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Hierarchical microstructures are often invoked to explain the high resilience and fracture toughness of
biological materials such as bone and nacre. Biomimetic material models inspired by such hierarchical bioma-
terials face the obvious challenge of capturing their inherent multiscale complexity, both in experiments and in
simulations. To study the influence of hierarchical microstructure on fracture properties, we propose a large-scale
three-dimensional hierarchical beam-element simulation framework, in which we generalize the constitutive
framework of Timoshenko beam elasticity and maximum distortion energy theory failure criteria to the complex
case of hierarchical networks of up to six self-similar hierarchical levels, consisting of approximately 5 million
elements. We perform a statistical study of stress-strain relationships and fracture surface morphologies and
conclude that hierarchical systems are capable of arresting crack propagation, an ability that reduces their
sensitivity to preexisting damage and enhances their fault tolerance compared to reference fibrous materials
without microstructural hierarchy.
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I. INTRODUCTION

Hierarchically structured materials display self-similar
morphology in which comparable microstructural features
are reproduced on multiple scales. A global tendency of
biological systems to be organized in a hierarchical modu-
lar fashion is evident, for instance, in the case of collagen,
which contains hierarchically structured patterns, from the
molecular scale of amino acid chains, through microfibrils
and fibers, up to hierarchical fiber bundles. This arrange-
ment ensures enhanced fracture toughness over assemblies
of isolated collagen molecules [1] and is believed to play
a major role, for instance, in bone fractures [2,3]. Similar
considerations have been proposed to explain and characterize
the cellular structure of wood [4] and hierarchical lamellar
microstructures of mollusk shells (nacre) [5]. In this broad
context, hierarchical structures are believed to control internal
load redistribution in a manner that contains local dam-
age, thus enhancing resilience even in materials with brittle
constituents [6,7].

The possibility of engineering hierarchical biomimetic
structures, which are fault tolerant regardless of the inherent
unreliability of their constituents, or the fluctuations in their
constitutive behavior is, of course, very appealing from the
point of view of (bio)material synthesis and design. While
the preponderant role of the hierarchical structure is a gross
simplification when addressing real biological materials like
bone, it could prove useful in the context of biomimetic ma-
terials, in which one wants to control fracture behavior, rather
than model a complex biological system. The mechanisms of
synthesis and growth of materials which are known to exhibit
hierarchical microstructures, such as nacre, can sometimes
be observed in controlled laboratory environments [8]. How-
ever, experimental growth via nanoassembly processes leads

*ahmad.hosseini@fau.de

to structures that rarely exhibit hierarchical features beyond
the microscale. In the context of biomimetics, hierarchical
morphology may be obtained via other routes such as addi-
tive manufacturing, which allow one to access much larger
scales for the structural features. In this case, even without a
detailed understanding of the biomechanochemistry of self-
assembly processes in biological systems, the geometrical
freedom inherent in additive manufacturing processes allows
one to construct complex microstructures. Moreover, simula-
tion methods can be used to model and tune such structures in
order to enhance their performance in view of specific load-
carrying applications, possibly even beyond the possibilities
attainable via self-assembly routes.

Here, we propose a large-scale numerical study of bulk
fracture in three-dimensional (3D) fibrous hierarchical struc-
tures and show that, even under minimal assumptions, systems
of this type exhibit a unique fracture behavior in which the
nucleation of microcracks is not followed by their expansion
or propagation. While previous studies have highlighted this
behavior in simplified two-dimensional (2D) models [9] and
experiments on sheet materials [10] and/or by resorting to
simplified constitutive laws [11–13], our work here is the
first study in which a realistic, large-scale, beam-element
simulation framework is implemented to provide exhaustive
evidence of the enhanced fault tolerance of 3D hierarchical
structures.

Regarding numerical models of failure in hierarchical
systems, fiber bundle models are among the simplest tools
to examine collective phenomena in deformation and frac-
ture [14] and have been widely used to study disordered
fibrous materials. The material is modeled as a collection of
load-bearing fibers that, in the simplest example of a brittle
fiber bundle, elastically deform until they fail at a critical load.
The local constitutive behavior can be modified, beyond the
ideal brittleness of individual fibers, to incorporate gradual
damage accumulation [15], creep [16], and plasticity [17].
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Importantly, hierarchical generalizations of such models have
also been proposed [18,19]. However, fiber bundle mod-
els are not intended to investigate how stress is spatially
(re)distributed across a material, nor can they clearly tell if
failure is caused by the growth of a local nucleus triggered
by stress concentrations, damage percolation across the entire
system, or some intermediate mechanism. As a consequence,
studies of fiber bundle models have devoted comparatively
little attention to the fundamental topic of the nature of the
failure process [14].

On the lowest structural level, fracture of hierarchi-
cal materials can be modeled using atomistic methods.
These simulations may subsequently be used to parametrize
mesoscale models that describe behavior at higher hierarchi-
cal levels [20]. Alternatively, they may be taken to include
several hierarchical levels in extremely large-scale simula-
tions [1], where computational cost can limit access to larger
sizes.

Lattice/network models represent a viable alternative to ef-
ficiently capture multiple hierarchical levels and length scales.
Discrete lattice models for materials fracture were introduced
to study the statistical effects of microstructural disorder
(more precisely, fluctuating local strength) [21]. In models
like the random-fuse model (RFM), the random-spring model,
and the random-beam model, materials are represented as
networks of discrete elements that transmit scalar, vector, or
tensor loads. Such models serve as paradigms for fracture as
a multiscale process, capturing its key features such as the
interplay between local failure, microstructural heterogene-
ity (represented, e.g., in terms of locally random network
architecture or statistically distributed failure thresholds of
individual elements), and system-spanning interactions as the
load redistributes across the network. Such models attain a
level of simplicity that allows for large-scale simulations and
statistically meaningful predictions [22]. Original lattice mod-
els of biomimetic structures, inspired, for instance, by nacre,
resorted to RFM simulations and their simplifying assump-
tions of scalar loads and scalar constitutive laws [23], although
without considering the material’s hierarchical structure [24].
These models were later generalized to account for tensorial
loads, in which both elastic equilibrium equations and consti-
tutive laws take into account the local balance of linear and
angular momenta [25]. More recently, similar beam lattice
models have been used to explore optimal network arrange-
ments in view of fracture behavior [26] and, in particular, to
investigate biomimetic 2D hierarchical structures.

In this study, we introduce a 3D hierarchical beam lattice
model to explore how the hierarchical organization affects
the fracture properties of biomimetic fibrous materials. We
compare the crack sensitivity of hierarchical structures to that
of reference, nonhierarchical systems. Finally, we compare
the characteristics of failure and morphology of fracture sur-
faces to understand how the microstructure contributes to the
enhanced mechanical performance of hierarchical systems.

II. METHODS

Our lattice model is based on a cubic lattice of intercon-
nected beams clamped together at their intersections. The
points where beams are mutually connected are called nodes,

and we assume L3 nodes are arranged in a simple cubic lattice
structure forming a cube whose edge length L is referred to
as the lattice size. The simulations in this study are performed
on lattices of size L = 128, which are subject to tensile loads
directed parallel to one of the cube edges which we identify
with the z axis of a Cartesian coordinate system (see Fig. 1).
Beams with the same orientation as the load axis are called
load-carrying (LC) beams, their number is denoted as NLC,
and a set of l connected LC beams is referred to as a LC fiber
of length l . In contrast, beams oriented perpendicular to the
load axis are called cross-link (CL) beams, their number is
denoted as NCL, and a set of l connected CL beams is referred
to as a CL connector of length l . Finally, a connected area with
the normal vector perpendicular to the z axis across which all
CL beams are missing is denoted as a gap. According to our
nomenclature, CL connectors are extended chains that may
contribute to load redistribution among LC fibers, while gaps
are extended surfaces that interrupt it.

A. Construction of 3D hierarchical and nonhierarchical
beam lattices

In order to visualize the structure of a deterministic
hierarchical beam lattice (DHBL) we devise an iterative
“bottom-up” method, as shown in Fig. 1. [Note that, in the
global coordinate system defined in Fig. 1, the position vector
coordinates (x̄, ȳ, z̄) carry overbars in order to distinguish
them from local coordinates in a beam coordinate system
used, e.g., in Fig. 3 below. The same notation convention is
used for other quantities such as displacement and force vector
or stiffness matrices.]

A level-1 module, or generator, is the basic building block
of the hierarchical structure, constituted by a CL plane and
eight LC beams. At every iterative step n, this structural pat-
tern is replicated in the form of a (periodically continued)
CL plane of linear size 2n and eight LC superbeams, each
corresponding to a level-(n − 1) system.

This construction results in a hierarchical arrangement of
modules separated by gaps and connected by CL connectors.
In the DHBL pattern, as well as in analogous 2D struc-
tures [11], the linear sizes of gaps are power law distributed.
The structure of the model is deterministic in the sense that its
connectivity features at every location can be deduced from
the location itself, with no random deviations. Stochastically
shuffled versions of these structures have been proposed in
the literature in the context of 2D models [9,11]. While shuf-
fled hierarchical structures lend themselves better to statistical
studies that require averaging across thousands of network
realizations, their behavior is, for 2D structures, essentially
identical to those of their deterministic counterparts [9]. For
this reason, here, we focus on deterministic hierarchical beam
lattices while also simulating a stochastically shuffled 3D
hierarchical beam lattice (SHBL) to demonstrate that the con-
clusions regarding analogous behavior of SHBL and DHBL
obtained from 2D systems carry over to three dimensions (see
the video in the Supplemental Material [27]).

For comparison with these hierarchical structures, we
introduce randomized nonhierarchical reference patterns as
follows. A random beam lattice (RBL) of size L = 2n is
constructed from the same number of NLC beams and NCL
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FIG. 1. Iterative “bottom-up” construction of a hierarchical lattice. A module of level 1 (“generator”) consists of eight LC beams, plus a
CL pane of four load-perpendicular (here, horizontal) beams. Level-n systems are constructed by increasing the system size by powers of 2
and replicating the same 8 + 4 pattern, where the eight new LC superbeams are now modules which mimic level-(n − 1) systems. Here, we
show all the cases up to n = 4.

cross-links as the corresponding DHBL, but the CL beams are
distributed randomly over the possible CL sites, leading to an
exponential distribution of the gap linear sizes. Every realiza-
tion of our RBL consists of a different random rearrangement
of cross-links.

In order to compute fracture toughness, we also consider
systems with preexisting flaws in the form of planar cracks of
length a. As depicted in Fig. 2, lattices with preexisting cracks
are modeled through a set of aL missing adjacent LC beams
at locations x0 � x̄ � x0 + a, 0 � ȳ � L, z̄ = z0, where 0 �
a < L is the crack length and (x0, z0) are the coordinates of
the left crack end point in the x̄z̄ plane.

FIG. 2. Schematic of simulations on precracked samples. Peri-
odic boundary conditions are applied on the free sides of the samples.

B. Material model

The constituents of the lattice model are assumed to be
straight, identical beams of unit modulus of elasticity, unit
length, and square cross section, which are capable of resisting
axial and shear forces and bending moments. There are six
degrees of freedom (DOFs) at each node, including three
translational DOFs (node displacements u, v, and w along
the x, y, and z axes, respectively) and three rotational DOFs
(rotation angles θx, θy, and θz about the x, y, and z axes,
respectively), as illustrated in Fig. 3.

The beams are assumed to show linear elastic mechanical
behavior, and Timoshenko beam theory describes their defor-
mation by relating the forces and moments to the associated
displacements (see [28] for a more detailed review of the beam
theory and the governing equations). Considering a local co-
ordinate system aligned with each beam’s axis (see Fig. 3),
the displacements and rotations of the beam end nodes are
assembled into a local displacement vector u, and the forces
and moments acting on the end nodes are assembled into a
local force vector F, resulting in Ku = F for all beams. An

FIG. 3. Beam element with generalized displacements and forces.
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explicit expression for a Timoshenko beam’s local stiffness
matrix K is available in the literature [29].

Assuming quasistatic deformation, we neglect inertial
forces. Thus, the global force balance equation of the entire
lattice takes the form K̄ · ū = F̄, where ū (the global displace-
ment vector) includes all nodal displacements and rotation
angles and F̄ includes the external forces in the global coor-
dinate system. The global stiffness matrix K̄ is formed by first
transforming the local stiffness matrices of all lattice beams
into the global coordinate system and then assembling them
into K̄.

C. Failure criterion

We assume that beams fail irreversibly once a stress-based
failure criterion is met. Since the loads on each beam are
applied through the end nodes and the beam is in quasistatic
equilibrium with small deformations, the magnitudes of forces
at the beam ends are equal with opposite directions, and the
bending moments vary linearly along the beam. Therefore, the
beam’s stress is maximum at one end, allowing us to check
the failure criterion only at the beam end surfaces. We choose
a beamwise failure criterion based on maximum distortion
energy theory (von Mises) as follows:

σ =
√

σ 2
xx + 3

(
σ 2

xy + σ 2
xz

) = t, (1)

where t is the equivalent stress at failure (beam fail-
ure threshold). The axial stress σxx in Eq. (1) consists of
tensile/compressive and bending components, which at the
beam end surface with outward normal n are given by

σxx = F · n
A

+ Mzy

Iz
+ Myz

Iy
, (2)

where Iy and Iz are the moments of inertia about the (local) y
and z axes, respectively (see Fig. 3). A force F in the direction
of the outward normal of the beam end surface (F · n=Fx>0)
yields a positive (tensile) stress contribution, and a force in
the opposite direction yields a negative (compressive) stress
contribution. The shear stresses in Eq. (1), on the other hand,
are caused by shear (being maximum at the beam’s central
axis) and torsional loads (being maximum along the centerline
of the beam’s outer face) [30,31]:

τmax(shear) = 3V

2A
, τmax(torsion) = Mx

cb3
, (3)

where V is the shear force, A = b2 is the cross-sectional area
of the beams with sides b = 1, and c = 0.208 is the maximum
shearing stress coefficient for square bars in torsion [31]. We
choose the bigger absolute τ value in each transverse direction
to be the effective shear component:

|σxy| = max

(∣∣∣∣3Fy

2A

∣∣∣∣,
∣∣∣∣ Mx

cb3

∣∣∣∣
)

,

|σxz| = max

(∣∣∣∣3Fz

2A

∣∣∣∣,
∣∣∣∣ Mx

cb3

∣∣∣∣
)

. (4)

Combining Eqs. (1), (2), and (4), we have the failure criterion

σ 2

t2
= 1,

σ 2 =
(

Fx

A
+ Mzymax

Iz
+ Myzmax

Iy

)2

+ 3

[
max

(∣∣∣∣3Fy

2A

∣∣∣∣,
∣∣∣∣ Mx

cb3

∣∣∣∣
)2

+ max

(∣∣∣∣3Fz

2A

∣∣∣∣,
∣∣∣∣ Mx

cb3

∣∣∣∣
)2

]
,

(5)

which is evaluated at both ends of each beam. If the failure
criterion is satisfied, the beam is removed irreversibly. A
simplified criterion is obtained by excluding the shear force’s
contribution to failure, which is commonly employed in the
literature (see, e.g., [32]). This simplification, however, con-
tradicts the Timoshenko model for beam deformation and
may seriously underestimate the failure likelihood of lateral
connector beams, which mainly transmit shear forces.

Beam failure thresholds. To mimic material heterogeneity,
the failure thresholds t of beams are randomly assigned using
a Weibull probability distribution function with probability
density,

p(t ) = β

η

(
t

η

)β−1

exp

[
−

(
t

η

)β
]
, (6)

with p(t ) � 0, t � 0, β > 0, and η > 0, where β and η are
the distribution’s shape and scale parameters, respectively. In
this study, we choose β = 4 to represent a moderate degree
of disorder and set η = 1/�(1 + 1/β ) ≈ 1.103263 so that the
failure thresholds t have a mean value of 1. The investigation
of the effects of varying β, in analogy with similar studies for
2D systems [9], is beyond the scope of this work and is being
considered for a separate study.

D. Boundary conditions

The external load takes the form of a global displacement
in the direction of the LC beams (z̄ direction in Fig. 2), im-
posed through two rigid plates on the top and bottom surfaces
of the lattice. Thus, at the lattice’s bottom and top nodes, the
LC beams are clamped to the rigid plates. Periodic boundary
conditions are imposed on the remaining sides of the lattice
(i.e., in the x̄ and ȳ directions).

E. Simulation protocol

Using a displacement control loading scheme, the external
displacement increases monotonically until the lattice fails
completely. To this end, as illustrated in Fig. 4, a unit exter-
nal displacement is applied to the upper nodes of the lattice
while the lower nodes are fixed (see Fig. 2). The global
balance equations (K̄ · ū = F̄) are solved to obtain the dis-
placements of all nodes. Then, the global displacements are
transformed into the local coordinate system of beams (see
Fig. 3) to calculate the local loads using Ku = F. Afterwards,
the weakest beam is identified as the beam with (σ/ti j )max.
Due to the assumption of small deformations, the beam forces
and displacements are homogeneous functions of the first de-
gree of the applied boundary displacement. Thus, scaling the

053612-4



ENHANCED FAULT TOLERANCE IN BIOMIMETIC … PHYSICAL REVIEW MATERIALS 7, 053612 (2023)

FIG. 4. Simulation protocol.

boundary displacement to (σ/ti j )−1
max satisfies the failure con-

dition [Eq. (5)] for the weakest beam. However, if this
calculated global displacement is less than the displacement d
of the previous iteration, d is considered to be the actual global
displacement of this iteration. This physically means that the
failure at this iteration is triggered by load redistribution after
a beam failed in the previous iteration. The weakest beam is
then removed, and the loop is repeated if the global failure has
not happened. Otherwise, the simulation ends.

We note that the pristine/undamaged systems (both DHBL
and RBL) consist, for n = 6 hierarchy levels, of 4 860 928
beams, and the corresponding balance equations are a sparse
algebraic system with ≈1.3 × 107 unknowns. In the ramp-up
to failure, the evaluation of the balance equations is repeated
every time a beam is removed. Every data point in the fol-
lowing is obtained by averaging over 10 realizations of the
beam network. In each realization, we vary the sequence of
thresholds extracted from p(t ) and (for only RBL) the random
positions of CL beams, as well as the crack position for
cracked systems.

III. RESULTS

A. Fracture toughness

To study the effect of hierarchical structure on flaw
tolerance, we simulated mode-I-crack propagation in hier-
archical (DHBL) and nonhierarchical reference structures
(RBL) containing preexisting cracks of varying length
0 � a < L (Fig. 2). As depicted in Fig. 5(a), hierarchical
samples exhibit a superrough crack surface, which is remi-
niscent of fracture patterns in bone [3]. The large deflections
in crack profiles indicate that the growth of initially present or
newly nucleated cracks is arrested and failure then proceeds
by nucleation of new microcracks at other locations of the
sample. Only a fraction of these disseminated microcracks
ultimately coalesce to form the final fracture surface. Fig-
ure 5(d) supports this observation by comparing the fractions
λ of broken beams that are not part of the final crack surface
for DHBL and RBL samples (i.e., they are not part of the
minimal set of beams that topologically disconnects the sam-
ple). After an initial transient, the fraction of “nonessential”
damage in DHBL is nearly double that in RBL. As seen from
Fig. 5(c), this results in significant toughening, as the work of
failure is increased by the nonessential work needed to create
microcracks everywhere in the sample until, ultimately, their
percolation produces a system-spanning crack.

Because of this ability to arrest crack growth, hierarchi-
cal structures significantly outperform nonhierarchical ones
in terms of peak stress and postpeak energy absorption in
situations where preexisting cracks of length a are considered,
as seen in Figs. 5(b) and 5(c). In nonhierarchical structures,
crack growth is driven by the stress concentrations in the
fracture process zone, and failure occurs immediately after the
system reaches the peak load σp:

σp = KIc√
π (a + a0)

f
( a

L

)
, (7)

where KIc is the critical stress intensity factor, a0 is the process
zone size [33], and the function f (a/L) accounts for finite-
size effects. Figure 5(b) confirms this picture for our RBL
(red data points and red lines), with f (x) = (x/ tan x)1/2 and
x = πa/(2L), as appropriate for a periodic array of mode-I
cracks [34]. Here, KIc ∼ √

GcE characterizes the material
resistance to fracture and depends on the energy release rate
Gc (also known as the fracture toughness) and the elastic
modulus E .

As anticipated, in DHBL fracture proceeds differently. The
structural gaps, which in this case are power law distributed
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(a)

(b)

(d)

(c)

FIG. 5. Simulation results for notched hierarchical (DHBL) and nonhierarchical (RBL) lattice variants of size L × L × L with L = 128.
(a) Typical fracture surface in RBL (left) and DHBL (right); the initial crack of length a = 30 is marked in gray, and the color bars indicate
height (z coordinate of fracture surface). (b) Peak stress as a function of crack length; all data are averaged over 10 samples, and red and blue
lines represent fits according to Eqs. (7) and (8), respectively. (c) Specific work of fracture for the same set of samples. (d) Fraction λ of broken
beams that are not on the final crack surface; all data are averaged over 10 samples, and the error bars indicate the corresponding standard
deviation.

in size, are responsible for arresting crack propagation and
altering long-range stress redistribution. As a consequence,
DHBL displays a reduced sensitivity to preexisting cracks,
with peak loads that decrease only linearly with the precrack
size a as

σp = σ0

(
1 − a

L

)
, (8)

where σ0 is the peak stress in the absence of preexisting
cracks. In passing, we note that the case of a ≈ 0 is the
only exception, where DHBL falls short of RBL: the relevant
aspect of biomimetic hierarchical structures is their ability
to cope with preexisting flaws, rather than their peak perfor-
mance under ideal conditions.

Similar to the maximum load, hierarchical samples may
significantly outperform nonhierarchical ones in terms of the
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specific work of fracture wF = WF /[L(L − a)], defined as the
mechanical work WF needed to fully break the sample from
its initial configuration, divided by the initial area L(L − a) of
the intact sample cross section. As highlighted in Fig. 5(c), the
specific work of fracture of both configurations is independent
of crack length after an initial transient, but the saturation level
is about a factor of 4 higher for hierarchical samples.

B. Characteristics of fracture surfaces

Absence of crack growth. To confirm our statement that
crack growth is arrested in DHBL, we start by looking at
damage nucleation and growth patterns of an un-notched
sample, as depicted in Fig. 6 for a typical DHBL (left) and
RBL (right). Fracture in nonhierarchical materials is caused
by the nucleation and propagation of a crack that becomes
critical at the system’s peak load and spreads throughout the
system due to crack-tip stress concentrations, resulting in an
abrupt and catastrophic failure. In DHBL, on the other hand,
LC modules fail individually, and failure does not propagate
to neighboring modules: the vertical deflections indicate that
a growing crack has reached a gap and has stopped. The
hierarchically distributed gaps inhibit crack propagation at all
scales, resulting in widely separated flaws coalescing into a
superrough fracture profile in which the crack width in the
loading direction is proportional to the system size, resulting
in a global roughness exponent of 1.

Crack roughness. The statistical analysis of crack surface
patterns allows us to further understand the mechanisms of
failure onset and propagation. We consider the fracture sur-
face as the function z̄(x̄, ȳ) in the global coordinate system.
We start by computing the crack roughness in terms of the
scale-dependent standard deviation,

σr = 〈〈[z̄(x̄, ȳ) − 〈z̄(x̄, ȳ)〉r]2〉1/2
r

〉
A,N , (9)

where 〈· · · 〉r denotes the average over a circle of radius r
and 〈· · · 〉A,N is the average over all circles contained in the
sample cross section of area A, as well as over all samples in
an ensemble of N simulations with different realizations of a
given microstructure.

We investigate the possibility of crack profiles being self-
affine. In this context, self-affinity refers to invariance under
the scaling transformation r → λr, z̄ → λH z̄, where H is the
Hurst exponent [9]. Self-affinity, in particular via a nontrivial
value of H that cannot be inferred from the structure, indicates
that the fracture process is affected by emergent features and
correlations of the dynamics at hand. Evaluating σr allows
us to verify whether these scaling relationships hold and to
evaluate H when they do.

Figure 7 illustrates the values of σr for DHBL and
RBL. RBL show a self-affine scaling with a nontrivial
Hurst exponent H = 0.69, confirming that in heterogeneous
nonhierarchical systems growth is controlled by dynamic cor-
relations [21,35]. On the other hand, in DHBL we record an
apparent H = 0.90. This result can be interpreted as follows:
an exponent of 1 derives from the fact that hierarchical lattices
with an infinite number of hierarchical levels are invariant
under the transformation x̄ → 2x̄, ȳ → 2ȳ, z̄ → 2z̄, and the
same must be valid for the associated crack profiles. Contrary
to the case of RBL, H is compatible with a prediction based

FIG. 6. Typical damage growth patterns in systems of size L ×
L × L with L = 128, from the system’s peak load (top) to global
failure (bottom). The color bars indicate height (z coordinate of
fracture surface). Left: DHBL. Right: RBL.

exclusively on structural considerations. The apparent expo-
nent in our simulations is slightly lower than 1 (H = 0.9) due
to finite-size and boundary effects, and as a consequence, the
scaling behavior is limited to small r and saturates for larger
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FIG. 7. Standard deviation σr vs averaging radius r for different
3D lattice variants.

r once the scale-dependent standard deviation reaches a value
comparable to that of a completely uncorrelated, random frac-
ture surface. To illustrate this point, Fig. 7 also shows the value
σr = L/

√
12 for an equal load sharing fiber bundle model

with fibers of length L, obtained under the assumption that
z̄(x̄, ȳ) values are completely random variables in the interval
[0, L].

In order to further explore the origin of H in DHBL, we
perform a multiscaling analysis. Denoting 
(r) as the height
difference between random points separated by a horizontal
distance r in a random direction, the so-called structure factors
of order m are then computed from

Cm(r) = 〈[
(r)]m〉1/m
A,N . (10)

A self-affine crack surface with Hurst exponent H would
exhibit Cm(r) ∝ rH for all m. Figure 8 confirms that, in-
deed, this condition is approximately met for crack profiles
in nonhierarchical lattices (RBL) based on the results of a

multiscaling analysis. In hierarchical lattices (DHBL), how-
ever, the scaling is not self-affine since the apparent Hurst
exponent for different structural factors Cm is dependent on
the exponent m, with Hm = 1/m.

We can thus rule out the self-affinity hypothesis for DHBL.
At least under the current assumptions of local strength fluc-
tuations (encoded in the choice of β = 4), we observe no
explicit evidence of emergent behavior, and the remarkable
superrough fracture surfaces encountered in these systems
seem to be a direct consequence of the hierarchical structure
and its fractal-like organization.

IV. CONCLUSIONS

In this paper, we presented the first simulations of a large-
scale, three-dimensional model for a semibrittle fracture in
biomimetic hierarchical materials, using full-tensorial consti-
tutive laws and failure criteria. The degree of accuracy in our
modeling approach allows us to draw conclusions about the
fracture behavior of hierarchical materials, which, in the past,
could be explored only under significant simplifications.

Our results confirm the long-standing view, originated in
the context of bone fracture, according to which hierarchi-
cal microstructures arrest crack growth. Starting from this
observation, we provide compelling numerical evidence of
enhanced fault tolerance with respect to reference nonhier-
archical systems. Our DHBL models outperform comparable
random lattices, displaying higher peak loads and work of
fracture when dealing with previously accumulated damage.
A statistical analysis of the fracture surfaces allows us to con-
clude that, under our assumptions, this remarkable behavior
shows little dependence on dynamic correlations and is, for
the most part, controlled by the network structure.

The role played by the hierarchical microstructure, ar-
resting crack growth and thus enhancing fault tolerance,
represents a significant advantage in biomaterial modeling, as
it paves the way to techniques of performance tuning based on
microstructure design and synthesis. In a realistic scenario of
this type, our DHBL model allows the parametrization of an
additively manufactured hierarchical network of brittle beams
or struts by acting on (i) the Weibull distribution exponents
β to control the spread in local strength fluctuations and (ii)

FIG. 8. Structure factors Cm for different values of m and different 3D lattice variants.
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the actual constitutive laws and failure criteria. We note that
in the present work we focused on the specific value of β = 4
and on a specific choice of constitutive/failure behavior. An
extensive study of the role of these additional variables is left
for future work. The role of fluctuations in local strength,
in particular, deserves special attention. Based on results for
two-dimensional systems [9], we can expect that in the case
of much larger fluctuations (β ≈ 1), disorder and stochastic

fluctuations might become as prominent as the hierarchical
structure in shaping the fracture process.
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Crack roughness in the two-dimensional random threshold
beam model, Phys. Rev. E 78, 046105 (2008).

[26] S. A. Hosseini, P. Moretti, and M. Zaiser, A beam network
model approach to strength optimization of disordered fibrous
materials, Adv. Eng. Mater. 22, 1901013 (2020).

[27] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevMaterials.7.053612 for typical damage
growth patterns for different lattice variants.

[28] S. A. Hosseini, Fracture and failure properties of hierar-
chical materials, Ph.D. thesis, Friedrich-Alexander-Universität
Erlangen-Nürnberg, 2022.

[29] J. Przemieniecki, Theory of Matrix Structural Analysis (Dover,
New York, 1985).

[30] A. C. Ugural, Advanced Mechanics of Materials and Applied
Elasticity (Prentice Hall, Upper Saddle River, NJ, 2012).

[31] J. DeWolf, D. Mazurek, F. Beer, and E. Johnston, Mechanics of
Materials (McGraw-Hill Education, New York, 2014).

[32] P. K. V. V. Nukala, P. Barai, S. Zapperi, M. J. Alava, and
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