Given that the models can be used directly for massive
materials databases with >10° atomic configurations, more
superconductors can be expected in the near future. We plan
to improve this strategy in multiple ways, hoping that it can
better contribute to the search for high-7; superconductors that
has been highly active during the last decade.
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