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A central challenge in high-throughput density functional theory (HT-DFT) calculations is selecting a combi-
nation of input parameters and postprocessing techniques that can be used across all materials classes, while also
managing accuracy-cost tradeoffs. To investigate the effects of these parameter choices, we consolidate three
large HT-DFT databases: Automatic-FLOW (AFLOW), the Materials Project (MP), and the Open Quantum
Materials Database (OQMD), and compare reported properties across each pair of databases for materials
calculated using the same initial crystal structure. We find that HT-DFT formation energies and volumes
are generally more reproducible than band gaps and total magnetizations; for instance, a notable fraction of
records disagree on whether a material is metallic (up to 7%) or magnetic (up to 15%). The variance between
calculated properties is as high as 0.105 eV/atom (median relative absolute difference, or MRAD, of 6%)
for formation energy, 0.65 Å3/atom (MRAD of 4%) for volume, 0.21 eV (MRAD of 9%) for band gap, and
0.15μB/formula unit (MRAD of 8%) for total magnetization, comparable to the differences between DFT
and experiment. We trace some of the larger discrepancies to choices involving pseudopotentials, the DFT+U
formalism, and elemental reference states, and argue that further standardization of HT-DFT would be beneficial
to reproducibility.
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I. INTRODUCTION

Over the past decade, high-throughput (HT) density func-
tional theory (DFT) has emerged as a widely used tool for
materials discovery and design [1–3]. In a standard HT-DFT
workflow, software tools automate the process of calculating
materials properties of interest within DFT, including sub-
mitting jobs to high-performance computing infrastructure,
on-the-fly error handling, postprocessing and dissemination of
results, and so on, enabling researchers to evaluate typically
103–106 materials with minimal human intervention. The re-
sulting database can then be screened for candidate materials
exhibiting promising combinations of calculated properties or
to search for trends among materials behavior to gain new
chemical insights or develop surrogate models.

The increasingly widespread usage of HT-DFT in materi-
als research can be attributed to a combination of three key
factors. First, a large number of specialized codes implement
fully automated calculations of specific materials properties
within DFT, ranging from phonon dispersions to dielectric
tensors. For example, VASP 5.1 [4,5] introduced a feature
enabling users to calculate elastic tensors by simply setting
a parameter in the input file. Second, the ongoing growth of
computing power has ensured that HT-DFT is now well within
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reach of a single university research group. Third, sophisti-
cated, free, often open-source software is readily available for
managing large numbers of DFT calculations, postprocess-
ing output, and storing the resulting data systematically in
databases. Thus, a number of HT-DFT databases with various
focus areas have emerged [3,6–17]; a list of exemplars, includ-
ing any supporting workflow automation software [18–33], is
given in Sec. S-I of the Supplemental Material (SM) [34].

However, the entirely automated nature of HT-DFT intro-
duces a few key challenges. First, by definition, the volume
of data from HT-DFT is too high for each individual calcu-
lation to undergo manual review or analysis [1]. How, then,
are the quality and integrity of calculations monitored in
high throughput? Second, HT-DFT requires choosing, often at
the outset, settings that are consistent across all calculations,
encompassing all materials classes and properties being calcu-
lated. For example, it may not be known a priori whether the
material being calculated is a metal or an insulator. As a result,
the calculation parameters that affect, e.g., how electronic
occupancies are smeared near the Fermi level, must be chosen
so that they are applicable to both metals and insulators. Third,
practical HT-DFT calculations involve balancing accuracy
and computational cost; best-practice recommendations [35]
involve steps such as explicit convergence tests, which be-
come computationally infeasible in the HT context. Of these
challenges, only the first, related to monitoring the quality
and integrity of calculations in high throughput has been
addressed. Software frameworks, such as CUSTODIAN [36],
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QMPY [23], and AIIDA [37], can store provenance information
to ensure the integrity of calculations, and gracefully handle
errors associated with catastrophic failures, e.g., those related
to file read/write operations or memory issues during run-
time, insufficient wall times on high-performance computing
resources, and misconfiguration of the underlying numerical
libraries.

Since HT-DFT has become increasingly central to ma-
terials informatics efforts across the spectrum, from high-
throughput screening to machine learning [38,39], it is crucial
to resolve the following concerns: (i) There is no one correct
solution to some of the challenges of HT-DFT mentioned
above, and different databases have tackled them slightly dif-
ferently. How sensitive are the calculated materials properties
to the different HT-DFT parameter choices? (ii) The focus
areas of many prominent HT-DFT databases in terms of the
materials and properties calculated are often quite different.
As a result, materials data from the various HT-DFT databases
are often mixed with one another for thermochemical or other
analysis. How interoperable are these various calculated mate-
rials properties across HT-DFT databases? We emphasize that
such a comparison across HT-DFT databases is different from
analyzing the reproducibility of DFT across software imple-
mentations and potentials, e.g., focusing on equations of state
of elemental crystals: [40] the challenges of HT-DFT lie in
choosing parameters that are applicable across a wide variety
of materials and properties, targeting both reasonable accu-
racy and computational cost—very distinct from performing
highly accurate DFT calculations of a small set of materials.

Here, we analyze the reproducibility and interoperability
of HT-DFT calculations. We critically compare the agree-
ment between three databases for four properties: formation
energy (�Ef ), volume (V ), band gap (Eg), and total magne-
tization (M). We find certain properties (formation energies
and volumes) to be more consistent across databases than
others (band gap and magnetization). We then quantify the
variability in each of the properties across databases and find
that the typical differences between two HT-DFT databases
are similar to those between DFT and experiment. Finally,
we compare properties across different materials classes to
identify characteristics of materials and/or properties that are
harder than others to reproduce. In all cases, we identify
trends, surface outliers, and investigate potential causes for an
observed systematic differences between the databases.

II. METHODS

We focus on three prominent HT-DFT databases in this
work: Automatic FLOW (AFLOW) [6], the Materials Project
(MP) [15], and the Open Quantum Materials Database
(OQMD) [3,23]. All three databases contain calculations of
a large number of mostly experimentally reported, ordered
compounds from the Inorganic Crystal Structure Database
(ICSD) [41]. In addition, they contain calculations of many
thousands of hypothetical compounds generated from com-
mon structural prototypes or other informatics approaches. As
noted earlier, there are many other large HT-DFT databases,
e.g., JARVIS-DFT [13], Materials Cloud [14], and others
listed in Table S-I of the SM [34]. Here, we limit our focus
to AFLOW, Materials Project, and OQMD as the latter (i)

are among the longest running, mature, widely used, and
general purpose, and (ii) use the VASP software package [4,5]
and projector augmented wave (PAW) potentials [42,43] with
the Perdew-Burke-Ernzerhof (PBE) parametrization [44] of
a generalized-gradient approximation (GGA) to the DFT
exchange-correlation functional. The variance in HT-DFT-
calculated properties studied in the present work is, therefore,
almost entirely due to differences in various choices involved
in HT-DFT (e.g., those involving calculation parameters such
as k-point density, the DFT+U approach, postcalculation
processing techniques, different versions of VASP and any
associated software bugs, different versions of PBE pseudopo-
tentials used) and not due to different implementations of DFT
or approximations to the underlying exchange-correlation
functional itself.

AFLOW has standardized band structure calcula-
tions [18,45], binary alloy cluster expansions [46],
finite-temperature thermodynamic properties [47], elastic
and thermomechanical properties [48] calculated for many
materials, and has an application programming interface
(API) based on the REpresentational State Transfer (REST)
standard (commonly referred to as “RESTful API”) for
accessing data [6,49]. The Materials Project includes a variety
of properties calculated for specific subsets of materials in
the database, including elastic [50], thermoelectric [51],
piezoelectric [52], dielectric [53], vibrational [54] properties,
and x-ray adsorption spectra [55]. It also includes a collection
of apps such as a Pourbaix diagram calculator [56], and the
underlying data are accessible via a RESTful API [57,58].
Finally, the Open Quantum Materials Database (OQMD)
contains calculations of a large number of hypothetical
compounds based on structural prototypes [59–61], and
provides tools for the construction of DFT ground state
phase diagrams at ambient and high pressures [62–64].
The OQMD provides the entirety of the underlying
database to download all at once, and a RESTful API for
programmatic access [65]. License and access information
for the three databases is included in Sec. S-II of the
SM [34].

We query all three databases (AFLOW: queried June 2021;
MP: v2019.05; OQMD: v1.2) for the calculated properties
of materials whose crystal structures were sourced from the
ICSD and aggregate them into a single dataset, after con-
verting records from all sources into a unified, consistent
data format, the physical information file (PIF) [66,67]. We
then generate a set of comparable records for each pairwise
combination of the databases—all calculations using the same
initial crystal structure, by matching their ICSD collection
codes (hereafter referred to as “ICSD ID”). In instances where
more than one calculation within a single database was labeled
with the same ICSD ID, we use the lowest-energy calculation
for all analysis. In addition, we discard records with obviously
unphysical property values (those with formation energy out-
side the [−5 eV/atom, +5 eV/atom] window and volumes
above 150 Å3/atom), and normalize properties to the same
units, where required. We then perform statistical analysis on
the final curated set of comparable records across the three
databases. Definitions of the metrics used in our analysis are
given in Appendix and details of the query and curation steps
are provided in Sec. S-II of the SM [34].
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TABLE I. The number of records after establishing ICSD ID equivalency for each property of interest in the AFLOW, Materials Project
(MP), and OQMD HT-DFT databases, as well as for pairwise comparisons of the three databases.

AFLOW MP OQMD AFLOW-MP AFLOW-OQMD MP-OQMD

Formation Energy 2196 34907 22248 2070 1717 19082
Volume 21929 34907 22248 19258 15857 19082
Band Gap 21921 34907 22169 19253 15790 19007
Total Magnetization 21929 34907 22248 19258 15857 19082

III. RESULTS

The aggregation and processing of the data from the three
HT-DFT databases results in a set of ∼70000 total compa-
rable DFT calculations. For each property of interest, i.e.,
formation energy per atom, volume per atom, band gap, total
magnetization per formula unit (f.u.), the counts of records,
and overlapping records for each pair of databases are shown
in Table I. Approximately 15000–25000 comparisons can be
made for each property and database pair, except for com-
parisons to formation energies from AFLOW, where only
∼2200 records are reported. As mentioned earlier, overlap-
ping records across databases were determined by using exact
ICSD ID matches for the reported calculations.

A. Overall pairwise comparison statistics

Table II shows some overall statistics for comparisons
of all properties across comparable records in the three
databases: the median absolute difference (MAD), the in-
terquartile range (IQR), the Pearson correlation coefficient
(r), and Spearman’s rank correlation coefficient (ρ) (defi-
nitions of the metrics are in Appendix). For band gap and
total magnetization, the statistics were calculated only on
subsets of overlapping records where both databases agreed
that a material is nonmetallic (Eg > 0.01 eV) and is magnetic
(M > 0.01 μB/atom), respectively. The latter threshold on
the per-formula unit total magnetization ensures that unde-
sired comparisons of different magnetic configurations for the
same crystal structure (i.e., ferromagnetic configuration in one
database being compared to antiferromagnetic configuration
in another) are avoided as much as possible.

Overall, we find that: (i) The MAD in formation energy
across pairs of databases can be up to 0.105 eV/atom, com-
parable to the ∼0.1 eV/atom difference between DFT and
experimental formation energies [23]. (ii) The MAD in vol-
ume across pairs of databases can be up to 0.65 Å3/atom

(median absolute difference relative to mean (MRAD),
of 3.8%), comparable to error between DFT and exper-
iment [68]. (iii) The MAD in band gap across pairs of
databases can be up to 0.21 eV, even when comparing
only records where both databases agree that a material is
not metallic. For around 5%–7% of overlapping records,
databases disagree whether a material is metallic. (iv) The
comparison of total magnetization shows high variability
across database pairs. While the dispersion of differences
for the MP-OQMD comparison is very small (MAD of
0.01μB/f.u. and IQR of 0.05μB/f.u.), the dispersion of dif-
ferences in comparisons with AFLOW are rather large (up to
MAD of 0.15μB/f.u. and IQR of up to 2.0μB/f.u.). In all
cases, the correlation between calculated values is lower than
for the other three properties, with both Pearson and Spearman
correlation coefficients ranging from 0.6–0.8. We further note
that the latter poor correlation exists even after excluding over-
lapping records where the two databases disagree on whether
the material is magnetic (10%–15% of the records).

B. Distribution of differences in calculated properties

We first analyze the raw differences in the calculated
properties for records overlapping across pairs of databases.
Figure 1 shows the distribution of the differences in calculated
values for each of formation energy, volume, band gap, and to-
tal magnetization, for each pairwise combination of databases.

Formation energy. The distribution of differences in calcu-
lated formation energy across AFLOW-MP and MP-OQMD is
surprisingly bimodal, with peaks around 0 and ±0.2 eV/atom.
We find that the peak near 0.2 eV/atom in both pairwise
comparisons corresponds mostly to oxides (see Fig. S1),
and is a result of different approaches in the two databases
toward correcting DFT-calculated formation energies (see
Sec. IV B). While the median difference (�̃x in Fig. 1)
is reasonably small across all three pairwise comparisons

TABLE II. Overall statistics [median absolute difference (MAD), interquartile range (IQR), Pearson’s linear correlation coefficient (r), and
Spearman’s rank correlation coefficient (ρ)] for the comparison of properties across HT-DFT databases. For each property, records overlapping
across a pair of databases are compared (* for band gap and magnetization, only nonzero values are compared). Generally, lower MAD, lower
IQR, higher r, and higher ρ values indicate better reproducibility of calculated properties.

AFLOW-MP AFLOW-OQMD MP-OQMD

MAD IQR r ρ MAD IQR r ρ MAD IQR r ρ

Formation Energy (eV/atom) 0.105 0.173 0.99 0.99 0.019 0.036 0.99 0.99 0.087 0.168 0.99 0.99
Volume (Å3/atom) 0.180 0.389 0.98 0.99 0.647 1.117 0.97 0.97 0.512 0.902 0.98 0.98
Band Gap (eV)* 0.078 0.203 0.94 0.92 0.209 0.364 0.92 0.91 0.178 0.277 0.93 0.92
Total Magnetization (μB/f.u.)* 0.015 0.759 0.77 0.75 0.149 2.001 0.60 0.56 0.012 0.052 0.80 0.74
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FIG. 1. Distribution of the differences in calculated properties across HT-DFT databases. Each panel corresponds to a property and pair
of databases being compared. Solid vertical black lines correspond to the first (Q1) and third (Q3) quartiles of the distribution. The number
of records overlapping across the two databases is shown in the top right corner of each panel; the median of distribution (�̃x), the median
absolute difference (MAD), and the interquartile range (IQR) are noted on the left.

(up to ∼0.074 eV/atom), the difference distributions for
AFLOW-MP and MP-OQMD are rather wide. The me-
dian absolute difference (MAD) and the interquartile range
(IQR), both robust measures of the spread of a distribu-
tion, are up to ∼0.105 eV/atom and ∼0.173 eV/atom,
respectively.

Volume. The distribution of differences in calculated vol-
umes is skewed towards smaller volumes in the OQMD, but
such a skew is absent in the AFLOW-MP comparison. Corre-
spondingly, the median difference between AFLOW and MP
volumes are ∼0.01 Å3/atom, whereas the median differences
are ∼0.62 Å3/atom and ∼0.47 Å3/atom for AFLOW-OQMD
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and MP-OQMD, respectively. The consistently smaller vol-
umes calculated in the OQMD can be understood to result
from the choice of the plane wave energy cutoff used for DFT
relaxation calculations. The OQMD chooses a plane wave cut-
off that is lower than that used in AFLOW and MP (ENMAX
in the POTCAR file, up to 400 eV in OQMD, as opposed to
520 eV in MP and up to 560 eV in AFLOW) for full cell relax-
ations. The lower plane wave cutoff results in Pulay stresses
and generally smaller volumes than fully relaxed calcula-
tions. The MAD in volumes for comparisons, especially for
OQMD with the other two databases, is up to ∼0.65 Å3/atom.
In addition, some differences in reported volumes can re-
sult from the different relaxation schemes employed in the
three HT-DFT databases: AFLOW and MP perform two se-
quential relaxations, while the OQMD performs sequential
relaxations until the volume change during a relaxation is less
than 5%.

Band gap. The distribution of differences in the calculated
band gaps is slightly skewed towards larger band gaps in the
OQMD, but this skew is absent in the AFLOW-MP compar-
ison. Correspondingly, the median difference in band gaps
between AFLOW and MP is ∼0.01 eV, and up to ∼0.14 eV
for comparisons with OQMD. The larger band gaps calcu-
lated in the OQMD might be due to smaller volumes from
the choice of lower plane wave energy cutoffs. An increase
in the fundamental band gap due to compressive strains (in
the OQMD, due to unresolved Pulay stresses) has been ob-
served in many semiconductor families [69–71]. In addition,
the spread in the differences in calculated band gaps is quite
large: with an MAD of up to ∼0.21 eV and an IQR of up to
∼0.36 eV for comparisons with OQMD. The spread may be,
in addition to the choice of energy cutoff as discussed above,
due to the different ways in which the databases calculate the
band gap. For example, OQMD calculates band gap from the
electronic density of states (DOS), in contrast to AFLOW and
MP, which calculate it from band dispersions. The energy grid
used for the calculation of DOS and/or k-point meshes used
for band structure calculations can also have a notable effect
on the precision and accuracy of the reported band gap. For
instance, while AFLOW and MP both report gaps calculated
from band dispersion calculations, the high-symmetry k path
in the Brillouin zone used for such calculations can be differ-
ent [18,72].

Total magnetization. The median differences in AFLOW-
MP and MP-OQMD are nearly zero, with reasonably small
MAD values as well. However, the differences between
the magnetization reported in AFLOW and the other two
databases skew towards larger values in AFLOW, with long
tails and correspondingly large dispersions. The difference
between AFLOW and OQMD, in particular, shows a MAD
of ∼0.15 μB/atom and an IQR of ∼2.0 μB/atom. Further,
as noted earlier, a significant fraction of 10–15% overlapping
records across databases disagree on whether the material
has nonzero total magnetization. This disagreement may in
part be due to different pseudopotential choices for various
elements (and correspondingly different number of valence
electrons), and sampling of different magnetic configura-
tions, the choice of unit cell in such magnetic configuration
sampling, etc. For instance, AFLOW and MP calculate fer-
romagnetic configurations for all materials, and ferrimagnetic

and antiferromagnetic configurations for a subset of materi-
als [73,74], while the OQMD only calculates ferromagnetic
configurations [23]. For a given material, since we only
compare the lowest-energy configurations across databases
with one another, it is possible that a material is predicted
to be nonmagnetic in one database and antiferromagnetic
in another database. Alternately, a ferrimagnetic configura-
tion in one database could be compared to a ferromagnetic
calculation in another, if both converged to finite magnetic
moments.

C. Rank-order comparisons across properties

We next seek to make comparisons across properties. In-
stead of comparing the raw values of the properties directly,
we compare overlapping records using the ordinal rank of the
property in each database being compared (hereafter, referred
to as “percentile rank”). Comparing the percentile ranks of
the properties has a few advantages: (i) It allows for a single
consistent metric for comparison across all four properties
regardless of the magnitude of the actual value and physical
units. (ii) It is not affected by many systematic differences,
e.g., a constant shift of 0.1 eV in all calculated band gaps in
one database. Such constant shifts in calculated properties do
not affect the internal consistency of a HT-DFT database, and
the percentile ranks, which are similarly unaffected capture
this property. (iii) It is a robust, uniform identifier of outliers
in calculated properties.

Figure 2 consists of percentile rank scatter plots (closely
related to the quantile-quantile or Q-Q plots) of each property
of interest for each database pair. Note that for band gap
(total magnetization), we only include overlapping records
where the two databases being compared both report the ma-
terial to be nonmetallic (magnetic), to avoid having to rank
near-zero or zero values against one another. A compact line
along the diagonal corresponds to perfect correlation between
the ranked properties, with more diffuse scattering indicating
lower levels of correlation.

Formation energy. Of the four properties, formation en-
ergy shows the best correlation between each database pair,
consistent with all r and ρ values close to 0.99 in Ta-
ble II. Nonetheless, there is some off-diagonal scatter for the
MP-OQMD comparison for larger (more positive) values of
formation energy that is not found in the other database pairs.
These calculations correspond to compounds with smaller
(positive) formation energies, where the precision necessary
to reliably rank the structure approaches the accuracy of the
calculation.

Volume. The percentile rank comparison of volume shows
higher off-diagonal scatter than that seen in comparisons of
formation energy. There is a skew towards higher volumes in
AFLOW and MP when compared to OQMD (scatter towards
top left of the diagonal in the AFLOW-OQMD and MP-
OQMD comparisons), consistent with the discussion around
plane wave energy cutoffs in the previous section.

Band gap. The percentile rank comparison of band
gap shows even higher off-diagonal scatter than that ob-
served in comparisons of both formation energy and
volume. In particular, there is meaningful scatter along
the axes, corresponding to cases where one database
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FIG. 2. Comparison of the calculated properties (formation energy, volume, band gap, and total magnetization) over records overlapping
across pairwise combinations of HT-DFT databases plotted as a percentile rank (i.e., ordinal rank of the property in each database being
compared). A compact line along the diagonal corresponds to perfect correlation between the ranked properties. Overall, formation energies
and volumes show better reproducibility than band gaps and magnetizations. The clusters seen in the magnetization comparisons correspond
to nominally integer values of magnetic moments.

predicts the material to have a near-zero band gap whereas
the other database predicts a (much larger) nonzero band
gap.

Total magnetization. The percentile rank comparison of
total magnetization per formula unit in all three pairwise
comparisons shows a few distinct clusters along the diago-
nal, corresponding to nominally integer values of magnetic
moment per formula unit. There is considerable off-diagonal
bowing in the comparisons with AFLOW, consistent with the
distribution of differences between AFLOW and the other two
databases showing a skew towards larger magnetizations in

AFLOW and long tails (bottom panel in Fig. 1). In addition,
there is considerable off-diagonal scatter (horizontal and ver-
tical bands in the magnetization panel of Fig. 2) indicating
significant disagreement between the values reported in the
two databases.

Overall, a comparison of rank-ordered properties across
two databases shows that formation energies and volumes are
more easily reproduced than band gaps and total magnetiza-
tions, consistent with correlation coefficients decreasing from
∼0.99 for formation energy to ∼0.6 for total magnetization
(Table II).
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D. Reproducibility across materials classes

Intuitively, we expect the level of agreement among the
databases to be a strong function of materials class. Therefore,
we compare specific subsets of calculations based on various
materials classes to elucidate potential causes of differences.
The materials classes are defined based on chemical com-
position, the number of elemental components, the presence
of magnetism, band gap, pseudopotential choices, and space
group, as summarized in Table III. For classes defined by the
output of a calculation (i.e., those based on magnetization and
band gap), comparisons are only made if both databases agree
that the property has a nonzero value. Note that according to
our definition, the “Magnetic” class of materials may poten-
tially include both ferromagnetic and ferrimagnetic materials,
and the “Nonmagnetic” class may potentially include both
nonmagnetic and antiferromagnetic materials.

Figure 3 contains the median absolute difference relative
to the mean (MRAD) values for pairwise comparisons be-
tween databases, divided into materials classes as defined
in Table III. Cells are colored based on the MRAD value
listed. Empty cells correspond to trivial comparisons (e.g.,
values of band gap where both database agree the structure
is metallic). We use MRAD as the metric here to reduce
the effect of outliers (as compared to calculating means)
as well as to enable comparisons across properties using
the same metric. Overall, HT-DFT volumes show the best
agreement (lowest MRAD values), from 1–4%. Band gaps
show the worst overall agreement (highest MRAD values),
4–10% across all pairwise comparisons. Formation energy
comparisons with MP show MRAD values up to 6%, but
the AFLOW-OQMD MRAD is only 1.3%. MRAD values for
total magnetization vary highly from 0.5% for comparisons
with MP to 7.6% for AFLOW-OQMD. In all cases, cer-
tain materials classes have distinctly higher or lower MRAD
when compared to the MRAD averaged over all materials
classes.

Formation energy. In the comparisons with AFLOW, two
materials classes, “Halides” and “Disagree on Metallic,” show
the highest MRAD values of up to 14% and 40%, respec-
tively. The high MRAD in halide formation energies can be
understood to result from post hoc corrections to the effective
elemental reference energies performed in MP and OQMD,
but not in AFLOW, for the halide group of elements (see
discussion in Sec. IV B). The high MRAD of the “Disagree
on Metallic” class is likely an artifact of the small formation
energies of the few records (∼30–50) in the comparison. As
noted earlier, since AFLOW reports notably fewer formation
energy values than the other databases, the comparisons are
made with a much smaller set of records (∼2000). Therefore,
we ignore here some of the MRAD outliers in cases where
the number of records being compared is very small (e.g., the
material class “Magnetic” shows an MRAD of 13% between
AFLOW and MP but there are only five records in the com-
parison). Further, the formation energies dataset has very few
transition-metal, rare-earth, and actinide element-containing
compounds (Figs. S3 and S7). New, different insights are
likely to result from a larger dataset. In the MP-OQMD com-
parison, with a much larger comparable dataset (∼19000),
the “Nitride,” “Pnictide,” and “Chalcogenide” material classes

TABLE III. Definitions for the materials classes used in this work.

Class Definition

Oxide Contains O
Nitride Contains N
Pnictide Contains a group 15 element
Chalcogenide Contains a group 16 element, except O
Halide Contains a group 17 element
Alkali Metal Contains a group 1 element, except H
Alkaline Earth

Metal
Contains a group 2 element

Transition Metal Contains a d-block element
Metalloid Contains B, Si, Ge, As, Sb, or Te
Rare-Earth Contains an element from the lanthanide series
Actinide Contains an element from the actinide series
Metal-Nonmetal Contains at least one metal element and at

least one of C, N, O, F, P, S, Cl, Se, Br, I
Intermetallic Contains only metallic elements
Magnetic Both databases report a net magnetic moment

>10−2 μB/f.u.
Nonmagnetic Both databases report no net magnetic

moment >10−2 μB/f.u.
Disagree on

Magnetic
The two databases disagree on whether a net

magnetic moment >10−2 μB/f.u. is present
Metallic Both databases predict a band gap of

<10−2 eV
Semiconductor Both databases predict a band gap between

10−2 and 1.5 eV
Insulator Both databases predict a band gap larger than

1.5 eV
Disagree on

Metallic
The two databases disagree on whether a band

gap <10−2 eV is present
Pseudopotentials

Agree
Both databases use the same set of

pseudopotentials for all elements
Pseudopotentials

Disagree
The databases use different pseudopotentials

for at least one element
Use GGA+U Both databases use the GGA+U approach
Use GGA Both databases use plain GGA
Disagree on

GGA/GGA+U
One database uses GGA whereas the other

uses GGA+U
Elements Contains only one element
Binaries Contains two elements
Ternaries Contains three elements
Quaternaries Contains four elements
Triclinic Space group 1–2
Monoclinic Space group 3–15
Orthorhombic Space group 16–74
Tetragonal Space group 75–142
Trigonal Space group 143–167
Hexagonal Space group 168–194
Cubic Space group 195–230

show the highest MRAD values, 14%, 8%, and 11% respec-
tively. This is partly due to differences in fitted elemental
chemical potentials for pnictogen and chalcogen elements in
MP and OQMD (Sec. IV B).

Volume. The best agreement is observed in the AFLOW-
MP comparisons, with only the “Actinide” material class
showing an MRAD greater than 2%. For comparisons with
OQMD, the MRAD in volume is generally higher—due to
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FIG. 3. Median percent absolute differences between properties (formation energy, volume, band gap, total magnetization) calculated in
the three databases (AFLOW, MP, OQMD), compared two at a time, across various classes of materials as defined in Table III. The numbers
in parentheses indicate the number of overlapping records belonging to the respective material class for a given pair of databases. Trivial
comparisons are left blank (e.g., the difference in total magnetization for nonmagnetic compounds).

the choice of lower plane wave energy cutoff used for cell re-
laxation, as discussed earlier (Sec. III B). The highest MRAD
values in the comparisons with OQMD volumes are for the
“Nitride” and “Halide” classes (∼7–9%). The default plane

wave energy cutoffs in the VASP PAW potentials (ENMAX
parameter) for N and F are among the highest (400 eV) of
all elements. Thus, the lower energy cutoff used by OQMD
for relaxation impacts the calculated volumes of nitrides and
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fluorides the most (Figs. S8 and S12). Another material class,
“Triclinic,” shows similarly high MRAD values of ∼8% in
comparisons with OQMD. Upon examination, we find that
most triclinic materials in the comparisons are oxides, ni-
trides, and halides, and thus the high MRAD values are due
to the chemical composition of these compounds rather than
their crystal symmetry.

Band gap. While band gap comparisons show the high-
est MRAD values across properties, some materials classes
in particular show MRAD values much greater than ∼10%.
Of these, in the “Intermetallic” and “Semiconductor” mate-
rial classes, the MRAD values are expectedly high due to
small average band gaps relative to which differences are
reported, even though the absolute differences themselves are
not conspicuously large (Fig. S2). In other cases, the high
MRAD values are a result of (i) different pseudopotential
choices for elements (e.g., Cu/Cu_pv, Ce/Ce_3, Eu/Eu_2
choices in the “Disagree on Magnetic” class for the MP-
OQMD comparison with an MRAD of ∼53%; see Fig. S13),
(ii) disagreement on whether to use the GGA or GGA+U
approach to calculate properties (e.g., the “Actinide” material
class with MRAD of up to 43% in comparisons with MP, the
“Disagree on GGA/GGA+U” class in all three comparisons
with MRAD of 12–25%), or a combination of both factors
(e.g., for the “Magnetic” material class with an MRAD of up
to 27% in comparisons with AFLOW), (iii) nonoverlapping
sampling of magnetic configurations across databases. For
instance, the “Magnetic” (MRAD of 13–27% across com-
parisons) and “Disagree on Magnetic” (MRAD of 17–53%
across comparisons) classes may, respectively, include com-
paring ferromagnetic vs ferrimagnetic and nonmagnetic vs
antiferromagnetic ground states across two databases (note,
however, that both the “Magnetic” and “Disagree On Mag-
netic” comparisons also include effects from other HT-DFT
choices, such as choice of pseudopotential used). Note also
that the errors in band gaps for the “Use GGA+U” materials
class are larger than those for the “Use GGA” materials class
across all three pairwise comparisons, the choice of slightly
different effective U values used in the three databases being
a likely contributor. Further discussions of some of the above
parameter choices are in Sec. IV.

Total magnetization. While MRAD values in the MP-
OQMD comparison are generally small (<5%), some material
classes show much higher MRAD values, especially in com-
parisons with AFLOW. As in the case of band gap values, we
find these comparisons to be influenced by pseudopotential
choice (of rare-earth elements in particular, e.g., Nd, Nd_3,
Nd_3 in AFLOW, MP, and OQMD, respectively; see Figs. S10
and S14), choice of using GGA or GGA+U (e.g., MRAD of
up to ∼40% in AFLOW-OQMD comparisons for the “Dis-
agree on GGA/GGA+U” class), or both (e.g., the “Metalloid”
and “Rare-Earth” material classes in the AFLOW-OQMD
comparisons, “Intermetallic” and “Metallic” classes in the
AFLOW-MP and AFLOW-OQMD comparisons). We note
that some other material classes show high MRAD values,
e.g., “Element,” “Binary,” “Ternary,” “Tetragonal,” “Hexag-
onal,” and “Cubic” (up to MRAD values up to ∼50%) due
to, upon further examination, the parameter choices discussed
above rather than due to number of components in the com-
pound or crystal symmetry.

Finally, we note that while our scheme of constructing a set
of comparable records across pairs of databases (by matching
ICSD IDs exactly) ensures comparisons between the same ini-
tial crystal structures, it excludes a number of experimentally
well-studied materials with multiple ICSD entries associated
with them. We investigated whether this bias away from
well-studied materials affects our results by using a larger
comparison set constructed by linking very similar ICSD en-
tries using the crystal structure matching algorithm employed
by the Materials Project (see Sec. S-II in the SM [34]). While
some of the quantitative metrics we report varied by a few
percent in the expanded comparison, the overall conclusions
remain unchanged (see Tables S-XI, S-XII, and Figs. S15–S18
in the SM [34]), consistent with recent findings [75].

IV. DISCUSSION

We discuss some of the most important factors affecting the
differences across HT-DFT calculations of properties below.
Some of the other factors that either have a minor effect (e.g.,
post hoc calculation of band gap from band dispersions or
density of states) or are specific to a database/property (e.g.,
plane wave cutoff energy for full cell relaxations in OQMD)
have been discussed in the earlier sections.

A. Effects of pseudopotential choice

For nearly all elements, VASP provides multiple PAW po-
tentials to choose from, with different numbers of electrons
in the valence. The choice of pseudopotential varies across
the HT-DFT databases due to factors such as changes in VASP

recommendations and issues of calculation convergence or
reproduction of experimental thermochemical data [76,77].
Interestingly, the choice of pseudopotential has minimal effect
on the calculated formation energies and volumes (up to a
difference of 1% in cases where pseudopotentials do or do
not match; see rows “Pseudopotentials Agree” and “Pseu-
dopotentials Disagree” in Fig. 3). On the other hand, the
number of valence electrons and consequently the choice of
pseudopotential affects the calculated band gaps and magneti-
zation values severely. Especially egregious differences across
those properties in material classes such as “Rare-Earth”
and “Magnetic” (Fig. 3) can be directly traced to different
pseudopotential choices. For rare-earth and actinide elements
in particular, with f electrons that are poorly described by
DFT [78], using pseudopotentials that treat f electrons in
core or valence can have a significant impact on the calcu-
lated band gap (e.g., “Intermetallic” and “Magnetic” classes
in Fig. 3) and magnetization (e.g., “Rare-Earth” and “Inter-
metallic” classes in Fig. 3) values.

B. Elemental references and energy corrections

The largest disagreements in HT-DFT formation ener-
gies can be understood to result from different elemental
reference states and/or postcalculation energy corrections
performed in the databases. To our knowledge, the forma-
tion energies reported in AFLOW use DFT total energies
of the bulk elements as the reference states [79]. MP and
OQMD both correct DFT-calculated energies to closely repro-
duce experimental formation enthalpy data. While MP adds
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corrections to the compound formation energies [76,77],
OQMD fits the elemental reference energies using a FERE-
like approach [16,23]. Such correction schemes involve some
more HT-DFT choices: (i) Should all elemental reference
energies and/or compound formation energies be effectively
fit to experimental data or only a subset? For instance, MP cor-
rects the compound formation energies of nitrides, fluorides,
chlorides, hydrides, sulfides of alkali, alkaline-earth, and
aluminum-containing compounds [22]. The OQMD fits the
reference energies of only elements whose DFT ground states
are poor representation of the experimental reference states
(i.e., elements that are gases or that have a solid-solid phase
transition below room temperature) [23]. (ii) What experimen-
tal thermochemical data should be used for such correction
schemes, given a lack of a single, widely accepted set of stan-
dard experimental dataset for solids? For instance, MP and
OQMD use experimental formation energies from different
sources to fit elemental reference energies: MP uses data from
Materials Thermochemistry [80], while OQMD uses data
from SGTE SUBstance Database (SSUB) [81] in addition to
others (see Refs. [23,77] for details of the fitting data used in
the two databases). Some other standard reference databases
are also widely used, such as the NIST-JANAF Thermochemi-
cal Tables [82]. Since a given material may have experimental
data in one or more such reference databases of experimental
properties, the choice of the source of experimental data af-
fects the fitted formation energies in HT-DFT databases, even
in cases where other parameters such as pseudopotentials used
are held constant. This effect of fitted elemental reference
states is shown in the calculated formation energies averaged
over compounds containing each element in Figs. S3, S7,
and S11.

C. GGA vs. GGA+U approach

One of the ways to treat the issue of overdelocalization
in DFT is to use the DFT+U approach [83,84] (or GGA+U
when used with GGA). Similar to the case of fitting elemental
references, using the GGA+U approach requires additional
HT-DFT choices. (i) Whether or not to use GGA+U for
calculating properties of a given material. All three HT-DFT
databases have slightly different sets of compounds for which
the GGA+U approach is applied. The OQMD uses GGA+U
only for oxides of certain 3d transition metals (the V–Cu
series) and actinide metals [23]. MP uses GGA+U for oxides,
fluorides, and sulfides of a larger set of transition metals,
but not actinides [77]. AFLOW applies it to an even larger
set of compounds, nearly all those containing d- or f -block
elements [85]. (ii) What effective U value should be used
for each element? The three HT-DFT databases all use dif-
ferent effective U values for each element, obtained either
from previous work (OQMD) or in-house parameterization by
fitting to experimental data (AFLOW and MP) [18,86]. Such
choices around when to use the GGA+U approach to calcu-
late a compound and what effective U value to use can impact
some properties more than others, e.g., discrepancies in total
magnetization values in the AFLOW-OQMD comparisons,
particularly for “Rare-Earth,” “Intermetallic,” and “Metallic,”
classes. For some properties, such as formation energies, post
hoc corrections are required to maintain consistency between

those calculated using the GGA and GGA+U approaches,
especially while constructing phase diagrams involving com-
pounds calculated using the two different approaches. Such
corrections are obtained by fitting to experimental reaction
energies, and can be different between HT-DFT databases
based on the source of such reaction energies.

V. CONCLUSION

Recent years have seen a dramatic increase in the ap-
plication of informatics methods for materials development,
using high-throughput DFT data. Several prominent HT-DFT
databases exist and each uses different input parameters and
postprocessing techniques to calculate materials properties.
Quantifying the uncertainty in calculated properties due to
such parameter choices is therefore crucial to understanding
the reproducibility and interoperability of such data. In this
work, we centralize data from three of the largest HT-DFT
databases, AFLOW, Materials Project, and OQMD, into a
common data repository, allowing records to be accurately
compared. We then compare four properties—formation en-
ergy, volume, band gap, and total magnetization—of materials
calculated in each of the HT-DFT databases using the same
initial crystal structure.

Our comparisons show that formation energy and volume
are more easily reproduced than band gap and total magne-
tization. Interestingly, we find that the average difference in
calculated properties across two HT-DFT databases is com-
parable to that between DFT and experiment: up to 0.105
eV/atom for formation energy, 4% for volume, 0.21 eV for
band gap, and 0.15μB/formula unit for total magnetization.
Further, certain input parameter choices disproportionately af-
fect HT-DFT properties of particular classes of materials, e.g.,
choice of plane wave cutoff on formation energies and vol-
umes of oxides and halides, and the choice of pseudopotential
on the band gaps and magnetization of rare-earth compounds.
Our results inform users of the variability to account for
in reported materials properties, especially when using data
from multiple HT-DFT databases in their own analyses. In
addition, our quantitative uncertainty estimates can directly
aid materials informatics efforts, e.g., for separation of model
uncertainty and inherent noise in data.

As HT-DFT databases continue to mature, systematic com-
parisons, interoperability, and standardization of calculations
become increasingly crucial. Efforts to improve the interop-
erability of materials databases, e.g., by the development of
a common data schema by the OPTiMaDe consortium [87],
are already ongoing. Toward improving the standardization of
calculations, HT-DFT choices and reproducibility in particu-
lar, we list a few recommendations for next-generation and
new iterations of current HT-DFT databases:

(i) In-depth, versioned documentation of the various pa-
rameter choices made in a high-throughput project, including
the data-driven rationale for the choices, if any.

(ii) Visibility for possible uncertainty in reported proper-
ties (in both the web and programmatic interfaces used to
interact with HT-DFT data) for which HT-DFT choices are
expected to have a significant impact. Further, we recommend
providing estimated uncertainties in calculated properties, ei-
ther determined from literature references (e.g., this work),
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or from in-house investigations (e.g., by performing a set of
HT-DFT calculations with different input parameters as part
of a sensitivity analysis).

(iii) Community-led initiative to reach a consensus on
which HT-DFT choices ought to be standardized (e.g., energy
cutoffs, fitting sets for empirical corrections, postprocessing
steps to determine properties such as band gap) and which
HT-DFT choices could be a source of greater scientific insight
if they were more diverse (e.g., DFT codes, pseudopotentials,
DFT exchange-correlation functionals).

All data and PYTHON scripts required to perform the anal-
ysis presented in this work are made available via the GitHub
repository [88].
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APPENDIX: DEFINITIONS OF STATISTICAL QUANTITIES

The definitions of statistical quantities and their symbols
used in this work throughout are as follows (xi and yi refer to
the two sets of data being compared, e.g., from two different
databases):

(i) Median difference (�̃x):

�̃x = median(xi − yi ). (A1)

(ii) Median absolute difference (MAD):

MAD = median(|xi − yi|). (A2)

(iii) Interquartile range (IQR):

IQR = Q3 − Q1, (A3)

where Q1 and Q3 are the first and third quartiles (25th and
75th percentiles), respectively.

(iv) Median relative absolute difference (MRAD):

MRAD = median

( |xi − yi|
|xi + yi|/2

× 100

)
. (A4)

(v) Pearson correlation coefficient (r):

r(x, y) =
∑n

i (xi − x̄)(yi − ȳ)√∑n
i (xi − x̄)2

√∑n
i (yi − ȳ)2

, (A5)

where x̄ = 1
n

∑n
i xi is the sample mean, and n is the sample

size.
(vi) Spearman’s rank correlation coefficient (ρ) is defined

as the Pearson correlation coefficient between rank variables
xR

i and yR
i corresponding to raw data values xi and yi, respec-

tively:

ρ(x, y) = r(xR, yR ). (A6)
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