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Magnetic properties of the quasicrystal approximant Au65Ga21Tb14
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The magnetic properties of the quasicrystal approximant Au65Ga21Tb14 were investigated using magnetization
and neutron diffraction experiments. The temperature dependences of the magnetic susceptibility and magne-
tization curve indicate dominant ferromagnetic interactions, whereas a whirling antiferromagnetic order was
observed in neutron diffraction experiments. In the antiferromagnetic phase, the magnetic moments are aligned
almost perpendicular to a pseudofivefold symmetry axis, which corresponds to the easy-axis direction of a Tb
atom. Magnetic properties similar to those of Au72Al14Tb14 in spite of the substantial difference in the Au
concentration suggest the robustness of the easy-axis anisotropy against the chemical environment.
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I. INTRODUCTION

Magnetism in quasicrystals and quasicrystal approximants
has attracted interest owing to the expectation of nontrivial
ground states. Studies on magnetic quasicrystal and qua-
sicrystal approximants have accelerated since stable binary
quasicrystals and quasicrystal approximants were discovered
[1,2]. The occurrence of long-range antiferromagnetic order
was observed in the 1/1 quasicrystal approximant Cd6R (R:
rare-earth elements) [3] and confirmed by resonant x-ray scat-
tering [4] and neutron diffraction experiments [5]. However, a
reliable magnetic structure has not yet been obtained owing to
the presence of a structural phase transition: the orientational
ordering of a Cd4 tetrahedron located at the center of each
Tsai-type cluster lowers the crystal symmetry and induces
several structural domains [6,7]. Therefore, it is desirable
to investigate quasicrystal approximants without a structural
phase transition to understand their magnetic properties better.

Recent neutron diffraction experiments have revealed that
some magnetic quasicrystal approximants [8–11] exhibit non-
collinear magnetic structures [12–15]. These quasicrystal
approximants belong to the space group of Im3, as do
other 1/1 quasicrystal approximants, and do not exhibit
structural phase transitions at low temperatures. Magnetic
Tb3+ ions form nearly icosahedral clusters. In the 1/1 qua-
sicrystal approximant Au72Al14Tb14, magnetic moments are
aligned almost tangentially to the cluster surface. They fol-
low a threefold symmetry around the [111] axis, leading to
a whirling arrangement. The neighboring magnetic clusters
are coupled antiferromagnetically [12]. The whirling antifer-
romagnetic order was also observed in a single crystalline
diffraction study of Au70Al16Tb14 [15]. In addition, the 1/1

quasicrystal approximant Au70Si17Tb13 exhibits a magnetic
structure associated with that of Au72Al14Tb14. The former
magnetic structure can be roughly derived by reversing half
of the magnetic moment of the latter magnetic structure. Con-
sequently, large spontaneous magnetic moments appear along
the [111] direction [13].

Previous studies have indicated that competing magnetic
interactions and the formation of magnetic clusters are key
components in stabilizing noncollinear magnetic structures.
Accordingly, in principle, various noncollinear magnetic
structures could be realized by tuning the magnetic inter-
actions or magnetic anisotropy of Tb3+ ions [16,17]. As
magnetic interactions are dominated by the Ruderman-Kittel-
Kasuya-Yosida (RKKY) mechanism, magnetic interactions
within an icosahedral cluster can be adjusted by tuning the
electrons-per-atom ratio e/a [8,9,18]. In addition, changing
the local environment around Tb3+ ions could result in a
change in the easy anisotropy axis [16,19]. The magnetic
properties of quasicrystal approximants with different com-
positions should reflect the changes in the e/a and easy
anisotropy axes. The magnetic structures of quasicrystal ap-
proximants need to be revealed to understand the general trend
in magnetic quasicrystal approximants and quasicrystals.

In this paper, we report the magnetic properties and mag-
netic structure of the Au-Ga-Tb 1/1 quasicrystal approximant
[20]. We focus on the magnetic properties of Au65Ga21Tb14,
which belongs to the space group of Im3 (Table I). Its e/a of
1.70 is located near the boundary of the antiferromagnetic and
ferromagnetic phases and is much larger than the value of 1.56
for Au72Al14Tb14, which is located near the other boundary of
the antiferromagnetic phase [18]. In addition, its composition
is very close to that of a magnetic quasicrystal that exhibits
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TABLE I. Crystallographic data and refinement parameters of
the single-crystal x-ray structure analysis.

Crystallographic data and refinement parameters

Space group Im3
a (Å) 14.72530(10)
V (Å3) 3192.95(7)
Calculated density (g/cm3) 8.577
Temperature (K) 293
h range −20 � h � 19
k range −20 � k � 20
l range −20 � l � 19
F (000) 6696
Reflections collected 48 241
Independent reflections 897
Dataa/restraints/parameters 869/0/70
R indices for observed reflections (R, Rw)b 0.0208, 0.0370
Goodness of fit on F 1.336

aReflections with I > 2σ are used for the refinement.
bR = ∑ ||Fobs|2 − |Fcalc|2|/

∑ |Fobs|2, wR = ∑
w(|Fobs|2 −

|Fcalc|2)/
∑

w|Fobs|2, w = 1/{σ 2(|Fobs|2) + 247.1726(|Fobs|2 +
2|Fcalc|2)/3}.

long-range magnetic order [21]. Powder neutron diffraction
experiments revealed a whirling antiferromagnetic arrange-
ment of the magnetic moments in Au65Ga21Tb14, which is
similar to that observed for Au72Al14Tb14 [12]. The whirling
antiferromagnetic order realized over a wide range of e/a val-
ues indicates the robustness of the quasicrystal approximant
against chemical substitution.

II. EXPERIMENTS

Polycrystalline samples of Au65Ga21Tb14 were synthe-
sized by arc melting using high-purity Au, Ga, and Tb as the
starting materials. The alloy was then annealed at 1073 K
for 50 h under Ar atmosphere, followed by quenching in
chilled water. The sample quality was confirmed using powder
x-ray diffraction (XRD) experiments with Cu Kα radiation
(Rigaku MiniFlex 600 and Rigaku Ultima IV). The magnetic
properties were investigated using a superconducting quantum
interference device magnetometer (Quantum Design magnetic
property measurement system).

Crystal structure analysis was performed for a single crys-
tal selected from a polycrystalline sample with an XtaLAB
Synergy-R single-crystal diffractometer equipped with a hy-
brid pixel array detector (HyPix-6000, Rigaku) using Mo Kα

radiation (λ = 0.71073 Å). The indexing and integration of
the diffraction intensities were performed using the CRYSALIS

PRO software [22]. The initial structural model was obtained
using a dual-space method using SHELXT [23]. Subsequent
structural refinements were performed using SHELXL [24].

Neutron powder diffraction experiments were performed
using the high-resolution powder diffractometer ECHIDNA
installed in the Open Pool Australian Lightwater (OPAL)
reactor, Australian Nuclear Science and Technology Organ-
isation, to investigate the magnetic structure [25]. Neutrons
with λ = 2.4395 Å were selected using the Ge 331 reflections.
A polycrystalline sample (2 g) was loaded in a vanadium can
with a diameter of 6 mm. The bottom part of the vanadium can

was filled with a Cd absorber to adjust the sample position.
The sample can was set on the cold head of a closed cycle 4He
refrigerator with a base temperature of 4 K. The intensities
were collected at base temperatures of 4 and 20 K. In addition,
the temperature dependence of the magnetic reflection was in-
vestigated using the general purpose triple-axis spectrometor
4G GPTAS installed in the Japan Research Reactor 3 (JRR-3),
Tokai, Japan. The spectrometer was operated in the double-
axis mode without using an analyzer. The wavelength was set
to λ = 2.365 Å by using pyrolytic graphite (002) reflections.
Horizontal collimations of 40′-40′-40′ were employed. The
powder sample (2 g) was sealed in an Al sample can with
He exchange gas and cooled to 2.5 K using a closed cycle 4He
refrigerator.

III. EXPERIMENTAL RESULTS

The single-crystal XRD experiments revealed some dif-
ferences in the crystal structure of Au65Ga21Tb14 compared
with that of Au72Al14Tb14. Successive clusters formed by
Au, Ga, and Tb atoms are shown in Fig. 1(a). Crystallo-
graphic data and refinement parameters are listed in Table
I, and the structural parameters are summarized in Ta-
ble II. First, the occupancy of the Ga atom is substantially
larger at the Ga2 site, which is one of the nearest-neighbor
nonmagnetic sites of the Tb atom. The atomic positions
of the Ga2 sites are shown in Fig. 1(b): The occupancy
was observed to be 0.513(7) in Au65Ga21Tb14, whereas
it decreased to 0.098(4) for the corresponding Al2 sites
(including 2A and 2B) in Au72Al14Tb14 [9]. Second, the
lattice constant of 14.7361 Å for Au65Ga21Tb14 (estimated
from the powder XRD experiments; see the Supplemental
Material [27]) was slightly smaller than the value of 14.7753
Å for Au72Al14Tb14 [9]. The decrease in the lattice constant
can be attributed to the decrease in the occupancy of Au
atoms, as the atomic size of Au is larger than that of Ga and
Al. On the other hand, the distances of Tb-Tb atoms within
the cluster were estimated to be 5.5043(12) and 5.5467(7)
Å. These values are slightly larger than those of 5.4693 and
5.5297 Å in Au72Al14Tb14. The cluster radius, which is de-
fined by the distance of the Tb atoms from the cluster center,
is 5.2671(6) Å for Au65Ga21Tb14, whereas it is 5.2475 Å
for Au72Al14Tb14. The nearly icosahedral cluster may be ex-
panded by the Au atoms occupying the Au7A and Ga7B sites,
which are near the centers of successive clusters.

The temperature dependences of the magnetic suscepti-
bility and magnetization curve indicate the occurrence of an
antiferromagnetic order despite the dominant ferromagnetic
interactions. At high temperatures, the magnetic susceptibility
[Fig. 2(a)] increases with decreasing temperature follow-
ing the Curie-Weiss rule. The Curie-Weiss fit between 50
and 300 K yields an effective magnetic moment and Weiss
temperature of 10.1(1)μB and 10.79(2) K, respectively. For
quasicrystals and quasicrystal approximants, the magnetic
susceptibility is not influenced by the anisotropy of rare-earth
atoms. Generally, the local parallel and perpendicular mag-
netic susceptibilities of each rare-earth atom show different
temperature dependences. However, these contributions are
averaged over several rare-earth atoms, where the magnetic
field direction becomes effectively different owing to the
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TABLE II. Structure parameters of Au65Ga21Tb14 determined from the single-crystal x-ray structure analysis. The atomic coordinates are
represented by fractional coordinates. The isotropic displacement parameters were adopted for atoms with small occupancies (indicated by
asterisks). The equivalent isotropic (isotropic) displacement parameters Ueq (Uiso) are listed in units of Å 2.

Atom Site x y z Occupancy 100Ueq (100U ∗
iso)

Au1A 48h 0.1115(7) 0.3401(4) 0.2020(4) 0.36(5) 0.70(7)∗

Au1B 48h 0.1014(5) 0.3430(2) 0.1977(4) 0.64(5) 0.87(4)
Ga2 24g 0 0.2345(9) 0.0900(9) 0.513(7) 4.5(6)
Au2 24g 0 0.2392(2) 0.0812(3) 0.487(7) 1.06(4)
Au3 24g 0 0.40396(3) 0.35250(3) 1 0.804(11)
Au4 16 f 0.14974(2) 0.14974(2) 0.14974(2) 0.980(4) 1.52(2)
Ga5 12e 0.19441(13) 0 0.5 1 0.89(3)
Au6A 12d 0.4061(3) 0 0 0.43(6) 0.71(18)
Au6B 24g 0 0.4039(3) 0.0171(8) 0.27(3) 0.89(17)∗

Tb1 24g 0 0.18690(4) 0.30498(4) 1 0.655(12)
Ga8 8c 0.25 0.25 0.25 1 1.91(5)
Au7A 24g 0 0.0674(5) 0.0806(6) 0.162(6) 5.0(2)∗

Ga7B 24g 0 0.0891(14) 0.0464(17) 0.087(14) 1.4(7)∗

Tb2 2a 0 0 0 0.026(14) 3.0(4)∗

Atom Site 100U11 100U22 100U33 100U12 100U23 100U31 100Ueq

Au1B 48h 0.67(8) 0.76(5) 1.17(5) 0.14(3) 0.12(5) 0.12(5) 0.87(4)
Ga2 24g 4.1(7) 6.1(8) 3.2(6) 1.3(4) 0 0 4.5(6)
Au2 24g 0.51(8) 1.42(8) 1.25(9) −0.19(6) 0 0 1.06(4)
Au3 24g 0.81(2) 0.70(2) 0.90(2) 0.123(15) 0 0 0.804(11)
Au4 16 f 1.52(2) 1.52(2) 1.52(2) 0.049(13) 0.049(13) 0.049(13) 1.52(2)
Ga5 12e 1.03(8) 0.60(8) 1.05(8) 0 0 0 0.89(3)
Au6A 12d 0.80(18) 0.8(6) 0.54(17) 0 0 0 0.71(18)
Tb1 24g 0.68(2) 0.47(2) 0.82(2) 0.075(18) 0 0 0.655(12)
Ga8 8c 1.91(5) 1.91(5) 1.91(5) −0.01(6) −0.01(6) −0.01(6) 1.91(5)

different orientations of the principal axes. Consequently, the
effect of the local anisotropy is largely suppressed in the
bulk magnetic susceptibility. The bulk magnetic susceptibility
at high temperatures follows the Curie-Weiss rule, with an
effective moment close to the free-ion value and the Weiss
temperature induced by magnetic interactions. The details
are discussed in Appendixes A and B. At low temperatures,
the magnetic susceptibility exhibited a sharp decrease below
13.2 K, suggesting the occurrence of an antiferromagnetic
order [Fig. 2(b)]. A probable origin of the deviation between
the zero-field and field-cooling curves is a spontaneous mag-
netization from magnetic moments with magnetic anisotropy:
the magnitudes of the spontaneous moment are estimated as
0.063μB and 0.033μB from the magnetization curves at 2
and 10 K, respectively [inset of Fig. 2(d)]. At 2 K, the mag-
netization curve exhibits a sharp jump at 0.78 T, indicating
spin-reorientation transition. A small-field hysteresis suggests
that the spin-reorientation transition is a first-order one.

These magnetic properties are similar to those observed
for Au72Al14Tb14 [8,9]. The transition temperature of 13.2 K
is comparable to the value of 11.8 K for Au72Al14Tb14 [8].
However, the Weiss temperature of 10.79 K is a few times
higher than the value of 4.2 K for Au72Al14Tb14, indicating
an enhancement of the ferromagnetic interaction. Simultane-
ously, the transition field of 0.78 T was almost half of the value
of 1.36 T for Au72Al14Tb14 [8]. This indicates that the value
of e/a is close to the phase boundary of the ferromagnetic
ground state.

The occurrence of the antiferromagnetic order is observed
through a comparison of the neutron diffraction patterns at 4
and 20 K, as shown in Fig. 3. Structural refinement by the
Rietveld method using the data at 20 K showed good agree-
ment, yielding structural parameters consistent with those
estimated from the single-crystal XRD analysis. At 4 K, mag-
netic reflections were observed between nuclear reflections.
The magnetic reflections can be indexed to the reflection
condition h + k + l = odd, where h, k, and l are the Miller
indices. The occurrence of the antiferromagnetic order breaks
the bcc symmetry. The temperature dependence of the 210
magnetic reflection intensity is shown in Fig. 2(c). The in-
tensity began to increase below 13.2 K, where the magnetic
susceptibility showed a sharp drop. The intensity observed in
the range of 12.4 to 16.0 K was fitted to a power-law function
proportional to (TN − T )2β with a constant background. A
Gaussian function centered at TN was also included to fit
the diffuse scattering empirically. The fit yielded a transition
temperature of TN = 13.58(4) K, which is close to the value
of 13.2 K estimated from the magnetic susceptibility. The
critical exponent β is estimated as 0.56(4). This value is larger
than that expected for a 3D order [28] and is close to the
mean field value of 0.5. The mean field value of β was also
observed in a single crystalline neutron diffraction study [15]
and magnetization measurements of the ferromagnetic qua-
sicrystal approximant [29]. This may suggest that long-range
interactions, such as the RKKY interactions, are active and
dominate critical phenomena in this compound.
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FIG. 1. (a) Successive shells of a Tsai-type cluster in
Au65Ga21Tb14 obtained from single-crystal x-ray diffraction.
(b) Local environment around a Tb atom. The dashed and solid
lines passing through the Tb atom represent the pseudofivefold
rotation axis and mirror plane, respectively. The red arrow indicates
the direction of the magnetic moment in the ordered phase. Some
inequivalent sites induced by disorder are merged into a single
site for clarity. (c) Antiferromagnetic order in Au65Ga21Tb14.
The whirling arrangement is formed around the [111] direction.
(d) Magnetic structure expected under a magnetic field. Half of
the magnetic moments denoted by dashed circles are oriented in
directions opposite to those illustrated in (c). The figures were
obtained by using VESTA software [26].

The peak positions and intensities of the magnetic re-
flections are similar to those observed for Au72Al14Tb14,
suggesting the formation of a whirling antiferromagnetic or-
der similar to that in Au72Al14Tb14. We analyzed the magnetic
structure through Rietveld refinement to confirm this hypoth-
esis. The candidates for the initial magnetic structures were
obtained using magnetic representation theory [30]. The mag-
netic representations for the Tb moments were decomposed
using the irreducible representations (IRs) of the k group with
k = (1, 1, 1). The results of the decomposition and the corre-
sponding magnetic basis vectors for all the IRs were obtained
[31]. Good agreement was achieved by the fit based on IR2, as
shown by the black solid curves in Fig. 3(a). Figure 1(c) shows
the magnetic order obtained from refinement. The magnetic
moments follow a threefold rotation symmetry around the
[111] direction, forming a whirling magnetic order similar to
that observed in Au72Al14Tb14 [12]. Each magnetic moment
must remain in the local mirror plane by symmetry. In addi-
tion, it is aligned almost perpendicular to the pseudofivefold
symmetry axis, as shown in Fig. 1(b). The whirling magnetic

FIG. 2. (a) Temperature dependence of the magnetic suscepti-
bility and inverse susceptibility. (b) Magnetic susceptibility below
30 K measured using zero-field-cooling and field-cooling protocols.
(c) Temperature dependence of the 210 magnetic reflection intensity
at 20.7◦ . The inset shows the temperature dependence near TN. The
dashed curve represents a fit to the power-law function (see the text
for details). (d) Magnetization curves at 2, 10, and 15 K. The black
solid curve represents the simulated curve of a single cluster with the
ferromagnetic interactions J1 = 0.02 K and J2 = 0.13 K. The inset
shows the enlarged view at a near-zero field.

order is represented by the two coefficients of basis vectors.
They were estimated to be 7.04(12)μB and −3.49(17)μB in
Au65Ga21Tb14. The moment direction was almost the same as
that of Au72Al14Tb14 [12]. The fit yields a magnetic moment
magnitude of 7.86(13)μB.

IV. DISCUSSION

The direction of the magnetic moment should reflect the
easy-axis anisotropy of the Tb atom induced by the crystalline
electric field. The easy-axis nature of the magnetic moment
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FIG. 3. Powder neutron diffraction patterns measured at (a) 4 K
and (b) 20 K. The observed intensities, calculated intensities, and
their differences are represented by red dots and black and blue
curves, respectively. The positions of the nuclear and magnetic re-
flections are indicated by black and red solid lines, respectively.

on the Tb atom is indicated in Tb6Cd and Au70Si17Tb13. An
analysis of the inelastic neutron spectrum assuming local pen-
tagonal symmetry [32] suggests that the easy-axis direction
is along the pseudofivefold symmetry axis in Cd6Tb [33].
However, neutron diffraction and inelastic neutron scattering
studies indicate that the easy-axis direction is perpendicular
to the pseudofivefold symmetry axis in Au70Si17Tb13 [13].
As shown in Fig. 1(b), the direction of the magnetic moment
observed in Au65Ga21Tb14 (which is almost equivalent to
that in Au72Al14Tb14) is perpendicular to the pseudofivefold
symmetry axis. Thus, the easy-axis direction should also be
perpendicular to the pseudofivefold symmetry axis in these
compounds. According to the crystalline electric field calcula-
tions based on the point charge model, the easy-axis direction
can range between the directions parallel and perpendicular
to the pseudofivefold symmetry axis, depending on the ratio
of the effective valences of the ligand atoms [16]. The sim-
ilarity in the directions of the magnetic moments between
Au72Al14Tb14 and Au65Ga21Tb14 indicates that the ground-
state wave function of Tb3+ ions is almost unchanged, despite
the large difference in the occupancy of the Ga2 (Au2) atom.
The change in the crystalline electric field may be suppressed
by the screening effect of conduction electrons.

The macroscopic magnetic properties suggest that fer-
romagnetic interactions are enhanced in Au65Ga21Tb14

compared with those of Au72Al14Tb14. The possible nearest-
neighbor (J1) and next-nearest-neighbor (J2) interactions were
estimated by reproducing the magnetization curve. The simu-
lation was performed based on a single cluster composed of
Ising spins following the procedure presented in Ref. [12].

The cluster is regarded as an icosahedron with two types of
Heisenberg interactions:

H = −J1

∑
NN

σi · σ j − J2

∑
NNN

σi · σ j + gμBH
∑

i

σi, (1)

where σi (i = 1, 2) is an Ising spin with the total angular
momentum of the Tb atoms (σiz = ±J , with J = 6). J1 and
J2 represent the magnetic interactions coupled to the five
nearest- and five next-nearest-neighbor sites, respectively. In
this model, the metamagnetic transition is regarded as the
spin reorientation of the magnetic moments in an icosahedron.
With an increase in the magnetic field, half of the magnetic
moments were flipped in the opposite direction, as shown in
Fig. 1(d). This results in a large increase in magnetization
at a finite field. In addition, the differences in symmetry
over the metamagnetic transition naturally explain its first-
order nature. The ferromagnetic interactions of J1 = 0.0221 K
and J2 = 0.132 K reproduced the experimental data well,
as shown by the black solid curve in Fig. 2(d). They also
yielded a Weiss temperature of θW = 5J (J + 1)(J1 + J2)/3 =
10.8 K (J = 6), consistent with that estimated experimentally.
Furthermore, these interactions are compatible with the oc-
currence of antiferromagnetic order, which is stable under the
condition J1 < J2/2 [12,18].

Let us compare the magnetic properties of Au65Ga21Tb14

and Au72Al14Tb14, both of which are confirmed to have the
magnetic structure illustrated in Fig. 1(c). The e/a values
of the two compounds are 1.70 and 1.56, respectively. A
large e/a is qualitatively consistent with enhanced ferromag-
netic interactions, according to the phase diagram established
from the magnetization measurements of a series of mag-
netic quasicrystal approximants [8,9,18]. A further increase
in the e/a value enhances ferromagnetic interactions and
results in a ferromagnetic order similar to that observed in
Au70Si17Tb13 [13]. The magnetic structure of Au70Si17Tb13

is almost the same as that of Au65Ga21Tb14 under a magnetic
field, which is illustrated in Fig. 1(d). The magnetic structures
of Au72Al14Tb14 (e/a = 1.56), Au65Ga21Tb14 (e/a = 1.72),
and Au70Si17Tb13 (e/a = 1.77) strongly support the idea that
the magnetic moment of a Tb atom behaves as an Ising spin in
the Tb-based quasicrystal approximant. The direction of the
principal axes of the Tb atom does not change significantly
with the change in composition, whereas the direction of the
magnetic moments [selection of the magnetic structure shown
in Figs. 1(c) or 1(d)] is determined by the magnetic interac-
tions between Tb atoms. However, it remains unclear how
magnetic interactions and magnetic structures are modified by
tuning the e/a value. It would be interesting to investigate the
effective magnetic exchanges using inelastic neutron scatter-
ing experiments to understand this mechanism.

V. CONCLUSION

A whirling antiferromagnetic magnetic order was observed
in the quasicrystal approximant Au65Ga21Tb14. Magnetization
measurements and neutron diffraction experiments indicate
that the antiferromagnetic order is induced by the ferro-
magnetic next-nearest-neighbor interactions and the easy-axis
anisotropy of the Tb atom. Despite the large difference in
the occupancy ratio of the chemically disordered atoms at
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some ligand sites, the direction of the magnetic moment in
the antiferromagnetic phase is almost the same as that in
Au72Al14Tb14. The negligible influence of chemical substi-
tution on the easy-axis direction suggests that the crystalline
electric field can be screened by the conduction electrons in
magnetic quasicrystal approximants.
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APPENDIX A: PARALLEL AND PERPENDICULAR
SUSCEPTIBILITY UNDER ANISOTROPY

In this Appendix, we discuss the magnetic susceptibility of
quasicrystal approximants consisting of rare-earth atoms with
strong easy-axis (or easy-plane) anisotropy. Previous inelastic
neutron scattering studies on the quasicrystal approximant
Au70Si17Tb13 indicated that the second-order uniaxial term
dominates the anisotropy of Tb3+ ions [13]. Thus, the crystal
electric field Hamiltonian can be simplified as

H0 = −DĴz
2
. (A1)

In the following discussion, we assume that the angular mo-
mentum quantum number J is an integer and D is positive. A
schematic view of energy levels and eigenfunctions under this
assumption is illustrated in Fig. 4. The ground states consist
of a degenerate non-Kramers doublet, |J, Jz = ±J〉. Energy
levels of |J, Jz = ± j〉 states become higher as j becomes
smaller.

A magnetic field induces hybridization between these
eigenstates, leading to a shift of each energy level. The energy
of the |J, Jz = j〉 state can be calculated by regarding the
magnetic field as a perturbation,

Eα
j = Ej0 − gμBHIα

j j − (gμBH )2
∑
j′ �= j

∣∣Iα
j j′

∣∣2

Ej′ − Ej
, (A2)

where Ej0 = −D j2 and I j j′
α = 〈J, j|Ĵα|J, j′〉. The magnetic

susceptibility along the α direction becomes

χα = Ng2μ2
B

{ ∑
j

βI j j
α

2 e−βEj0

Z
−

⎛
⎝∑

j

I j j
α

e−βEj0

Z

⎞
⎠

2

+ 2
∑

j

∑
j′ �= j

∣∣I j j′
α

∣∣2

Ej′0 − Ej0

e−βEj0

Z

}
, (A3)

where Z represents the partition function. For instance, the
energies under a magnetic field along and perpendicular to the
anisotropy axis (z) are

E‖( j) = −D j2 − gμBH j, (A4)

E⊥( j) = −D j2 − (gμBH )2

D

{
J (J + 1) − j( j − 1)

j2 − ( j − 1)2

+ J (J + 1) − j( j + 1)

( j + 1)2 − j2

}
, (A5)

respectively. From the partition function

Z‖ =
J∑

j=−J

e−βE‖( j), (A6)

Z⊥ =
J∑

j=−J

e−βE⊥( j), (A7)

the magnetic susceptibility becomes

χ‖ = Ng2μ2
Bβ

2
∑J

j=1 j2e j2Dβ

1 + 2
∑J

j=1 e j2Dβ
, (A8)

χ⊥ = Ng2μ2
B

D

×
∑J

j=1
J (J+1)− j( j−1)

j2−( j−1)2 (e j2Dβ − e( j−1)2Dβ )

1 + 2
∑J

j=1 e j2Dβ
. (A9)

|J, ±J >

|J, ±(J-1) >

|J, ±(J-2) >

(2J-1)D

(2J-3)D

3D

D

3D3D

...

|J, ±2 >
|J, ±1 >
|J, 0 >

FIG. 4. Schematic view of energy levels and eigenfunctions
|J, Jz〉 of a rare-earth atom under the model Hamiltonian (A1) with
easy-axis anisotropy (D > 0).
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It is convenient to derive their series expansions around β ∼ 0
to discuss the temperature dependence at high temperatures as

χ‖ = Ng2μ2
Bβ 1

3 J (J + 1)

×{
1 + 1

15 (2J − 1)(2J + 3)(Dβ )

+ 1
630 (2J − 3)(2J − 1)(2J + 3)(2J + 5)(Dβ )2

+ · · · }, (A10)

χ⊥ = Ng2μ2
Bβ 1

3 J (J + 1)

× {
1 − 1

30 (2J − 1)(2J + 3)(Dβ )

− 1
630 (2J − 1)(2J + 3)(2J2 + 2J + 3)(Dβ )2

+ · · · }. (A11)

As discussed in Appendix B, the bulk magnetic susceptibility
is given by an average of the local magnetic susceptibility
among several rare-earth atoms that have different orienta-
tions of principal axes. It becomes a powder-averaged form
as

χ = 1
3 (χ‖ + 2χ⊥)

= Ng2μ2
Bβ 1

3 J (J + 1)

× {
1 − 1

90 (2J − 1)(2J + 3)(Dβ )2 + · · · }. (A12)

The first-order term with respect to β represents the Curie law
of free rare-earth atoms. On the other hand, the second-order
term, whose coefficient corresponds to the Weiss temper-
ature, is absent in Eq. (A12). Usually, uniaxial anisotropy
contributes to the second-order term such as that presented in
Eqs. (A10) and (A11). However, its contribution is canceled
by taking an average of the local magnetic susceptibil-
ity among several rare-earth atoms with different principal
axes. Consequently, the magnetic susceptibility at high tem-
peratures follows the Curie rule well. Note that magnetic
interactions between rare-earth atoms are absent in the above
discussion. The magnetic interactions between rare-earth
atoms would act as the molecular field, leading to the tem-
perature dependence following the Curie-Weiss rule.

The temperature range where the Curie-Weiss fit could be
applicable depends on the magnitude of J and D. Finally, let
us discuss the temperature range valid for the Curie-Weiss
fit in the Tb-based quasicrystal approximant. J becomes 6
for Tb3+. The estimated averaged coefficient of the dominant
second-order uniaxial term q20 = −0.007 of Au70Si17Tb13

[13] corresponds to a D value of 4 K. From these values,
the third-order term of β is estimated to be almost 1% of
the Curie term from Eq. (A12). Figure 5 shows temperature
dependences of the inverse magnetic susceptibility derived
by substituting J = 6 and D = 4 K in Eqs. (A8) and (A9).
Compared with the parallel and perpendicular inverse suscep-
tibilities, the averaged inverse susceptibility is quite close to
a straight line. In addition, the intercept of the line is almost
zero. This is also clear from the small deviation from the Curie
rule, as shown in the inset of Fig. 5. The deviation from the
ideal value is kept to almost within 1% above 50 K, which is
consistent with the estimate from the series expansion. The
small deviation ensures the validity of the Curie-Weiss fit,
which is performed above 50 K in this study.

FIG. 5. Temperature dependences of inverse magnetic suscep-
tibility. The inverse of parallel (red), perpendicular (blue), and
averaged (black) susceptibility multiplied by a normalization factor
is plotted as a function of temperature. The green dashed line indi-
cates the Curie rule expected for free Tb3+ ions. The inset shows the
deviation of the inverse susceptibility against the Curie rule.

The above discussion can also be applied to rare-earth
atoms that have Kramers doublets as eigenstates. Applying a
perturbation theory to degenerate Kramers doublets, |J, Jz =
±(J − 1/2)〉, . . . , |J, Jz = ±1/2〉, leads to the parallel and
perpendicular magnetic susceptibilities

χ‖ = Ng2μ2
Bβ

∑J
j=1

(
j − 1

2

)2
e( j− 1

2 )2Dβ∑J
j=1 e( j− 1

2 )2Dβ
, (A13)

χ⊥ = Ng2μ2
B

{
1

2D
∑J

j=1 e( j− 1
2 )2Dβ

×
J−1∑
j=1

(
J − 1

2

)(
J + 1

2

) − ( j + 1/2)( j − 1/2)

( j + 1/2)2 − ( j − 1/2)2

× (e( j+1/2)2Dβ − e( j−1/2)2Dβ )

+β
J2e

Dβ

4

4
∑J

j=1 e( j− 1
2 )2Dβ

}
. (A14)

The second-order term of β is confirmed to be zero from series
expansion of the averaged susceptibility.

APPENDIX B: CONTRIBUTION OF THE LOCAL
PARALLEL AND PERPENDICULAR SUSCEPTIBILITIES

TO THE BULK SUSCEPTIBILITY

In this section, the contribution of the local parallel and
perpendicular magnetic susceptibilities to the bulk magnetic
susceptibility is discussed. In the 1/1 quasicrystal approxi-
mant, a single cluster is composed of 12 rare-earth atoms,
which have the atomic coordination listed in Table III. The
bulk magnetic susceptibility corresponds to an average of
the local magnetic susceptibility among the 12 rare-earth
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TABLE III. List of the coordinates of Tb atoms in a unit cell.
The rest of the half atoms are induced by centering symmetry
+(1/2, 1/2, 1/2).

Tb atoms Atomic coordinates

Tb1 0 y0 z0

Tb2 0 −y0+1 z0

Tb3 0 y0 −z0+1
Tb4 0 −y0+1 −z0+1
Tb5 z0 0 y0

Tb6 z0 0 −y0+1
Tb7 −z0+1 0 y0

Tb8 −z0+1 0 −y0+1
Tb9 y0 z0 0
Tb10 −y0+1 z0 0
Tb11 y0 −z0+1 0
Tb12 −y0+1 −z0+1 0

atoms, which have different orientations of the principal axes.
To obtain the averaged magnetic susceptibility, let us derive
the relation between global and local angular momentum
operators and then rewrite the bulk magnetic susceptibility
in terms of the local angular momentum operators. In the
following, we introduce the global angular momentum op-
erators Ĵx, Ĵy, and Ĵz along a magnetic field direction h =
(sin θ cos ψ, sin θ sin ψ, cos θ ). Following Eq. (A3), the mag-
netic susceptibility along this direction at the ith rare-earth
atom is given by

χih = Ng2μ2
B

{∑
j

βI j j
ih

2 e−βEj0

Z
−

⎛
⎝∑

j

I j j
ih

e−βEj0

Z

⎞
⎠

2

+ 2
∑

j

∑
j′ �= j

∣∣I j j′
ih

∣∣2

Ej′0 − Ej0

e−βEj0

Z

}
, (B1)

where

I j j′
ih = 〈	 j |Ĵh|	 j′ 〉i,

Ĵh = Ĵx sin θ cos ψ + Ĵy sin θ sin ψ + Ĵz cos θ. (B2)

Equation (B1) is applicable to any system as long as non-
diagonal matrix elements of degenerate eigenstates are zero

(I j j′
ih = 0, where j �= j′ and Ej = Ej′ ). Note that the wave

function |	 j〉i is defined at the ith atom, which is represented

by the subscript of a ket vector. I j j′
ih depends on i since the

magnetic field direction becomes effectively different in each
rare-earth atom. The averaged magnetic susceptibility among
12 rare-earth atoms becomes

χh ≡ 1

12

12∑
i=1

χih = Ng2μ2
B

12

{∑
j

β

(
12∑

i=1

I j j
ih

2

)
e−βEj0

Z

−
∑

j

∑
j′

(
12∑

i=1

I j j
ih I j′ j′

ih

)
e−β(Ej0+Ej′0 )

Z2

+ 2
∑

j

∑
j′ �= j

(
12∑

i=1

∣∣I j j′
ih

∣∣2
)

1

Ej′0 − Ej0

e−βEj0

Z

}
. (B3)

First, we derive the magnetic susceptibility of the rare-earth
atom with the atomic coordination (0, y0, z0) (the Tb1 site in
Table III). Because of a mirror symmetry with respect to the
bc plane, one of the local principal axes should be along the
a direction. Thus, the local principal axes, 1x, 1y, and 1z, can
be defined as

(e1x e1y e1z ) = (ex ey ez )

⎛
⎝1 0 0

0 cos θa − sin θa

0 sin θa cos θa

⎞
⎠, (B4)

where ex, ey, and ez represent the global a, b, and c axes
of the cubic lattice, respectively. The definition of the local
principal axes is schematically illustrated in Fig. 6. The wave
function defined in the global frame is modified to that de-
fined in the local frame by the rotation around the x axis as
|	 j〉i → e−iθaĴx |	 j〉i. Local magnetization along the magnetic
field direction is given by

I j j′
1h ≡ 〈	 j |eiθaĴx Ĵhe−iθaĴx |	 j′ 〉1. (B5)

I j j′
1h can be rewritten in terms of the magnetization along

the principal axes I j j′
α ≡ 〈	 j |Ĵiα|	 j′ 〉i (α = x, y, z) from

Eqs. (B2) and (B5) as

J1h ≡ eiθaĴx Ĵhe−iθaĴx = ˆJ1x sin θ cos ψ

+ ( ˆJ1y sin θ sin ψ + ˆJ1z cos θ ) cos θa

+ ( ˆJ1y cos θ − Ĵ1z sin θ sin ψ ) sin θa

y

z

z0

0

e1x

e1y
e1z e2z

e2y e2x

e4z e4y

e4xe3x

e3z

e3y
1-z0

y0 1-y0
z

x

z0

0

e5x

e5y
e5z e6z

e6y e6x

e8z e8y

e8xe7x

e7z

e7y
1-z0

y0 1-y0
x

y

z0

0

e9x

e9y
e9z

e10y e10x

e12z e12y

e12xe11x

e11z

e11y
1-z0

y0 1-y0

inside bc plane inside ca plane inside ab plane

θa θa

e10z

θa

FIG. 6. Direction of local principal axes of Tb1–Tb12 atoms. The directions of the z axes are highlighted in red.
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I j j′
11h = 〈	 j |J1h|	 j′ 〉1

= {
I j j′
x sin θ cos ψ + (

I j j′
y sin θ sin ψ + I j j′

z cos θ
)

cos θa

+ (
I j j′
y cos θ − I j j′

z sin θ sin ψ
)

sin θa
}
. (B6)

Note that I j j′
α does not depend on i as all the rare-earth atoms

are symmetrically equivalent.
The same procedure can be applied to the all 12 rare-earth

atoms. The matrix element for the second rare-earth atom (the
Tb2 site in Table III) becomes

I j j′
2h ≡ 〈	 j |e−iθaĴx ĴheiθaĴx |	 j′ 〉2, (B7)

and from Eqs. (B2) and (B7),

J2h ≡ e−iθaĴx ĴheiθaĴx = Ĵx sin θ cos ψ

+ (Ĵy sin θ sin ψ + Ĵz cos θ ) cos θa

− (Ĵy cos θ − Ĵz sin θ sin ψ ) sin θa,

I j j′
22h = {

I j j′
x sin θ cos ψ

+ (
I j j′
y sin θ sin ψ + I j j′

z cos θ
)

cos θa

− (
I j j′
y cos θ − I j j′

z sin θ sin ψ
)

sin θa
}
. (B8)

The same procedure for the Tb3 and Tb4 atoms results in

I j j′
33h = {

I j j′
x sin θ cos ψ

− (
I j j′
y sin θ sin ψ + I j j′

z cos θ
)

cos θa

+ (
I j j′
y cos θ − I j j′

z sin θ sin ψ
)

sin θa
}
,

I j j′
44h = {

I j j′
x sin θ cos ψ

− (
I j j′
y sin θ sin ψ + I j j′

z cos θ
)

cos θa

− (
I j j′
y cos θ − I j j′

z sin θ sin ψ
)

sin θa
}
, (B9)

respectively. Thus, the sum of I j j
ih

2
over the Tb1–Tb4 atoms

becomes
4∑

i=1

I j j
ih

2 = 4
{
I j j
x

2
sin2 θ cos2 ψ

+ I j j
y

2
(sin2 θ sin2 ψ cos2 θa + cos2 θ sin2 θa)

+ I j j
z

2
(sin2 θ sin2 ψ sin2 θa + cos2 θ cos2 θa)

+ 2I j j
y I j j

z sin θ cos θ sin ψ (cos2 θa − sin2 θa)
}
.

(B10)

The corresponding sums over the Tb5–Tb8 and Tb9–Tb12
atoms are given in a similar form as

8∑
i=5

I j j
ih

2 = 4
{
I j j
y

2
sin2 θ cos2 ψ

+ I j j
z

2
(sin2 θ sin2 ψ cos2 θa + cos2 θ sin2 θa)

+ I j j
x

2
(sin2 θ sin2 ψ sin2 θa + cos2 θ cos2 θa)

+ 2I j j
z I j j

x sin θ cos θ sin ψ (cos2 θa − sin2 θa)
}

(B11)

and

12∑
i=9

I j j
ih

2 = 4
{
I j j
z

2
sin2 θ cos2 ψ

+ I j j
x

2
(sin2 θ sin2 ψ cos2 θa + cos2 θ sin2 θa)

+ I j j
y

2
(sin2 θ sin2 ψ sin2 θa + cos2 θ cos2 θa)

+ 2I j j
x I j j

y sin θ cos θ sin ψ (cos2 θa − sin2 θa)
}
,

(B12)

respectively. The sum of Eqs. (B10), (B11), and (B12) is

1

12

12∑
i=1

I j j
ih

2 = 1

3

{
I j j
x

2 + I j j
y

2 + I j j
z

2

+ 2
(
I j j
x I j j

y + I j j
y I j j

z + I j j
z I j j

x

)
× sin θ cos θ sin ψ (cos2 θa − sin2 θa)

}
.

(B13)

Due to the threefold symmetry in the quasicrystal approxi-
mant, the magnetic field direction dependence of the magnetic
susceptibility can be symmetrized as

1

12

12∑
i=1

I j j
ih

2 = 1

3

{
I j j
x

2 + I j j
y

2 + I j j
z

2

+ 2

3

(
I j j
x I j j

y + I j j
y I j j

z + I j j
z I j j

x

)
× (sin2 θ cos ψ sin ψ + sin θ cos θ sin ψ

+ sin θ cos θ cos ψ )(cos2 θa − sin2 θa)
}
.

(B14)

The sum of I j j
ih I j′ j′

ih and |I j j′
ih |2 can be also obtained in the same

manner.
The magnetic field direction dependence in Eq. (B14) dis-

appears in some simple cases. For instance, if the Hamiltonian
is given by Eq. (A1) and the angular momentum quantum
number J is an integer, |	 j〉 can be replaced by |J, j〉 ( j =
0, . . . , J). Then, only I j j

z , I j j±1
x , and I j j±1

y become nonzero for
diagonal components. In addition, some matrix elements from
nondiagonal components are canceled (I j j′

x I j j′
y

∗ + I j j′
x

∗
I j j′
y =

0). Consequently, the averaged magnetic susceptibility is sim-
plified as

χh = 1
3 (χx + χy + χz ), (B15)

where χα represents the local magnetic susceptibility along
the principal axes (α = x, y, z). Equation (B15) indicates that
the bulk magnetic susceptibility is equal to the powder-
averaged form of the local magnetic susceptibility irrespective
of the local magnetic anisotropy and the magnetic field di-
rection if the crystal field Hamiltonian consists of only the
second-order term of Ĵz. The magnetic anisotropy recovers
through the coexistence of additional terms. The same conse-
quence can be derived for rare-earth ions with a half-integer J .
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