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Effect of a temperature gradient on the screening properties of ionic fluids
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The electrostatic screening properties of ionic fluids are of paramount importance in countless physical
processes. Yet the screening behavior of ionic conductors out of thermal equilibrium has to date mainly
been studied in the context of thermoelectric phenomena by virtue of direct extensions of Debye-Hückel
theories. We investigate how the static response of a symmetric ionic fluid is influenced by the presence of
a thermal gradient by introducing a theory of electrostatic screening under a stationary temperature profile.
By borrowing mathematical methods commonly used in the semiclassical approximation of quantum particles,
we find analytical solutions to the asymptotic decay of the charge density which can be used to describe the
nonequilibrium response of the system to external charge perturbations and for arbitrary ionic concentrations.
Notably, a transition between monotonic and oscillatory screening regimes is observed as an effect of the
temperature variation which generalizes known results of thermal equilibrium to out of equilibrium conditions. A
final quantitative example on the screening of charged surfaces in aqueous electrolytes shows that the deviation
from thermal equilibrium predicted by our solutions is generally larger than thermoelectric effects and should
therefore be taken into account for a comprehensive description of the electrical double layer. Our findings pave
the way to the rigorous treatment of nonequilibrium steady states in ionic systems with potential applications to
the study of energy materials, nanostructured systems, and waste-heat-recovery technologies.
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I. INTRODUCTION

Many physical and technological applications which in-
volve ionic systems require one to deal with the coexistence
of electric fields and thermal gradients. Temperature gradients
naturally arise in electrochemical devices as a consequence
of the Joule effect [1,2] and the heat released during elec-
trochemical reactions [3] and they are responsible for the
creation of a net ionic current in thermoelectric cells [4].
A paradigmatic playground, of compelling technological rel-
evance in opto- and microfluidics [5–7], nanodevices and
nanoengines [8], and microbiology [9], is that of charged
micro-/nanoparticles (e.g., metal-capped colloids) dissolved
in a salt solution, which are heated selectively by laser
irradiation. This leads to the onset of intense microscopic ther-
mal gradients (∼10 K/μm), coexisting with electric fields,
and dictating particles’ dynamics [10]. In turn, controlling
micro- and nanoparticle equilibrium and nonequilibrium ar-
rangements offers a route to fine-tune their chemophysical
properties [11,12]. Furthermore, ionic fluids are playing an
increasingly prominent role as heat-transfer fluids in solar
energy storage [13,14] and waste-heat-recovery technologies
[15,16], as well as in the design of sustainable molten salt
reactors for future nuclear energy systems [17]. An accurate
description of all these phenomena requires a deep under-
standing of how the electrostatic screening properties of an
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ionic conductor are affected by the presence of an inhomoge-
neous temperature distribution.

Recently, there has been a growing effort in the model-
ing of thermal transport properties of ionic fluids [18–20],
as well as in the description of thermodiffusion effects such
as Seebeck and Soret [21–23]. Beyond these phenomena,
most theoretical studies that explicitly treated the effect of
a temperature gradient on the static screening response of
ionic fluids have involved more or less direct extensions
of Debye-Hückel (DH) theories [24–27]. One of the major
difficulties consists in providing a formal microscopic gen-
eralization of thermodynamic laws and related variational
principles to nonisothermal situations [28–31]. For instance,
liquid-vapor interfaces have been investigated by making use
of temperature-dependent influence parameters that are de-
rived from experimentally parametrized equations of state
[32–34]. However, the lack of experimental data implies that
similar approaches can be hardly applied to the study of ionic
fluids, especially for those systems that involve large ionic
concentrations.

When it comes to thermal equilibrium, the theory of liquids
which describes the static charge-density response in ionic flu-
ids is well established and predicts the capability of the system
to perfectly screen an external charge over a finite length scale
[35–37]. The electrostatic screening is manifested either as a
pure exponential decay of the fluid charge density distribution
[38] or as an exponentially damped oscillation that reflects a
shell-like ordering of the charge carriers [39–43]. A crossover
between a monotonic and oscillatory behavior, in particular, is
observed at decreasing temperatures and/or increasing ionic
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concentrations and takes the name of Fisher-Widom line [44].
By and large, understanding how a similar description can be
extended to nonequilibrium steady states represents a goal of
particular interest.

In this article, we provide a microscopic theory of electro-
static screening in ionic fluids under a linear and stationary
temperature profile. In particular, we show that the Wentzel-
Kramers-Brillouin (WKB) method, commonly applied to
quantum systems, can be adopted to find analytical solutions
to the decay of the charge density, where the temperature
gradient plays the role of h̄ in the semiclassical asymptotic
expansion. In so doing, we generalize the transition between
monotonic and oscillatory screening regimes under steady-
state conditions, recovering the thermal equilibrium solutions
as a special limit. Explicit solutions are given for the screening
of a planar surface charge, assumed as the origin of the exter-
nal perturbation. We finally apply our theory to quantitatively
estimate the effect of a thermal gradient on the screening
charge distribution of typical electrolytic solutions, showing
that the effect is larger than that induced by the ionic Seebeck
effect.

II. GENERAL THEORY

Let us consider a classical Coulomb fluid made of two ionic
species of opposite charge, Z+ = −Z− = Z . Unless otherwise
specified, we will adopt Hartree atomic units. The particles’
pair potential is defined as ui j (r) = uSR

i j (r) + ZiZ j/r, where
uSR

i j (r) represents the short-range ionic interaction. We are
interested in the screening response of the charge density
distribution ρQ(r) of the ionic fluid to an external charge,
under an inhomogeneous temperature profile T (r). We as-
sume the fluid is at local thermodynamic equilibrium, so
that the local chemical potential of the two ions μ+/−(r)
can be defined [45,46]. For convenience, we will adopt a
unitary transformation of the ionic variables, which allows
us to formulate the theory in terms of total charge (Q) and
particle number (N) linear combinations. For example, the
chemical potentials of the total charge and particle number
are μQ(r) = Z[μ+(r) − μ−(r)] and μN (r) = μ+(r) + μ−(r),
respectively. An analogous transformation allows us to define
the charge and number densities, ρQ(r) and ρN (r).

A. Nonisothermal density functional theory

We rely on density-functional theory for classical particles,
also known as classical DFT [47,48], generalized for the
inclusion of a stationary temperature distribution [29,30]. In
particular, we rely on the result of Ref. [30], which provides a
generalization of classical DFT to nonisothermal conditions.
In this framework, the stationary state is characterized by the
maximization of a nonequilibrium entropy functional with re-
spect to the charge density ρQ(r), total number density ρN (r),
and energy density e(r):

SNE[e, ρN , ρQ] = −F̃NE[T, ρN , ρQ] +
∫

dr
e(r)

T (r)
. (1)

Here, F̃NE is the nonisothermal extension of the (dimension-
less) Helmholtz free energy [30]. In general, each of μQ(r),
μN (r), and T (r) is a functional of ρQ(r), ρN (r), and e(r), and

the stationary state is characterized by the solution of three
coupled Euler-Lagrange equations [49]:

δS

δρQ
= − 1

2Z2

μQ

T
,

δS

δρN
= −1

2

μN

T
,

δS

δe
= 1

T
. (2)

In this work, we assume that the temperature distribution is
externally defined, so that T (r) is given as an input variable
and is not a functional of the densities. This allows us to
promptly simplify the first two Euler-Lagrange equations and
write the stationary conditions for the charge and number
densities in terms of the dimensionless free energy F̃NE:

δF̃NE

δρQ
= 1

2Z2

μQ

T
,

δF̃NE

δρN
= 1

2

μN

T
. (3)

B. Asymptotic functional approximation

In order to provide a closed functional form to Eq. (3),
we rely on the hypothesis of local equilibrium and define
F̃NE ≡ ∫

dr f (r)/T (r), where f (r) is the equilibrium free-
energy density of the system at the local temperature T (r).
The problem is then reduced to the derivation of an approx-
imation of f (r) suitable to describe the screening properties
of the ionic fluid. The ideal-gas contribution to f (r) can be
written exactly as fid(r) = ∑

i T (r)ρi(r){ln[�3(r)ρi(r)] − 1},
with �(r) the local de Broglie wavelength and ρi(r) the ionic
density distributions for i ∈ {+,−}. To derive an approx-
imation of the excess contribution, we start by separating
a mean-field (Hartree-like) electrostatic term that expresses
the self-interaction of the charge density with itself, i.e.,
fH(r) = 1

2ρQ(r)φH(r), with φH(r) = ∫
dr′ρQ(r′)/|r′ − r| the

Hartree potential. The remaining (neutralized) part of the ex-
cess free-energy density f exc(r) contains information about
the short-range correlations in the fluid and its functional
dependence from ρ+/−(r) is generally unknown. However, in
the limit of small and slowly varying inhomogeneities, which
are implied by the asymptotic response of the ions’ densi-
ties far from an external perturbation, a rigorous expression
for f exc(r) can be provided that is grounded on an asymp-
totic gradient expansion [50,51]. In particular, we rely on a
square-gradient approximation (SGA) already adopted in the
nonisothermal treatment of liquid-vapor interfaces [32,34]:

f exc
SGA(r) = f exc

LDA(r) + 1

2

∑
i j

AT
i j∇ρi(r) · ∇ρ j (r). (4)

Here, AT
i j are the temperature-dependent square-gradient co-

efficients, defined as response functions of the homogeneous
and isotropic system at the equilibrium temperature T ≡ T (r)
and at some given reference densities, ρ̄i, which are set as
input parameters. In analogy with pioneering studies on the in-
homogeneous electron gas [52,53], the first order term f exc

LDA(r)
of the gradient expansion is defined as the local density ap-
proximation (LDA) of the excess free-energy density, which,
in our case, also depends on the local temperature T (r). Upon
including the ideal-gas term fid(r), local by definition, the
total LDA contribution to f (r) can be expressed as a second-
order expansion about the electroneutral homogeneous system
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at the local temperature T (r) and reference densities ρ̄i:

fLDA(r) ≈ f T ({ρ̄}) +
∑

i

μT
i �ρi(r)

+ 1

2

∑
i j

BT
i j�ρi(r)�ρ j (r), (5)

where f T ({ρ̄}), μT
i = ∂ fLDA

∂ρi
|{ρ̄}, and BT

i j ≡ ∂2 fLDA

∂ρi∂ρ j
|{ρ̄} are the

free-energy density, the chemical potentials, and the quadratic
LDA coefficients of the homogeneous reference system [40],
respectively, evaluated at the local temperature T = T (r). Fi-
nally, we consider the interaction of the fluid charge density
with the electrostatic potential φext generated by an external
charge distribution, i.e., fext(r) = ρQ(r)φext(r). Putting every-
thing together and recasting the problem in the charge and
total number density variables, ρQ and ρN , the final asymptotic
approximation of the free-energy density reads as follows:

f (r) ≈ f T ({ρ̄}) + 1

2
μT

N�ρN (r) + 1

2Z2
μT

QρQ(r)

+ 1

8

[
BT

NN�ρ2
N (r) + AT

NN

∣∣∇ρN (r)
∣∣2]

+ 1

8Z2

[
BT

QQρ2
Q(r) + AT

QQ

∣∣∇ρQ(r)
∣∣2]

+ 1

4Z

[
BT

NQρQ(r)�ρN (r) + AT
NQ∇ρN (r) · ∇ρQ(r)

]
+ fH(r) + fext (r), (6)

where we defined the number-number, charge-charge, and
charge-number coefficients as XNN = ∑

i j Xi j , XQQ ≡ X++ +
X−− − 2X+−, and XQN = XNQ ≡ X++ − X−−, respectively,
with Xi j = BT

i j or AT
i j . It is worth noticing that, from the

underlying local equilibrium hypothesis, all quadratic LDA
and SGA coefficients are mapped to equilibrium correlation
functions at the local temperature T (r). In particular, AT

i j and
BT

i j are defined from the fourth- and second-order momenta
of the short-range part of the direct correlation function of
the fluid at the local reference state [T (r), ρ̄i], i.e., c̃T

i j (r) =
cT

i j (r) + βZiZ j/r [50]. In turn, this implies that c̃T
i j (r) is as-

sumed to decay much faster than the variation rate of the
temperature distribution [54]. A full derivation of Eq. (6),
together with an explicit definition of the parameters AT

i j and
BT

i j , is reported in the Supplemental Material, Ref. [55].

C. Steady-state condition for the charge density

Having obtained an explicit asymptotic approximation of
f (r), we can now apply the steady-state Euler-Lagrange equa-
tions for the charge and number densities, as derived in
Eq. (3). For simplicity, we will work under the hypothesis of
a symmetric ionic fluid, so that the two ions differ from each
other only by their electric charge. Under this assumption, μN

is not a functional of ρQ and all charge-number coefficients in
Eq. (6) are identically zero, i.e., XNQ = XQN = 0. This allows
us to decouple the problem of Eq. (3), so that independent
solutions for ρQ(r) and ρN (r) can be found. In particular,
we will only focus on the charge density decay, which is
responsible for the electrostatic screening properties of the
ionic fluid.

The aforementioned symmetry assumption carries strong
implications on the properties of the charge chemical po-
tential, μQ. To see this, let us consider the nonequilibrium
phenomenological equation for the charge flux [45]:

jQ = LqQ∇
(

1

T

)
− 1

T
(LQN∇T μN + LQQ∇T μQ). (7)

Here, LqQ is the Onsager coefficient that couples the charge
flux with the heat flux q [56], LNQ is the Onsager coefficients
between the fluxes of charge and total number of particles,
and LQQ is the charge-charge Onsager coefficient. Isothermal
gradients are indicated by ∇T . Then, the symmetry of the
ionic fluid implies that we can neglect the contribution to jQ
due to thermoelectric effects, LqQ = 0, as well as the coupling
between the charge and total number of particles, LQN = 0. If
no particle exchange is allowed through the system, we can
further assume that the stationary state is characterized by a
vanishing charge flux, i.e., jQ = 0. Therefore, the isothermal
gradient of μQ is zero everywhere, implying that the charge
chemical potential depends on the spatial coordinates only
through the variations of the local temperature, μQ(r) ≡ μT

Q.
This result is particularly important, as it allows us to rewrite
the Euler-Lagrange equation for the charge density as

δFNE

δρQ(r)
= 1

2Z2
μT

Q, (8)

where FNE = ∫
dr f (r) represents the nonequilibrium free

energy defined as the integral of the local-equilibrium free-
energy density. In fact, the so derived steady-state condition
is formally equivalent to the usual Euler-Lagrange equa-
tion associated with the free-energy functional minimization
at thermal equilibrium. In this context, μT

Q acts as a Lagrange
multiplier for enforcing the stationary nature of the charge
chemical potential with respect to isothermal variations, i.e.,
∇T μQ(r) = 0. At a more practical level, this result allows us
to simplify the right-hand side of Eq. (8) with the analogous
term coming from the free-energy density approximation of
Eq. (6). Crucially, this implies that the only linear term in the
asymptotic expansion of f (r) comes from the interaction of
ρQ(r) with the external perturbation, thus guaranteeing that,
for positive values of the quadratic expansion coefficients, the
constrained functional is bounded from below.

To obtain an explicit solution to Eq. (8), we assume that
both the external perturbation φext(r) and the temperature
profile T (r) have planar symmetry, so that we will only refer
to one-dimensional variations along x. The resulting steady-
state condition consists of the following integral-differential
equation:

1

4Z2

{
BT

QQρQ(x) − d

dx

[
AT

QQ ρ ′
Q(x)

]} + φ(x) = 0, (9)

where φ = φH + φext is the total electrostatic potential. To
get rid of the integral dependence of the electrostatic po-
tential from ρQ in Eq. (9), we can now take advantage of
the Poisson equation, i.e., φ′′(x) = −4π [ρQ(x) + ρext (x)]. In
particular, we consider the screening behavior of the ionic
fluid away from the external perturbation, where we can set
ρext (x) = 0. This leaves us with a homogeneous differential
equation which describes the asymptotic decay of the charge
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FIG. 1. Sketch of the physical system studied in this work: an
external surface charge is screened by the ionic charge density ρQ(x)
in the presence of a thermal gradient α.

density under steady-state conditions:

0 = −16πZ2ρQ(x) + 2
∂BT

QQ

∂x ρ ′
Q(x) + BT

QQ ρ ′′
Q(x)

− 3
∂AT

QQ

∂x ρ ′′′
Q (x) − AT

QQ ρ ′′′′
Q (x). (10)

In what follows, we consider that the external potential is
originated by a planar charged wall of surface charge density
η, i.e., φext(x) = −ηx/(4π ). Assuming perfect screening, this
implies that

∫ ∞
0 dx ρQ(x) = −η, providing a boundary condi-

tion to the solution of Eq. (10).

D. Thermal equilibrium limit

From Eq. (10), we immediately recover the equilibrium
limit of vanishing temperature gradients. In this case, the
coefficients AQQ and BQQ are independent from the spatial
coordinates and the solutions can be searched in the form
of exponentials with complex arguments, eκx. The four decay
factors κ are the solutions of

κ2 =
BQQ ±

√
B2

QQ − 64πZ2AQQ

2AQQ
. (11)

Their complex nature reflects the possibility of obtaining
either a monotonic or an oscillatory decay of the charge
density, depending on the reference thermodynamic state. In
fact, the locus of points in the phase diagram that determines
a transition between a monotonic and oscillatory behavior
(Fisher-Widom line [44]) is found for vanishing discriminants
B2

QQ − 64πZ2AQQ = 0. Crucially, this result is entirely equiv-
alent to what was originally derived in Refs. [39,40] for the
charge density of a classical plasma, as well as to what was
obtained by other means in the study of the screening lengths
of bicomponent ionic fluids [41].

III. DISCUSSION

Because of the spatial dependence of the local-density and
gradient coefficients brought by the temperature variations,
finding an analytical solution to Eq. (10) is in general a
hard problem. Here, we will limit our discussion to a lin-
ear temperature profile along x, i.e., T (x) = T 0 + αx, with
T 0 a reference temperature and α the temperature gradient
(Fig. 1). In turn, this allows us to linearize the coefficients AT

QQ

and BT
QQ about T 0, i.e., AT

QQ ≈ A0
QQ + ∂AQQ

∂T |0αx and BT
QQ ≈

B0
QQ + ∂BQQ

∂T |0αx. In this work, the (neutralized) direct cor-
relation functions that enter the calculation of the reference
coefficients A0

QQ and B0
QQ, together with their derivatives, are

computed using the hypernetted chain (HNC) approximation

[35], which is known to provide a particularly good descrip-
tion of ionic fluids outside the region of the phase diagram
delimited by the spinodal line [57–59].

A. WKB method

Before proceeding to discuss the specific solutions to our
problem, it is worth pointing out that the equilibrium charge
density profiles at the reference temperature T 0 are expected
to decay much faster than the applied linear temperature
distribution. In more rigorous terms, we expect that the char-
acteristic screening lengths λ that can be derived from the
equilibrium solutions of Eq. (11) satisfy the inequality λ �
T 0/α. This limit behavior allows us to recognize a formal
analogy with the semiclassical regime of quantum mechanics,
where the particle’s wave function ψ displays quick variations
over the action range of the potential V . In particular, under
the formal maps ψ 	→ ρQ and V 	→ T , it must be possible to
interpret the temperature gradient α as the small parameter
of an asymptotic expansion that mimics the semiclassical
solution of the Schrödinger equation in the limit of small h̄.
Therefore, we expect that the solutions to Eq. (10) can be
directly obtained using the WKB method [60]. In order to
set up the WKB routine, we can start applying the formal
substitution ρQ(y) = exp[S(y)], where S(y) is related to the
potential of mean force of the charge density written as a
function of the reduced variable y ≡ αx. Then, the WKB
method reads as follows [60]: (i) consider the asymptotic
expansion of S(y) up to order α0, i.e., S(y) ≈ 1

α
S0(y) + S1(y);

(ii) expand the charge-density differential equation in terms of
α and retain only the dominant terms; (iii) find the first order
term S0; (iv) find S1 recursively. In the next subsections we
show how this procedure can be successfully applied to find
LDA and SGA asymptotic solutions.

B. LDA solutions

We start our discussion by retaining only the first line
of Eq. (10), corresponding to the LDA screening regime. In
this case, exact solutions exist in terms of linear combination
of z−1/2I1(2

√
z) and z−1/2K1(2

√
z), where I1 and K1 are the

order-1 modified Bessel functions of the first and second kind,
respectively, and z ≡ 16πZ2(B0

QQ + ∂BQQ

∂T |0αx)( ∂BQQ

∂T |0α)
−2

.

At large z, both I1 and K1 can be approximated in terms of
their asymptotic forms, giving the LDA charge-density profile

ρQ(z) ∼ z−3/4 (C+ e+2
√

z + C− e−2
√

z ), (12)

where the constants C± are found from the boundary con-
ditions. When considering finite values of x, the solution so
derived is expected to hold for sufficiently small values of
α. For example, in the simplest case of considering the DH
limit of vanishing short-range interactions between the ions,
Eq. (12) is found to apply whenever λD � T 0/α, with λD

the Debye screening length. In fact, we find that the solu-
tion of Eq. (12) can be directly recovered using the WKB
method described in Sec. III A. In particular, after the LDA
equation is expanded in terms of α and only the dominant
terms are retained, the final result is S0 = ±2α

√
z + C′

± and
S1 = − 3

4 ln(z) + C′, with C′
± and C′ integration constants,

which leads to the same asymptotic form of the exact LDA
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FIG. 2. Asymptotic decay of the LDA charge density of a sym-
metric ionic fluid screening a negative surface charge density η =
−1.0 e/σ 2 while subject to a temperature gradient α = α�T 0/σ , with
α� indicated in the plot. Red (blue) solid lines: WKB solutions for
positive (negative) α. Black solid lines: exact solutions. Black dashed
line: equilibrium solution.

solution obtained in Eq. (12). We redirect the reader to [55] for
the explicit details of the calculation. We note that the charge
integral of Eq. (12) tends to a constant Q0 faster than the
variation rate of the space dimensionality x. When considering
the decaying solution for x → ∞, for instance, we get

Q(x) ∼ CQ x− 1
4 exp

(
−2

√
16πZ2

∂BQQ

∂T

∣∣
0α

x

)
+ Q0, (13)

where CQ is a constant. This result is particularly important,
as it guarantees the capability of the fluid to perfectly screen
an external charge over a finite distance. In turn, this justifies
the adoption of the boundary condition Q0 = −η as a physical
criterion to determine the free parameters of Eq. (12) [61].

To test the accuracy of our solutions, we consider a
symmetric molten salt of unit valence ±1 [62], where the
short-range interaction between the ions is given by a sin-
gle Lennard-Jones (LJ) potential. Under this choice, the LJ
parameters σ and ε are taken as units of length and energy,
respectively. Given the hypothesis of planar symmetry, we
will consider all throughout the screening of a uniform surface
charge density η = −1.0e/σ 2, while the linear temperature
profile T (x) = T 0 + αx is defined by setting the origin x = 0
at the position of the planar charged surface. We choose a
reference thermodynamic state given by a mean number den-
sity ρ̄N = 0.5 ions/σ 3 and temperature T 0 = 2000ε/kB. In
agreement with the thermal equilibrium solutions provided in
Eq. (11), the large value of T 0 is expected to yield a mono-
tonic decay of ρQ which can be well described by the LDA
screening regime. Figure 2 reports the asymptotic behavior of
the charge-density profiles computed at various temperature
gradients α. When compared with the equilibrium case of
α = 0, our solutions are capable of reproducing the expected
decrease in the effectiveness of the electrostatic screening at
increasing temperatures (α > 0), a phenomenon that becomes
particularly pronounced at large values of α. Conversely, the
screening is enhanced when approaching cooler regions (α <

0). The WKB solution is found in perfect agreement with

the exact charge-density decay up to temperature gradients as
large as α = 1.0T 0/σ . This result remarks the applicability
of the asymptotic approximation in describing steady-state
regimes that are strongly driven away from thermodynamic
equilibrium. It should be noted that the solution reaches a
turning point at BT

QQ = 0, under which the charge density
shows an algebraically damped oscillation similar to what
was observed in quantum-mechanical semiclassical solutions.
In our case, however, this behavior identifies a breakdown
of LDA at low temperatures, implying that better functional
approximations are required.

C. SGA solutions

While LDA is generally capable of reproducing the
monotonic decay of ρQ, an oscillatory screening regime
characteristic of low temperatures can only be described by
solving the full SGA equation reported in Eq. (10). In this
case, exact solutions cannot be found and we are forced to
rely on the WKB approximation straight away. Following the
procedure described Sec. III A, we then look once again for
the asymptotic expansion at small α of the potential of mean
force in the form of S ≈ 1

α
S0 + S1, which defines the charge

density as ρQ ∝ exp[S]. After a tedious but straightforward
calculation, four solutions for S0 and a pair of solutions for
S1 are obtained; their explicit functional forms are reported in
[55]. Here again, S0 is associated with dominant, exponential-
like terms, while S1 contains logarithmic terms that account
for algebraic contributions to the total charge-density decay.
Note that when taking the equilibrium limit of α → 0, S1

can be neglected, and the potential of mean force reduces to
S = 1

α
S0 = κx, where κ corresponds to the pure exponential

decay factors reported in Eq. (11).
In Fig. 3(a) we show the WKB asymptotic profiles

computed at α = ±0.1T 0/σ . This time, the reference thermo-
dynamic state is defined by a temperature T 0 = 500ε/kB, for
which the equilibrium system is in a highly oscillatory regime.
Unlike the LDA case, we observe that the screening becomes
increasingly effective when going towards warmer regions of
the fluid, with oscillation wavelengths that are progressively
stretched out. On the other hand, an underscreening typical
of concentrated ionic fluids is found when moving towards
lower temperatures, which comes together with shorter and
shorter oscillations. Note that, in contrast to LDA, the SGA
solutions remain valid down to T = 0, i.e., x = 10σ , for
which the system tends to display a crystal-like behavior of
pure oscillatory charge-density variations. It is also possible
to test our solutions over temperature windows that embrace
the transition between monotonic and oscillatory regimes. In
particular, under the hypothesis of local thermodynamic equi-
librium, we expect that the same structural transition observed
when moving across the Fisher-Widom line in the equilib-
rium phase diagram is also observed when overcoming the
crossover temperature in our physical system. This is shown
in Fig. 3(b), where a large temperature gradient is applied
starting from the same reference temperature T 0. In this case,
a sharp crossover towards a monotonic screening regime is
observed when crossing a critical temperature T ∗ associated
with a given distance x∗. As reported in the inset, the structural
crossover is identified by a characteristic cusp behavior in the
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FIG. 3. (a) WKB asymptotic decay of the SGA charge density of
a symmetric ionic fluid subject to positive and negative temperature
gradients α = α�T 0/σ . (b) Crossover between oscillatory and mono-
tonic regime of the charge density decay for a positive temperature
gradient α = 1.0 T 0/σ . In both cases, the screening of a negative
surface charge density of η = −1.0 e/σ 2 is considered. The absolute
value |ρQ| is taken to report the profiles on a logarithmic scale. Inset:
normal scale zoom around the crossover point of ρQ; the vertical
green line indicates the position corresponding to the Fisher-Widom
temperature at equilibrium.

charge-density profile. In this regard, it is worth noticing that
the temperature T ∗ is close to, although not corresponding
to, that associated with the Fisher-Widom line of the equi-
librium system at the reference density ρ̄N (green line). This
discrepancy is related to the fact that, for this extreme case, the
square-gradient parameter AT

QQ would be better approximated
by including higher orders in the Taylor expansion around
T 0. A more detailed discussion on this matter is reported in
[55]. An opposite crossover for α < 0, from monotonic to
oscillatory, can be similarly obtained when starting from a
large value of T 0.

D. Quantitative model for dilute electrolytes

We now provide a thorough quantitative analysis of our
effect by taking as an example the electrostatic screen-
ing of a charged surface in aqueous solutions of NaCl
and NaOH, in the presence of a thermal gradient. We as-
sume a surface charge density of η = 1e/nm2 and ionic
concentration of ρ̄N = 0.01 M [63]. Consistent with previ-
ous works [10,46], we then apply a negative temperature
gradient of α = −10 K/μm, starting from a reference tem-
perature of T 0 = 300 K at the surface position. The dielectric

FIG. 4. Effect of a negative thermal gradient on the charge dis-
tribution of a typical dilute electrolyte. Deviations of our solutions
from the equilibrium distribution (red line) and from a T -dependent
parametrization of the equilibrium distribution (green line) are shown
as a function of the distance x from the charged wall of surface charge
density η = 1e/nm2. The Seebeck charge distribution represented
through a DH model for 0.01 M aqueous solutions of NaOH (dashed
blue line) and NaCl (dashed black line) are also reported.

permittivity of water is fixed at ε = 80, which accounts for
scaling the charges by ε−1/2 all throughout in our equations.
Given the low ionic concentration, the effect of short-range
ionic interactions can be safely neglected and the charge-
density decay can be simply described by taking the dilute
Debye-Hückel limit of the LDA solutions. This corresponds to
setting BT

QQ = 4T (x)/ρ̄N in Eq. (12). Note that by neglecting
any ionic interaction beyond the Coulomb pair potential, the
NaCl and NaOH charge density profiles are expected to be
identical in this example.

In Fig. 4 we report the deviation of our solution, Eq. (12),
from the equilibrium DH solution at T 0,

ρ
eq
Q (x) = −η κ0

D e−κ0
D x, (14)

as well as from a T -dependent parametrization of the equilib-
rium DH solution:

ρ
eq param
Q (x) = −η

(
κT

D

)2

κ0
D

e−κT
D x, (15)

where we defined κT
D ≡

√
4πe2ρ̄N/[εT (x)] as the T -

dependent Debye decay factor. At T = T 0, this results in
a DH decay length (κ0

D)−1 ≈ 4.36 nm. As shown in the
figure, the expected increase in the screening effectiveness
with respect to the equilibrium solution of Eq. (14) is re-
flected in an overall accumulation of negative charge close
to the charged surface. An opposite behavior is instead ob-
served when considering the deviation with respect to the
parametrized solution of Eq. (15), where the strengthening of
the screening generated by the temperature gradient tends to
be overestimated. Importantly, however, deviations of similar
magnitude are observed in both cases, demonstrating that our
WKB solutions can be used to obtain qualitatively different
results than a mere T -dependent parametrization of the equi-
librium solutions.
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To complement the previous discussion, we provide an
estimate of the relative importance of our effect with re-
spect to the expected charge accumulation generated by the
ionic Seebeck effect. In fact, while the presented theory
neglects thermodiffusion phenomena, the different thermal
diffusion of the two ions in solution is expected to give rise
to a macrosopic electric field through the system associated
with the accumulation of opposite charge at the two walls
of a hypothetical thermoelectric cell. The Seebeck electric
field is defined as ES = χα, with χ the Seebeck coeffi-
cient. Following Ref. [10], we consider in particular χ =
−0.2 mV/K and χ = +0.05 mV/K for NaOH and NaCl
solutions, respectively. The functional form of the Seebeck
charge density profile in electrolytes has been the subject
of recent investigations [64,65]. A comparison against the
magnitude of our effect can be carried out assuming a DH
profile [10], which integrates to a surface charge density
ηS = εχα/(4π ) compatible with the expected Seebeck field.
Note that the Seebeck charge density is expected to be several
orders of magnitude smaller than the ionic charge density
responsible for the screening of the surface charge, i.e.,
ρSeebeck

Q (x)/ρeq
Q (x) = ηS/η ∼ 10−6. In Fig. 4, the so computed

Seebeck profiles are reported against the deviations associ-
ated with our nonequilibrium solutions. We find that while
the effect of thermodiffusion is not negligible, the predicted
correction to the screening properties of the electrolyte plays
a predominant role in describing the variations of ionic charge
density induced by the application of a linear temperature
gradient. Importantly, this result appears to be largely inde-
pendent of the temperature gradient. In fact, at the first order
in α, we have the following analytical expression for the
deviation predicted by our solutions and the Seebeck charge
density distribution:

ρQ(x) − ρ
eq
Q (x)

ρSeebeck
Q (x)

≈ 4πη

4T 0κ0
Dεχ

[
1 − 3κ0

Dx + (
κ0

Dx
)2]

, (16)

which we find to apply for a wide range of relatively small
values of α.

E. Potential drop between planar charged walls

As a final application of our theory we consider how the
steady-state electrolyte model previously introduced enters
the description of the electrostatic potential drop between two
oppositely charged walls at a given distance L that are kept
at a temperature difference �T . Building on the previous
example, we then fix the reference temperature T 0 at the
position of the positively charged wall, while considering a
constant temperature gradient α = −10 K/µm through the
fluid, so that the negatively charged wall is found at a tem-
perature T 0 + �T < T 0, with �T = αL. In Fig. 5, we report
the effect of the temperature gradient on the electrostatic
potential difference between the two walls, as a function of
L, in terms of the deviation ��φ from equilibrium solu-
tions. We find that the effect predicted by our nonequilibrium
solutions increases linearly with the box size, going from
0.11 mV for L = 12 nm to 6.6 mV for L = 400 nm. The
large nature of the electrostatic potential variations at large
L has to be related to the large deviations of the electro-
static potential profile in the proximity of the cooler wall
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FIG. 5. Black line: effect of a stationary temperature gradient
α = −10 K/μm on the electrostatic potential drop of a dilute elec-
trolyte solution embedded between two oppositely charged walls,
measured with respect to the equilibrium Debye-Hückel predictions.
Red line: temperature difference between the charged walls. In both
cases, results are shown as a function of the distance between the two
walls, reported on a log scale to zoom the behavior at small L. Inset:
sketch of the physical system under study.

at T 0 + �T . The absolute charge density profiles and the
nonequilibrium electrostatic potential variations with respect
to the reference DH model are reported in the Supplemental
Material [55] for the various values of L considered. Despite
the predicted linear increase of our effect with the system
size, we note that no reciprocal interaction between the two
walls is observed for L > 50 nm, i.e., when L is much larger
that the characteristic screening length of the fluid. This is
clarified by the absolute electrostatic potential drop computed
at the equilibrium temperature T 0, which, for L > 50 nm,
shows a saturation at �φDH ≈ −2 V. Note that this value
is comparable to (the opposite of) twice the Gouy-Chapman
single-surface potential [66,67], �φGC = η/(4πεκ0

D) ≈ 1 V.
Within this regime, separate nonequilibrium screening pro-
files computed at the reference temperature T 0 corresponding
to T (x = 0) and T (x = L) could in principle be used to inde-
pendently represent the screening of the two surface charges,
so that the problem can be once again formulated in terms
of single interfaces. Conversely, we observe that within the
domain of distances for which the two interfaces feel the
reciprocal interaction, L < 50 nm, a single set of solutions for
the ionic charge density must be adopted in order to properly
describe the potential drop through the system. In particular,
noticeable deviations of the electrolyte screening profiles with
respect to the equilibrium DH solutions are found which are
associated with electrostatic potential differences ≈0.9 mV
at L = 50 nm. Note that the magnitude of this effect over-
shadows the voltage drop associated with the Seebeck effect
at the same walls’ distance, which, for the NaCl and NaOH
solutions previously considered, accounts for just −0.025 mV
and +0.1 mV, respectively.

IV. CONCLUSIONS

The analytical study introduced in this work provides a rig-
orous framework to describe the screening properties of ionic
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fluids under a stationary temperature gradient. As a major
result, we have shown that the striking parallelism with the
semiclassical (WKB) regime of quantum mechanics can be
used as a powerful approach to extend an equilibrium theory
to nonequilibrium steady states. The presented WKB method
provides a precise protocol to obtain solutions under small
thermal gradients, therefore avoiding a cascade of approxima-
tions which would be necessary at each step of the derivation
whenever a standard linearization approach is followed [26].
By relying on rigorous asymptotic approximations of the lo-
cal free-energy density, our theory is capable of representing
ionic fluids at arbitrary large ionic concentrations. This is re-
flected by the SGA charge-density profile, which allows us to
predict the structural crossover between monotonic and oscil-
latory screening regimes induced by the temperature variation,
as expected from the assumption of local thermodynamic
equilibrium.

In the paradigmatic case of dilute electrolyte solutions,
the deviations of our charge-density predictions from thermal
equilibrium have a larger amplitude than the charge distri-
bution generated by the ionic Seebeck effect. Therefore, as
long as the Seebeck effect can be experimentally probed,
we expect that the magnitude of our effect should be sim-
ilarly captured. This holds true, in particular, for measures
of the thermal-gradient induced deviation from equilibrium
of the potential difference between planar oppositely charged
walls, which we find to overshadow the Seebeck voltage.
Further experimental design may include the measurement
of transients’ changes in the potential induced by laser heat-
ing of electrodes [27,68], modifications in the dynamics of
charged colloids due to temperature gradients [26], or a

nonequilibrium extension of experiments that directly probe
the electrolyte-mediated interaction between planar charged
surfaces [37].

Our theory can in principle be applied to any pair poten-
tial, such as those entering coarse-grained models of room
temperature ionic liquids [69]. Moreover, beyond planar per-
turbations, the problem could be similarly formulated for
external potentials and temperature profiles that have cylindri-
cal and spherical symmetry. In addition, suitable extensions
of the method could be derived to reproduce the interplay
of ionic and dielectric screening, ubiquitous in aqueous elec-
trolyte solutions [43], thus overcoming the simplified solvent
representation as a temperature-independent dielectric con-
stant. Finally, we envision that our study could be used as
a stepping stone for providing a rigorous microscopic un-
derstanding of the charge separation induced by temperature
gradients when coupling the number and charge density in
asymmetric ionic fluids, a phenomenon which is at the cor-
nerstone of a first-principles treatment of the ionic Seebeck
effect.

ACKNOWLEDGMENTS

We thank P. Ballone for sharing the HNC code used
to perform the calculations of the reference ionic system.
A.G. acknowledges funding from the Swiss National Science
Foundation, Grant No. P2ELP2-199747. F.G. acknowledges
funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Skłodowska-
Curie Action IF-EF-ST, Grant Agreement No. 101018557
(TRANQUIL).

[1] R. Lin and H. Johnson, Effect of joule heating in electrochem-
ical measurement of hydrogen transport, Scr. Metall. 16, 1091
(1982); G. Frankel and R. Latanision, Reply: Effect of joule
heating in electrochemical measurement of hydrogen transport,
ibid. 16, 1097 (1982).

[2] L. Shi, Z. Han, Y. Feng, C. Zhang, Q. Zhang, H. Zhu, and
S. Zhu, Joule heating of ionic conductors using zero-phase
frequency alternating current to suppress electrochemical reac-
tions, Engineering, (2022).

[3] J. I. Guillamon, C. T. Love, R. Carter, X. Yang, and A. Verma,
Electrolyte conditions in lithium-ion batteries in presence of a
thermal gradient, MRS Adv. 6, 564 (2021).

[4] M. Børset, X. Kang, O. Burheim, G. Haarberg, Q. Xu,
and S. Kjelstrup, Seebeck coefficients of cells with lithium
carbonate and gas electrodes, Electrochim. Acta 182, 699
(2015).

[5] S. Liu, L. Lin, and H.-B. Sun, Opto-thermophoretic manipula-
tion, ACS Nano 15, 5925 (2021).

[6] H. Cha, H. Fallahi, Y. Dai, D. Yuan, H. An, N.-T. Nguyen, and
J. Zhang, Multiphysics microfluidics for cell manipulation and
separation: A review, Lab Chip 22, 423 (2022).

[7] F. Tian, L. Cai, C. Liu, and J. Sun, Microfluidic technologies for
nanoparticle formation, Lab Chip 22, 512 (2022).

[8] H. Ding, P. S. Kollipara, Y. Kim, A. Kotnala, J. Li, Z. Chen,
and Y. Zheng, Universal optothermal micro/nanoscale rotors,
Sci. Adv. 8, eabn8498 (2022).

[9] C. Liu, J. Zhao, F. Tian, L. Cai, W. Zhang, Q. Feng, J. Chang, F.
Wan, Y. Yang, B. Dai et al., Low-cost thermophoretic profiling
of extracellular-vesicle surface proteins for the early detec-
tion and classification of cancers, Nat. Biomed. Eng. 3, 183
(2019).

[10] A. Ly, A. Majee, and A. Würger, Nanoscale Seebeck effect at
hot metal nanostructures, New J. Phys. 20, 025001 (2018).

[11] K. Rossi, G. G. Asara, and F. Baletto, Structural screening
and design of platinum nanosamples for oxygen reduction,
ACS Catal. 10, 3911 (2020).

[12] K. Rossi and R. Buonsanti, Shaping copper nanocatalysts to
steer selectivity in the electrochemical CO2 reduction reaction,
Acc. Chem. Res. 55, 629 (2022).

[13] R. G. Reddy, Molten Salts: Thermal Energy Storage and Heat
Transfer Media, J. Phase Equilib. Diffus. 32, 1863 (2011).

[14] A. A. Minea, Overview of Ionic Liquids as Candidates for New
Heat Transfer Fluids, Int. J. Thermophys. 41, 151 (2020).

[15] A. Gibbs, B. W. Robinson, S. Rougé, H. Jouhara, A. K. M.
Asaduzzaman, M. Chowdhury, P. Kjellgren, A. M. Martí, P. T.
Pardelli, and N. Ciuffi, Heat recovery at high temperature by
molten salts for high temperature processing industries, AIP
Conf. Proc. No. 2191 (AIP, Melville, NY, 2019), p. 020089.

[16] S. Kjelstrup, K. Kristiansen, A. F. Gunnarshaug, and D.
Bedeaux, Seebeck, peltier and soret effects: On different
formalisms for transport equations in thermogalvanic cells,
J. Chem. Phys. 158, 020901 (2023).

045803-8

https://doi.org/10.1016/0036-9748(82)90462-8
https://doi.org/10.1016/0036-9748(82)90463-X
https://doi.org/10.1016/j.eng.2022.03.004
https://doi.org/10.1557/s43580-021-00074-5
https://doi.org/10.1016/j.electacta.2015.09.091
https://doi.org/10.1021/acsnano.0c10427
https://doi.org/10.1039/D1LC00869B
https://doi.org/10.1039/D1LC00812A
https://doi.org/10.1126/sciadv.abn8498
https://doi.org/10.1038/s41551-018-0343-6
https://doi.org/10.1088/1367-2630/aaa266
https://doi.org/10.1021/acscatal.9b05202
https://doi.org/10.1021/acs.accounts.1c00673
https://doi.org/10.1007/s11669-011-9904-z
https://doi.org/10.1007/s10765-020-02727-3
https://doi.org/10.1063/5.0131731


EFFECT OF A TEMPERATURE GRADIENT ON THE … PHYSICAL REVIEW MATERIALS 7, 045803 (2023)

[17] Y. Wang, C. Zeng, and W. Li, The influence of temperature gra-
dient on the corrosion of materials in molten fluorides, Corros.
Sci. 136, 180 (2018).

[18] N. Ohtori, M. Salanne, and P. A. Madden, Calculations of the
thermal conductivities of ionic materials by simulation with
polarizable interaction potentials, J. Chem. Phys. 130, 104507
(2009).

[19] R. Bertossa, F. Grasselli, L. Ercole, and S. Baroni, Theory and
Numerical Simulation of Heat Transport in Multicomponent
Systems, Phys. Rev. Lett. 122, 255901 (2019).

[20] F. Grasselli and S. Baroni, Invariance principles in the theory
and computation of transport coefficients, Eur. Phys. J. B 94,
160 (2021).

[21] J. E. Vos, D. Inder Maur, H. P. Rodenburg, L. van den Hoven,
S. E. Schoemaker, P. E. de Jongh, and B. H. Erné, Elec-
tric Potential of Ions in Electrode Micropores Deduced from
Calorimetry, Phys. Rev. Lett. 129, 186001 (2022).

[22] A. Würger, Thermopower of ionic conductors and ionic capac-
itors, Phys. Rev. Res. 2, 042030(R) (2020).

[23] E. Drigo and S. Baroni, Seebeck coefficient of liquid water from
equilibrium molecular dynamics, arXiv:2304.03573.

[24] W. Zhang, Q. Wang, M. Zeng, and C. Zhao, Thermoelectric
effect and temperature-gradient-driven electrokinetic flow of
electrolyte solutions in charged nanocapillaries, Int. J. Heat
Mass Transf. 143, 118569 (2019).

[25] S. Duhr and D. Braun, Why molecules move along a tempera-
ture gradient, Proc. Natl. Acad. Sci. USA 103, 19678 (2006).

[26] J. K. Dhont and W. J. Briels, Single-particle thermal diffusion of
charged colloids: Double-layer theory in a temperature gradient,
Eur. Phys. J. E 25, 61 (2008).

[27] J. Liu, J. Huang, Z. Peng, and S. Dong, Nonisothermal model
for the electric double layer under constant-charge condition,
J. Electroanal. Chem. 896, 115320 (2021).

[28] M. Schmidt, Statics and dynamics of inhomogeneous liquids
via the internal-energy functional, Phys. Rev. E 84, 051203
(2011).

[29] R. Wittkowski, H. Löwen, and H. R. Brand, Extended
dynamical density functional theory for colloidal mixtures
with temperature gradients, J. Chem. Phys. 137, 224904
(2012).

[30] J. G. Anero, P. Español, and P. Tarazona, Functional thermo-
dynamics: A generalization of dynamic density functional
theory to non-isothermal situations, J. Chem. Phys. 139, 034106
(2013).

[31] C.-Y. Hsieh, T.-C. Lin, C. Liu, and P. Liu, Global existence
of the non-isothermal poisson–nernst–planck–fourier system,
J. Diff. Eq. 269, 7287 (2020).

[32] D. Bedeaux, E. Johannessen, and A. Røsjorde, The nonequi-
librium van der Waals square gradient model. (I). The model
and its numerical solution, Phys. A: Stat. Mech. Appl. 330, 329
(2003).

[33] E. Johannessen and D. Bedeaux, The nonequilibrium van der
Waals square gradient model. (II). Local equilibrium of the
gibbs surface, Phys. A: Stat. Mech. Appl. 330, 354 (2003).

[34] E. Magnanelli, O. Wilhelmsen, D. Bedeaux, and S. Kjelstrup,
Extending the nonequilibrium square-gradient model with
temperature-dependent influence parameters, Phys. Rev. E 90,
032402 (2014).

[35] J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids,
4th ed. (Academic Press, Oxford, 2013).

[36] F. H. Stillinger and R. Lovett, General restriction on the distri-
bution of ions in electrolytes, J. Chem. Phys. 49, 1991 (1968).

[37] A. M. Smith, A. A. Lee, and S. Perkin, The electrostatic
screening length in concentrated electrolytes increases with
concentration, J. Phys. Chem. Lett. 7, 2157 (2016).

[38] P. Debye and E. Hückel, Zur Theorie der Elektrolyte. I. Gefrier-
punktserniedrigung und verwandte Erscheinungen. The theory
of electrolytes. I. Lowering of freezing point and related phe-
nomena, Phys. Z. 24, 185 (1923).

[39] P. Ballone, G. Senatore, and M. P. Tosi, Coexistence of vapour-
like and liquidlike phases for the classical plasma model, Lett.
Nuovo Cimento 31, 619 (1981).

[40] P. Ballone, G. Senatore, and M. P. Tosi, On the surface prop-
erties of a semi-infinite classical plasma model with permeable
boundary, Nuovo Cimento B 65, 293 (1981).

[41] R. L. de Carvalho and R. Evans, The decay of correlations in
ionic fluids, Mol. Phys. 83, 619 (1994).

[42] B. Rotenberg, O. Bernard, and J.-P. Hansen, Underscreening
in ionic liquids: A first principles analysis, J. Phys.: Condens.
Matter 30, 054005 (2018).

[43] F. Coupette, A. A. Lee, and A. Härtel, Screening Lengths in
Ionic Fluids, Phys. Rev. Lett. 121, 075501 (2018).

[44] M. E. Fisher and B. Widom, Decay of correlations in linear
systems, J. Chem. Phys. 50, 3756 (1969).

[45] S. de Groot and P. Mazur, Non-equilibrium Thermodynamics,
Dover Books on Physics (Dover Publications, Mineola, NY,
1984).

[46] S. Duhr and D. Braun, Thermophoretic Depletion Follows
Boltzmann Distribution, Phys. Rev. Lett. 96, 168301 (2006).

[47] N. D. Mermin, Thermal properties of the inhomogeneous elec-
tron gas, Phys. Rev. 137, A1441 (1965).

[48] R. Evans, M. Oettel, R. Roth, and G. Kahl, New developments
in classical density functional theory, J. Phys.: Condens. Matter
28, 240401 (2016).

[49] Following Ref. [30], F̃NE ≡ �̃NE + 1
2

∫
dr μN

T ρN +
1

2Z2

∫
dr μQ

T ρQ.
[50] P. D. Fleming III, A. J. M. Yang, and J. H. Gibbs, A molecular

theory of interfacial phenomena in multicomponent systems,
J. Chem. Phys. 65, 7 (1976).

[51] G. Senatore and M. P. Tosi, Theory of the surface dipole layer
and of surface tension in liquids of charged particles, Nuovo
Cimento B 56, 169 (1980).

[52] E. Fermi, Un metodo statistico per la determinazione di alcune
proprietà dell’atomo, Rend. Accad. Naz. Lincei 6, 602 (1927),
Reprinted in “Enrico Fermi: Collected Papers (Note e Memo-
rie)” (Editors: The University of Chicago Press, Chicago and
London; Accademia Nazionale dei Lincei, Roma; The Univer-
sity of Toronto Press, Toronto; 1962), Vol. 1, pag. 278, Library
of Congress Catalog Card Number: 60-12465.

[53] C. F. v. Weizsäcker, Zur Theorie der Kernmassen, Z. Phys. 96,
431 (1935).

[54] M. te Vrugt, H. Löwen, and R. Wittkowski, Classical dynamical
density functional theory: From fundamentals to applications,
Adv. Phys. 69, 121 (2020).

[55] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevMaterials.7.045803, which contains a com-
plete derivation of the local equilibrium equations, a complete
derivation of the WKB solutions, a discussion on the calculation
of the reference parameters, and a comparison between steady-
state, equilibrium, and parametrized equilibrium solutions.

045803-9

https://doi.org/10.1016/j.corsci.2018.03.003
https://doi.org/10.1063/1.3086856
https://doi.org/10.1103/PhysRevLett.122.255901
https://doi.org/10.1140/epjb/s10051-021-00152-5
https://doi.org/10.1103/PhysRevLett.129.186001
https://doi.org/10.1103/PhysRevResearch.2.042030
http://arxiv.org/abs/arXiv:2304.03573
https://doi.org/10.1016/j.ijheatmasstransfer.2019.118569
https://doi.org/10.1073/pnas.0603873103
https://doi.org/10.1140/epje/i2007-10264-6
https://doi.org/10.1016/j.jelechem.2021.115320
https://doi.org/10.1103/PhysRevE.84.051203
https://doi.org/10.1063/1.4769101
https://doi.org/10.1063/1.4811655
https://doi.org/10.1016/j.jde.2020.05.037
https://doi.org/10.1016/j.physa.2003.09.042
https://doi.org/10.1016/j.physa.2003.09.054
https://doi.org/10.1103/PhysRevE.90.032402
https://doi.org/10.1063/1.1670358
https://doi.org/10.1021/acs.jpclett.6b00867
https://archive.org/details/1923-debye-huckel-theory-zur-theorie-der-elektrolyte-1/1923-debye-huckel-theory-1923-german-scan-1-high-exposure/mode/2up
https://doi.org/10.1007/BF02777983
https://doi.org/10.1007/BF02874061
https://doi.org/10.1080/00268979400101491
https://doi.org/10.1088/1361-648X/aaa3ac
https://doi.org/10.1103/PhysRevLett.121.075501
https://doi.org/10.1063/1.1671624
https://doi.org/10.1103/PhysRevLett.96.168301
https://doi.org/10.1103/PhysRev.137.A1441
https://doi.org/10.1088/0953-8984/28/24/240401
https://doi.org/10.1063/1.432759
https://doi.org/10.1007/BF02738366
https://doi.org/10.1007/BF01337700
https://doi.org/10.1080/00018732.2020.1854965
http://link.aps.org/supplemental/10.1103/PhysRevMaterials.7.045803


ANDREA GRISAFI AND FEDERICO GRASSELLI PHYSICAL REVIEW MATERIALS 7, 045803 (2023)

[56] Notice that the heat flux jq = je − ∑
i hi ji, where hi is the

partial enthalpy of species i and je, j i are the fluxes of energy
and particles of species i, respectively, must be considered when
we address LqQ in a manner that (i) is independent of the zero
of the energies and (ii) allows one to single out the isothermal
gradient of the chemical potential; see Ref. [19]. Also notice
that in Ref. [45] the notation Lq′z is used for LqQ.

[57] G. Abernethy and M. Gillan, A new method of solving the hnc
equation for ionic liquids, Mol. Phys. 39, 839 (1980).

[58] L. Belloni, Inability of the hypernetted chain integral equation
to exhibit a spinodal line, J. Chem. Phys. 98, 8080 (1993).

[59] J. S. Høye, E. Lomba, and G. Stell, Analysis of the hypernetted
chain equation for ionic fluids, Mol. Phys. 79, 523 (1993).

[60] C. M. Bender and S. A. Orszag, Advanced Mathematical Meth-
ods for Scientists and Engineers (McGraw-Hill, New York,
1978), p. 83.

[61] Notice that the x integral of the charge density, ρ(x), has dimen-
sions of a surface density, i.e., [Q(x)] = e/σ 2.

[62] For any static configuration, no evidence is found for inte-
ger charges, which are manifested in transport processes only
[70–72]. Nonetheless, we used integer charges to be consistent
with established literature [16,22], where the same (integer)
charge is used in both the electrostatic interaction and the
charge flux. We believe that this holds true especially for diluted
electrolytes.

[63] Despite such a low ρ̄N , steric interactions between the ions may
become substantial close to the charged surface [73]. Nonethe-
less, a detailed study of the behavior of ρQ close to the surface
is beyond the scope of the present example, so that we neglect
steric effects.

[64] R. F. Stout and A. S. Khair, Diffuse charge dynamics in
ionic thermoelectrochemical systems, Phys. Rev. E 96, 022604
(2017).

[65] M. Janssen and M. Bier, Transient response of an electrolyte to
a thermal quench, Phys. Rev. E 99, 042136 (2019).

[66] M. Gouy, Sur la constitution de la charge électrique à la surface
d’un électrolyte, J. Phys. Theor. Appl. 9, 457 (1910).

[67] D. L. Chapman, Li. a contribution to the theory of electrocap-
illarity, London Edinburgh Dublin Philos. Mag. J. Sci. 25, 475
(1913).

[68] V. Climent, B. A. Coles, R. G. Compton, and J. M. Feliu, Coulo-
static potential transients induced by laser heating of platinum
stepped electrodes: Influence of steps on the entropy of double
layer formation, J. Electroanal. Chem. 561, 157 (2004).

[69] L. I. Vazquez-Salazar, M. Selle, A. H. de Vries, S. J.
Marrink, and P. C. T. Souza, Martini coarse-grained models
of imidazolium-based ionic liquids: From nanostructural or-
ganization to liquid–liquid extraction, Green Chem. 22, 7376
(2020).

[70] J. Pendry and C. Hodges, The quantisation of charge trans-
port in ionic systems, J. Phys. C: Solid State Phys. 17, 1269
(1984).

[71] P. Pegolo, F. Grasselli, and S. Baroni, Oxidation States,
Thouless’ Pumps, and Nontrivial Ionic Transport in Nonstoi-
chiometric Electrolytes, Phys. Rev. X 10, 041031 (2020).

[72] R. Resta, Faraday law, oxidation numbers, and ionic conductiv-
ity: The role of topology, J. Chem. Phys. 155, 244503 (2021).

[73] M. S. Kilic, M. Z. Bazant, and A. Ajdari, Steric effects in the
dynamics of electrolytes at large applied voltages. I. Double-
layer charging, Phys. Rev. E 75, 021502 (2007).

045803-10

https://doi.org/10.1080/00268978000100721
https://doi.org/10.1063/1.464564
https://doi.org/10.1080/00268979300101421
https://doi.org/10.1103/PhysRevE.96.022604
https://doi.org/10.1103/PhysRevE.99.042136
https://doi.org/10.1051/jphystap:019100090045700
https://doi.org/10.1080/14786440408634187
https://doi.org/10.1016/j.jelechem.2003.07.029
https://doi.org/10.1039/D0GC01823F
https://doi.org/10.1088/0022-3719/17/7/019
https://doi.org/10.1103/PhysRevX.10.041031
https://doi.org/10.1063/5.0077718
https://doi.org/10.1103/PhysRevE.75.021502

