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Modeling high-entropy transition metal alloys with alchemical compression
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Alloys composed of several elements in roughly equimolar composition, often referred to as high-entropy
alloys, have long been of interest for their thermodynamics and peculiar mechanical properties, and more recently
for their potential application in catalysis. They are a considerable challenge to traditional atomistic modeling,
and also to data-driven potentials that for the most part have memory footprint, computational effort, and data
requirements which scale poorly with the number of elements included. We apply a recently proposed scheme
to compress chemical information in a lower-dimensional space, which reduces dramatically the cost of the
model with negligible loss of accuracy, to build a potential that can describe 25 d-block transition metals. The
model shows semiquantitative accuracy for prototypical alloys and is remarkably stable when extrapolating
to structures outside its training set. We use this framework to study element segregation in a computational
experiment that simulates an equimolar alloy of all 25 elements, mimicking the seminal experiments in the
groups of Yeh and Cantor, and use our observations on the short-range order relations between the elements to
define a data-driven set of Hume-Rothery rules that can serve as guidance for alloy design. We conclude with a
study of three prototypical alloys, CoCrFeMnNi, CoCrFeMoNi, and IrPdPtRhRu, determining their stability and
the short-range order behavior of their constituents.
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I. INTRODUCTION

Almost 20 years have passed since independent work from
the groups of Yeh [1] and Cantor [2] showed that mixing
up to 20 metallic elements in roughly equal parts leads to a
smaller-than-expected number of distinct phases, with some
corresponding to disordered solid solutions of four to six
elements. These so-called high-entropy alloys (HEAs) have
since become the subject of intense study [3]. On a funda-
mental level, the observation of the existence of an extended
single-phase stability region for alloys with multiple prin-
cipal components was surprising, and from a technological
standpoint it opened up the possibility of designing materials
that defy the limitations of conventional metallurgy and alloy
engineering [4,5].

Besides their metallurgical and mechanical applications,
HEAs have been found to be promising catalysts [6,7], espe-
cially in electrocatalysis [8–10]. They can efficiently reduce
overpotentials and boost activities for, e.g., water splitting
[11–21], the oxygen reduction reaction [15,18,22–24], or the
methanol oxidation reaction [22,25–28] while exhibiting very
good stability under reaction conditions. These unusual prop-
erties are linked to their multielemental character, which gives
rise to four core effects [29,30]: the entropy, sluggish diffu-
sion, lattice distortion, and cocktail effect. While the former
two enhance the stability, the latter two can explain the high
activity in catalysis. First, lattice distortions occur due to
atoms being surrounded by atoms of many different atomic
radii, leading to stress and strain. This alters the electronic
structure of the alloy. For example, the water splitting activity

of a family of AlNiCoIrX (X = Mo, Cr, Cu, Nb, V) is superior
to IrO2 because the lattice distortion leads to shorter Ir-O
bonds [14]. Second, the cocktail effect describes unexpected,
synergistic effects of the chosen composition. For instance,
the non-noble metal HEA CoCrFeMoNi shows activity for the
oxygen reduction reaction similar to that of Pt.

From the computational perspective, modeling HEAs
poses a number of distinct challenges. The presence of mul-
tiple components requires relatively large simulation cells
to unveil microstructures or order-disorder behavior, while
the sluggish diffusion requires long timescales and acceler-
ated sampling techniques to overcome free-energy barriers
to atom diffusion. Chemical complexity makes empirical
force fields inaccurate, and sampling issues make explicit
electronic-structure calculations prohibitively demanding. As
a consequence, the study of HEAs usually relies on on-site
cluster expansions [31,32], together with analytical models
that allow us to capture the qualitative thermodynamic behav-
ior [33], even though entropic effects beyond configurational
ones are known to play an important role [34]. More recently,
force fields based on machine learning (ML) have emerged
as an alternative approach, allowing us to match the accu-
racy of first-principles calculations while describing off-lattice
distortions and thermal fluctuations [35–38]. However, the
majority of ML frameworks for materials modeling exhibit a
poor scaling of memory, computation, and data requirements
with the number of chemical species, and so simulations this
far have been restricted to a specific combination of four to
five elements. In this paper, we introduce a general-purpose
ML model for the study of bulk HEAs that uses a recently
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proposed strategy to reduce the dimensionality of chemical
space, allowing us to generate an accurate and transferable
ML potential that can describe arbitrary mixtures of 25 transi-
tion metals. The functional form of the model lends itself to an
intuitive interpretation of the relations between different tran-
sition metals, and careful validation shows that it is capable of
accuracy comparable to that of electronic-structure methods in
several reference calculations despite the breadth of chemical
space it covers. We use this potential to reproduce computa-
tionally the seminal Cantor experiments on the decomposition
of multielement mixtures, and find a qualitative behavior in
the affinity between different species that is consistent with
well-known HEAs, allowing us to introduce a data-driven
version of the Hume-Rothery rules to guide alloy design. We
conclude by studying three alloy compositions: the prototyp-
ical Cantor alloy CoCrFeMnNi, its Mn → Mo counterpart
that has enhanced catalytic performance, and PdPtIrRuRh—
another promising composition for catalysis. In all cases, we
observe a tendency to phase-separate at low temperature, and
that the short-range order (SRO) observed in high-temperature
conditions is indicative of the thermodynamic drive to de-mix.

II. ALCHEMICAL COMPRESSION OF ML
REPRESENTATIONS

We follow the approach introduced in Ref. [39] to reduce
the computation, memory, and data requirements of a ML
model for a chemically diverse problem. Here we only give
a brief overview to highlight the key ideas and introduce the
notation. The framework relies on the atom-centered density
correlation framework [40], which encompasses most of the
widespread descriptors for atomic-scale ML and that is essen-
tially equivalent to the moment tensor potentials [41] and the
atomic cluster expansion [42]. The reader is invited to read
Ref. [43] (especially Secs. 3 and 7.3) for a more pedagogic
discussion. The essential ingredient in this framework is the
expansion of the neighbor density within an environment Ai

that describes the atoms in structure A within a spherical
region centered on the ith atom [Fig. 1(a)], on a basis of radial
functions Rnl and spherical harmonics Y m

l :

〈anlm|ρi〉 =
∫

dx Rnl (x)Y m
l (x̂)〈ax|ρi〉,

〈ax|ρi〉 ≡
∑
j∈Ai

δaa j g(x − r ji ). (1)

In this expression, j runs over the neighbors of atom i, g(x) is
a Gaussian function (or its Dirac-δ limit), r ji ≡ r j − ri is the
interatomic distance vector between the jth and ith atom, Rnl

enumerates the radial functions, and Y m
l the spherical harmon-

ics. The ket |ρi〉 indicates the i-centered neighbor density and
the a index identifies the chemical nature of the atoms.

The bra-ket notation serves to emphasize the fact that the
discrete coefficients are simply a projection on a basis of
the very same quantity as the real-space neighbor density.
We also express the density coefficients with the alternative

notation 〈an|ρ⊗1
i ; λμ〉 ≡ 〈anλμ|ρi〉, in which ρ⊗ν

i indicates
we are describing the ν-neighbor density correlations, and
the angular indices (λ,μ) are moved to the ket to highlight
that they determine the symmetry of the coefficients with

(a)

(c)

(b)

FIG. 1. Different interpretations of the alchemical compression
scheme. (a) In a conventional density-correlation ML scheme, each
type of atom is associated with a separate density. (b) The entries
in the alchemical compression matrix ualch can be interpreted as
describing the character of each physical element in terms of nalch

pseudoelements—a concept that is not dissimilar from the notion of
classical elements. (c) The structure can also be seen as described in
terms of a density of pseudoelements for which each site contains a
contribution from each of the compressed channels.

respect to rotations, that is crucial when building equivariant
models and when combining density coefficients to evaluate
higher-order correlations.

In this paper, we will use the pair invariants (ν = 1,

λ = 0, i.e., 〈an|ρ⊗1
i 〉 ≡ 〈an|ρ⊗1

i ; 00〉), as well as the two-
neighbor invariant terms (ν = 2, λ = 0). The two-neighbor
invariants—equivalent to Smooth Overlap of Atomic Posi-
tions (SOAP) features [44] and closely related to three-body
Behler-Parrinello symmetry functions [45]—can be computed
as
〈
a1n1; a2n2; l

∣∣ρ⊗2
i

〉 ∝
∑

m

〈
a1n1

∣∣ρ⊗1
i ; lm

〉〈
a2n2

∣∣ρ⊗1
i ; lm

〉
. (2)

For readers familiar with the notation used in the SOAP
literature [44], the expansion coefficients of the density are
often written as ca

nlm and the power spectrum, corresponding
to the two-point correlations (2), as pa1a2

n1n2l . In both forms,
it is clear that the number of components one has to con-
sider grows quadratically with the number of species, each
element being considered independently in the neighbor den-
sity. The generalization to higher-ν correlations leads to an
even steeper increase, but for the data set we consider here,
the computational cost is prohibitive even for two-neighbor
correlations.
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The key insight in Ref. [39] is that it is unnecessary—and
possibly detrimental—to consider elements as independent.
Similarities in the behavior of elements have inspired the
construction in the periodic table [46] and are routinely used
to inform materials design and optimization. Instead, elements
should be mapped to a continuous nalch-dimensional space,
where each chemical species is mapped to nalch pseudospecies
with a set of coupling coefficients ualch. Then, the density
coefficients can be contracted as〈

bn
∣∣ρ̃⊗1

i ; λμ
〉 ≡

∑
a

uba
〈
an

∣∣ρ⊗1
i ; λμ

〉
, (3)

where we use ρ̃ to indicate the alchemically compressed
neighbor density (Fig. 1). We note that similar ideas were
applied—without optimizing the contraction coefficients—in
the context of atom-centered symmetry functions [47,48], and
that a systematic, rather than data-driven, compression has
also been recently applied to an eight-element alloy system in
the context of atomic cluster expansion potentials [49]. More-
over, there is a large design space of variations on a theme:
separate coupling coefficients could be used depending on the
angular (λ) and/or radial (n) channel, and it would be possible
to jointly contract over chemical and radial components—
which were shown to be effective in reducing the number of
features with minimal information loss [50]. Here we do not
explore this design space because, as we shall see, the pure
alchemical contraction appears to be both effective and easy
to interpret. Using these compressed density coefficients (3),
one can evaluate correlation functions with a cost that still
scales exponentially with ν, but with a more benign base, or
perform further iterative contraction steps as in Ref. [51].

To conclude this overview, we note that the alchemical
coefficients ualch enter the expression for the ν = 2 features in
a quadratic fashion, and so they cannot be directly determined
using linear algebra, even if one uses a linear model based on
the contracted features. In Ref. [39], this issue was tackled
with an iterative strategy, alternating a solution of the linear
problem with fixed ualch and a gradient descent on the cou-
pling coefficients. In the present paper, instead, we implement
the model using the PYTORCH framework [52], allowing us to
use automatic differentiation and gradient descent to optimize
simultaneously ualch and the model weights.

III. COMPUTATIONAL DETAILS

We provide a concise summary of the details of the cal-
culations we perform in this paper, covering the reference
electronic-structure calculations, the construction of the train-
ing set, and the architecture of the ML model, as well as the
details of the sampling protocol that we use for simulations in
Secs. VI and VII. In the Supplemental Material [53], we pro-
vide representative examples of the typical simulation setup
and additional convergence tests.

A. Electronic-structure details

All the reference energies and forces are computed us-
ing density-functional theory (DFT), as implemented in the
VASP code [54], with the PBESol exchange-correlation func-
tional [55]. The core electrons are treated implicitly using

projector augmented wave (PAW) pseudopotentials [56]. We
choose conservative values for the convergence parameters
of the electronic structure calculation (see the Supplemental
Material [53] for details): the wave function is expanded in
plane waves with a cutoff energy of 550 eV, and the Brillouin
zone sampling uses a �-centered Monkhorst-Pack scheme
[57] with an interval between k points along reciprocal lattice
vector 0.04 π Å−1. Even though transition metals often exhibit
magnetism, either in the pure phases or in alloys, we perform
all our calculations without spin polarization. Even disregard-
ing the fact that ML models that can deal with magnetism are
still at a very early stage [58], one should consider that we aim
to cover a broad chemical range that includes materials which
require different types of approaches to describe accurately
their magnetic behavior—band magnetism within the local
spin density approximation [59], noncolinear magnetism [60],
Hubbard-U calculations [61], etc. This makes nonpolarized
calculations a reasonable approximation within the scope of
the present paper (see also the Supplemental Material [53]),
even though this limits the accuracy of our reference and
our model for magnetic systems—which, for example, would
not be able to predict the stabilization of bcc iron over the
close-packed polymorphs.

B. Training set construction

We generated an original data set including 25 d-block
elements, i.e., all transition metals excluding those that are not
listed in Ref. [62] as relevant for HEAs (Tc, Cd, Re, Os, Hg).
We generate a total of 25 000 structures, following a protocol
that ensures quasirandom sampling of this high-dimensional
phase space. We created four subsets of structures based on
bcc and fcc lattices containing 36 or 48 atoms, respectively.
All lattice parameters are defined by the average atomic vol-
ume of the elements in a structure and scaled up or down by
up to 10% at random to simulate compression and expansion.
The structures in the first three classes include from 3 to 8
randomly selected elements, and in the fourth from 3 to 25.
In the first class, we included only perfect crystal structures
with random compositions. For the three remaining classes,
we shuffled atomic positions around their ideal lattice sites
(using a Gaussian distribution of atomic displacement with a
standard deviation of 0.2 Å in the second and fourth classes
and 0.5 Å in the third) to incorporate the information about
interactions in crystals at finite temperatures.

For every class of structures, we generated 100000 random
configurations and selected around 7000 of the most diverse
from every subset using farthest point sampling [63] in radial
spectrum feature space.

C. Machine-learning model

We build ML models based on density-correlation rep-
resentations, combining an atomic-energy baseline, ridge
regression based on pair and three-body correlation features,
and a multilayer perceptron [64] based on the three-body
features. Here we discuss briefly the functional form of the
different term and outline the training strategy we followed.
The atomic-energy baseline is simply a linear model that
depends exclusively on the nature of the atom at the center
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of each environment, ai:

V (aeb)(Ai ) = w(aeb)
ai

. (4)

Even though we train on atomization energies (and so the
large dependency of the atomic energies on the details of
the pseudopotentials is not an issue) we still find that V (aeb)

captures a large fraction of the target variance and facili-
tates learning. The second term we consider is a set of pair
energies. We use a Gaussian width of 0.25 Å, a cutoff of
6 Å, and radial scaling following Ref. [39]; we expand the
density in spherical harmonics and in 12 radial functions,
enumerated by the n index and obtained by orthogonalizing
Gaussian-type orbitals that cover the range of distances up
to the cutoff radius (see, e.g., Ref. [65] for a precise defi-
nition). We use different weights depending on the nature of
the two atoms, so in practice the contribution to the potential
reads

V (2B)(Ai ) =
∑

an

w(2B)
aian

〈
an

∣∣ρ⊗1
i

〉
. (5)

The third term involves three-body correlations (SOAP fea-
tures), computed on top of alchemically contracted density
coefficients, with a linear model

V (3B)(Ai ) =
∑

bnb′n′l

w
(3B)
bnb′n′l

〈
bnb′n′l

∣∣ρ̃⊗2
i

〉
. (6)

We use the same set of weights irrespective of the atom
type, because in a three-body descriptor the nature of the
central atom is encoded in the density associated with the
Gaussian at r = 0, so the compression of the dependency of
potentials on the central atom type is achieved implicitly and
with the same contraction coefficients used for the neighbor
density.

Finally, we include a nonlinear term that takes the
compressed power spectrum as input and feeds it into a
Behler-Parrinello-style [66] multilayer perceptron [64]. First,
a linear filter projects the power-spectrum features into 80
input neurons, ξ(0), to which hyperbolic tangent activation
functions are applied. A second linear layer combines the
outputs of the neurons, feeding them to one hidden layer of
the same size. Finally, the outputs are linearly combined to
yield the atomic energy:

ξ (0)
q (Ai ) =

∑
bnb′n′l

w
(NN,0)
qbnb′n′l

〈
bnb′n′l

∣∣ρ̃⊗2
i

〉
,

V (NN)(Ai ) = F (ξ(0)(Ai )). (7)

We use this simple Neural Network (NN)—built on top of
the compressed power-spectrum features—because we want
a simple and well-understood term that can incorporate non-
linearity without exploding the design space, and because we
want to show that our alchemical compression scheme can be
readily applied to several well-established ML schemes. It is
possible (and likely) that alternative frameworks e.g., increas-
ing further the body order, may allow for a better-performing
model, but as we shall see this approach is sufficient to
achieve state-of-the-art accuracy together with a stable and
interpretable model.

The parameters of V (3B) and V (NN) implicitly include the
alchemical coupling matrix ualch; for this reason, we optimize

all models with gradient descent, relying on backpropagation
as implemented in PYTORCH [52]. A ridge penalty term is in-
cluded on all weights to reduce the risk of overfitting. We find
that (possibly due to the presence of large linear components
that contribute a quadratic term to the L2 loss) a deterministic
L-BFGS optimizer [67] performs much better than stochastic
gradient descent.

D. Sampling details

Molecular dynamics (MD) is well-suited to describe
structural relaxation of the atomic coordinates. However,
long-range diffusion in the solid phase occurs through va-
cancies and is too slow to be simulated explicitly by MD.
To overcome this timescale problem, we use a combina-
tion of techniques to facilitate thorough sampling of atomic
ordering. Our base protocol involves performing MD sim-
ulations in the constant-temperature/constant-pressure NpT
ensemble [68]. We use a conservative time step of 2 fs, an
isotropic barostat [69] with a time constant of 200 fs cou-
pled to an optimal-sampling colored-noise thermostat [70]
and an aggressive thermostat for the ions, alternating an
optimal-sampling Langevin equation with a stochastic ve-
locity rescaling [71] with a time constant of 10 fs. We
accelerate sampling of the compositional (dis)order by per-
forming Monte Carlo (MC) steps in which the nature of two
atoms in the system is exchanged, with a Metropolis accep-
tance criterion [72]. We perform on average one exchange
attempt per MD time step. Both the MD and the MC step
conserve the Boltzmann distribution (except for a negligible
finite time-step error), and so the combined MD/MC protocol
is consistent with canonical sampling. To further accelerate
sampling, we also use replica exchange molecular dynam-
ics (REMD) [73]—a technique in which multiple trajectories
at different temperatures are performed in parallel. Periodi-
cally, structures are exchanged between temperatures, using
a Monte Carlo procedure that preserves the Boltzmann dis-
tribution for each thermodynamic state. The fact that each
trajectory is brought through cycles of heating and annealing
accelerates conformational sampling and reduces the corre-
lation time of observables that are associated with activated
events at low temperature. Unless otherwise specified, we use
temperature replicas distributed according to a geometric pro-
gression between two extremal values Tmin and Tmax. For all
MD/MC simulations, we use the i-PI universal force engine
[74] that includes an implementation of element exchange
moves [75] and a flexible implementation of replica exchange
[76].

IV. ALCHEMICAL LEARNING

As discussed above, the compression scheme in Eq. (3) is
just one of the many approaches one could take to reduce the
dimensionality of the density expansion coefficients. One of
the appealing features of this specific implementation is that
it can be interpreted relatively easily, and that it allows us to
extract physical-chemical insights through an introspection of
the model parameters and performance.
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FIG. 2. Learning curves for different models. Full lines cor-
respond to models built using only V (aeb) and V (3B), with nalch

pseudoelements (all optimized iteratively). The dotted green curves
are obtained with a ualch filled with uniform random numbers (rnd.)
and with the weights we use as an initial guess for the optimized
models (base) that are built based on physical priors following the
scheme discussed in Ref. [39]. The dashed green line corresponds to
a model that includes V (aeb) and V (3B), as well as the full set of pair
potentials and a nonlinear term built on top of the contracted power
spectrum features V (NN).

A. Learning curve analysis

We begin by considering linear models based on contracted
power-spectrum features, supplemented by an atomic energy
baseline term, V (aeb) + V (3B). We perform separate training
exercises, using only energy as targets, and restricting the al-
chemical contraction to two to five pseudoelements. For each
model, we compute learning curves by converging the loss
at a given number of training structures ntrain, then increase
the train size and continue the optimization restarting from
the previous weights. Given that the optimization procedure
is rather demanding, we do not perform multiple train/test
splits, but use consistently the same shuffle with up to 25 000
structures used for training and a holdout set containing 500
configurations used for testing. Even though the accuracy does
depend slightly on the shuffle, and on the initialization of the
weights, we find that the qualitative observations we present
here are robust.

Figure 2 shows a behavior similar to that observed in
Ref. [39] for an analogous exercise on the elpasolites data
set [77]: at the smaller train set sizes, a very aggressive com-
pression is effective at obtaining a robust model, but with
more training data the learning curves saturate. Increasing
the number of pseudoelements nalch delays saturation, but the
improvement going from nalch = 3 to nalch = 4 is negligible,
and the learning curves for nalch = 5 sit almost exactly at
the same value. This indicates that, from the point of view
of three-body interactions, three to four pseudoelements are
sufficient to saturate the descriptive power of a linear model.
Note that the optimization of ualch is critical to achieve such
efficient compression: a model that uses fixed, random values
for the contraction weights, as well as one that uses a fixed,
physically inspired initialization of ualch, lead to an order of

magnitude increase in the saturation error, even with nalch = 4
(Fig. 2).

Given the saturation of V (3B), we proceed to increase the
effective body order of the potential adding a nonlinear NN
layer on top of the contracted power spectrum, V (NN), which
introduces about 160 000 additional model parameters, mostly

associated with the contraction of the |ρ̃⊗2
i 〉 features to the

80 input features of the NN. Furthermore, we also include a
noncompressed two-body potential V (2B), for which we also
consider a slightly larger cutoff distance. This two-body term,
on its own, does not improve significantly the limiting accu-
racy of the model (reinforcing the notion that the alchemical
contraction is converged) but we include it because it is inex-
pensive to compute, and has been shown in the past to lead to
more stable models, whose performance degrades more gently
in the extrapolative regime [78,79]. Incorporating a nonlinear
term in the model allows us to overcome the saturation of
the learning curve (Fig. 2, dashed green line). The nonlinear
nalch = 4 model reaches a validation-set mean absolute error
(MAE) below 10 meV/atom. We discuss further the accuracy
of this model (that we will refer to as the HEA25-4-NN) in
Sec. V.

B. A 3D periodic table for the transition metals

The alchemical coupling matrix associates to each of the
physical elements a vector of size nalch that can be regarded
as the composition of that element in terms of a set of pseu-
doelements [Fig. 1(b)]. Thus, different atomic species can be
seen as points in a continuum space and can be visualized as
such to gain insights into the data-driven similarities that arise
from the optimization of ualch to achieve the most accurate
regression of the target. To make the visualization independent
on unitary transformations of the weight matrix, we perform
a principal component analysis.

The eigenvalues of the covariance matrix indicate the mag-
nitude of the various components (their explained variance),
and provide another indication of the importance of successive
increases in the dimensionality of the alchemical space. We
observe a quick decrease of the explained variance, with the
fourth component typically amounting to less than 2% of
the variance (Fig. 3, inset). This confirms that the first three
components provide sufficient descriptive power to capture
the difference in behavior between transition metals. We can
then look at how the d-block elements appear when projected
along the top three principal components of ualch (Fig. 3). We
focus on the weights from the HEA25-4-NN model, but the
qualitative features of the alchemical projections are similar
also for other models in Fig. 2 (see the Supplemental Material
[53]). The elements are arranged in a way that is strongly
reminiscent of their placement in the d block: the third prin-
cipal direction corresponds to the period, while the first two
dimensions are associated with a semicircular arrangement,
with the elements appearing in the same order as the columns
in the conventional periodic table. Interestingly, this arrange-
ment is reminiscent of that used for the d block in some of the
alternative representations of the periodic table, such as the
Benfey spiral [80]. It indicates that, from the point of view of
the construction of an interatomic potential, zinc is closer to
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FIG. 3. Top-three principal components of the alchemical cou-
pling matrix ualch for the HEA25-4-NN model. The periods
are highlighted with orange, blue, and green lines, and the
columns are indicated by black thin lines. Interpolated posi-
tions for Re and Os are indicated with empty circles. The inset
shows the decay of the explained variance for the four principal
components.

scandium then it is to the atoms in the middle of the transition
metals block.

C. Alchemical interpolation

The elements we have not considered leave a clear gap in
the arrangement of the alchemical coupling weights, and it is
interesting to see how accurate a model that places rhenium
and osmium between tungsten and iridium fares in predicting
their properties without additional fitting.

We pick 60 structures from the holdout set, containing
distorted configurations with random composition. The MAE
for these structures when using the nalch = 4 model using
only V (aeb) and V (3B) is 13 meV/atom. We then substitute
some random atoms with Re and Os, without changing the
positions, and recompute their energies with analogous DFT
settings.

We then build a model in which we simply take the param-
eters optimized for the 25-element data set and complete them
by adding atomic-energy baselines for Re and Os (obtained by
training on the residual a two-parameter model that depends
exclusively on the Re and Os content) and by adding pseu-
doelement weights that interpolate linearly between W and Ir
(see Fig. 3):

ubRe = 2
3 ubW + 1

3 ubIr, ubOs = 1
3 ubW + 2

3 ubIr. (8)

The power-spectrum model weights are unchanged: we are
effectively interpolating in pseudoelement space. The result-
ing model yields exactly the same predictions for structures
that do not contain Os and Re, and has a MAE of only 24

meV/atom for the test structures that include the two species
(see also the Supplemental Material [53]). The model is also
sufficiently stable to run MD simulations for Re and Os con-
taining structures.

This example underscores the advantages of the inter-
pretable functional form we use to implement alchemical
dimensionality reduction. It also opens up the possibility
of designing simulation protocols that include smooth al-
chemical transformations in a similar spirit as the framework
pioneered by Sheppard et al. [81], and with some sim-
ilarities to the virtual crystal approximation that is often
used to describe approximately random alloys [82]. For
example, one could use thermodynamic integration to com-
pute the change in chemical potential associated with an
element substitution by running simulations with a mixed
potential, in which the alchemical coupling weights are grad-
ually transformed between the values associated with two
elements.

V. VALIDATION OF THE POTENTIAL

We now assess the accuracy and stability of the model
we use in the rest of this paper, which combines a four-
pseudoelement contraction of the power spectrum with a
multilayer perceptron. We aim to provide benchmarks that
are easy to reproduce but that reflect the performance of
the model in relevant simulation tasks, and we envisage
that any comparative study would include most of these
and not only cross-validation statistics. To contextualize and
provide a reference scale for our results, we report in the
Supplemental Material [53] similar validation results for the
general-purpose, universal graph neural network M3GNet
[83]. In all cases, HEA25-4-NN, which admittedly has a nar-
rower scope of applicability, outperforms M3GNet by a large
margin.

A. Holdout validation of the HEA25-4-NN model

We train the HEA25-4-NN potential by progressively in-
creasing the train set size until we run the final optimization on
25 000 structures, including forces for 2000 of them. We hold
out 500 structures and use them for validation. The parity plot
between targets and predictions demonstrates the accuracy of
the model (Fig. 4), which is remarkable given the diversity of
the data set, which contains random combinations of up to 25
elements, and highly distorted structures.

B. Binary convex hulls

Even though the HEA25-4-NN is clearly geared towards
multicomponent simulations, it is important that it also pro-
vides reasonable results for simpler compositions, as these
may appear spontaneously when complex alloys de-mix and
form precipitates. We collect 1438 binary intermetallic struc-
tures out of more than 146k crystal structures from the
Materials Project database [84] and recompute their energies
with single-point calculations using our DFT setup, as well
as with the HEA25-4-NN model. We discard 23 structures
for which our DFT calculations did not converge and 10 that
correspond to configurations that are too dissimilar from the
bulk structures we consider here (see Supplemental Material
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FIG. 4. Parity plot between reference energy and forces and
the values computed with the HEA25-4-NN model for a holdout
set of 500 structures, randomly selected from the overall pool of
structures. Energy error: 10 meV/atom mean absolute error (MAE),
14 meV/atom root mean square error (RMSE), force error: 190
meV/Å MAE, 280 meV/Å RMSE.

[53]). For the remaining structures, the MAE error for the
cohesive energy is 62 meV/at. and for the formation energies
is 63 meV/at, which is higher than the cross-validation error,
but still remarkably accurate for extrapolative predictions. It
is worth noting that the MAE discrepancy between our DFT
calculations and those saved in the MP records is 65 meV/at.;
this is due to the significant difference in the details of the
electronic structure calculations, e.g., the use of Hubbard
U corrections for some structures in the MP protocol, and
neglect of spin polarization in ours. This observation under-
scores that the details of the electronic structure calculations
can have an impact comparable to the accuracy of our ML
model. We then use this data to compute binary convex-hull
diagrams for all element pairs. In Fig. 5, we show a repre-
sentative example for the Ti–Pt system. The overall shape of
the hull is usually well-reproduced, but often HEA25-4-NN
predicts different stable polymorphs than DFT and/or mis-
predicts the stability of certain compositions (as is the case
for TiPt2 in the figure). However, these qualitative errors are
usually associated with situations in which a small energy
shift can bring a composition above the hull boundary, and
even in a fully ab initio study it would not be possible to deter-
mine conclusively its thermodynamic stability. The full list of
hulls is included in the Supplemental Material [53]. Figure 5
also shows an overview of the accuracy of the prediction of
formation energies for all phases (stable and unstable) as a
function of composition. Errors are not uniform: some ele-
ments such as Mn, that have the tendency of forming complex
crystal structures, yield larger errors, while others such as Cu
or Ni usually yield errors comparable to the validation set.
It would be trivial to improve the accuracy of the model for
binary structures and pure element polymorphs by including

FIG. 5. MAE for the formation energy of binary compounds
from the Materials Project database. The inset shows a representa-
tive hull plot for the Ti–Pt system, highlighting the hulls obtained
from the single-point DFT calculations and the ML predictions. The
dashed line identifies the structures that are stable based on the
energies available in the Materials Project database.

this small number of additional structures in the training set.
We chose not to do that to avoid introducing biases in the
accuracy depending on the different abundance of structures
in the MP database. In the future, we plan to systematically
extend our training set to incorporate disordered and liquid
structures.

C. Energy and equation of state

We prepare a 5 × 5 × 5 f cc supercell, containing five
atoms of each of the 25 elements, arranged randomly on the
lattice. We relax the geometry of the structure and the volume
of the supercell using the HEA25-4-NN potential. We refer to
this structure as the random relaxed (RR) structure. Starting
from the same configuration, we also perform a slow anneal-
ing trajectory, combining MD and atom exchange moves, to
obtain a structure in which the arrangement of elements is
not random but more energetically favorable. We refer to this
structure as the fully relaxed (FR) structure. In both cases,
the atoms relax away from f cc lattice positions, and the
resulting structure within the supercell is rather disordered.
We then introduce an isotropic compression or expansion
of the two structures, relaxing the coordinates of the atoms
within the cell, and fit a Birch-Murnaghan equation of state to
the resulting energy-volume curves. We repeat the fixed-cell
relaxation with the reference DFT and compare the resulting
equations of state (Fig. 6). The error on the cohesive energy
E0 is comparable to the test error (24meV for E (RR)

0 , 3meV

045802-7



NATALIYA LOPANITSYNA et al. PHYSICAL REVIEW MATERIALS 7, 045802 (2023)

FIG. 6. Equation of state for the random relaxed (RR) and fully
relaxed (FR) structures (see text for the full definition), computed
with the HEA25-4-NN potential and with the reference DFT. Birch-
Murnaghan parameters for cohesive energy (E0), equilibrium volume
(V0), bulk modulus (B0), and bulk modulus derivative (B′

0) are given
in the table.

for E (FR)
0 ) and much smaller than the energy gain associated

with the annealing of the lattice occupations (E (RR)
0 − E (FR)

0 is
about 150 meV/atom), indicating that HEA25-4-NN is reli-
able for assessing the energetics of ordering in a random alloy.
The equilibrium volume and bulk modulus for the two struc-
tures are also in good agreement, with errors below 1% and
10%, respectively—comparable to the typical discrepancy be-
tween different DFT approximations or between DFT and
experiments.

D. Molecular dynamics

As a further demonstration of the accuracy and the stability
of this potential, we perform two constant-pressure MD/MC
trajectories, one at T = 300 K and one at T = 5000 K, each
starting from a random arrangement of five atoms for each
of the 25 elements (a total of 125 atoms) arranged on an fcc
lattice. The trajectories are 10 ps long, with on average one
attempt at exchanging a pair of atoms every 2 fs. We save a
configuration every 100 fs, and perform DFT calculations to
compare energy and forces with those obtained from the ML
potential. Figure 7 shows that the low-temperature trajectory,
where major rearrangements of the atoms occur but the struc-
ture remains approximately fcc, has an accuracy comparable
to that measured on the validation set. The high-temperature
run exhibits a higher error. However, the main component of
the error is a rigid shift of the energies, and the trajectory
remains stable—which is remarkable given that we observe
complete melting, and the potential is trained exclusively on
distorted solid structures.

FIG. 7. Comparison between the potential energy evaluated
along two 10 ps MD/MC trajectories and that recomputed by DFT
for 100 snapshots. The inset shows the parity plot for the force
components computed for those structures. Energies have a MAE
of 14 (48) meV/atom and forces a component MAE of 0.23 (0.29)
eV/Å for the 300 (5000) K trajectory.

VI. TEMPERATURE-DEPENDENT SEGREGATION IN A
CANTOR-STYLE ALLOY

In a seminal experiment, Cantor et al. [2] investigated the
development of microstructures during the solidification of
equimolar mixtures of 16 and 20 elements. We aim to perform
a similar experiment in a computational setting, assessing the
propensity of different elements to pair together or segregate,
while covering the full component palette allowed by our
model. This poses considerable challenges beyond the chem-
ical complexity: kinetic trapping plays an important role in
the physics of HEAs, and simulating vacancy-assisted atom
diffusion requires timescales that are unattainable in brute-
force atomistic modeling. To accelerate sampling and achieve
(partial) equilibration, we run replica exchange simulations
combining MD and atom swap moves (REMD/MC), as de-
scribed in Sec. III D.

Figure 8 shows a representative trajectory for an 864-atom
cell, starting from fcc configurations, and including equimolar
composition of all 25 elements (a composition we will refer
to as HEAall). The slow, logarithmic relaxation of the low-
temperature replica is indicative of the glassy dynamics of
the system, which does not equilibrate completely even after
millions of MD/MC steps (see the Supplemental Material
[53]). For this reason, we perform multiple independent (and
longer) simulations with a smaller box size (see the Supple-
mental Material [53]). The qualitative observations on the
local ordering are robust, even though the precise arrangement
of atoms in the low-temperature regime, as measured by the
element-resolved pair correlation functions, differ noticeably
between trajectories.

A. Relative pair probabilities for the HEAall alloy

The pair correlation functions (Fig. 9) display broad, liq-
uidlike peaks at both the highest and lowest temperatures we
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FIG. 8. Trajectories of the potential energy for the 40 replicas
used in one of the REMD simulations of an 864-atom box of the
HEAall. Each color corresponds to a different initial configuration,
that goes through cycles of heating and cooling due to REMD
exchanges, accelerating the equilibration of the simulation at each
temperature. The collection of trajectory segments corresponding
to the extremal temperatures T = 300 K and T = 1253 K are high-
lighted with thicker, black lines. The logarithmic timescale refers to
the MD integration time, but should not be interpreted as physical
time given the presence of MC steps and replica exchange moves.

considered. In fact, simulations show little diffusion (except
for some occasional bursts of activity at the high end of the
temperature range) and the system can be characterized as an
amorphous (or nanocrystalline) solid. The broadening of the
peaks can be at least in part attributed to the diversity of pair
distances between atomic species: some, like Cr-Cr, peak at
distances as short as 2 Å, others, such as Y-Y, peak at about
3.7 Å. Note that typical distances in same-element pairs do
not always match those found in the pure solid, underscoring
the fact that the HEA25-4-NN can capture the effects arising
from the heterogeneous chemical environments found in this
alloy. For this reason, and given the disordered structure that
develops in the supercell, we analyze structural correlations
using a coarse-grained definition in which the first coordina-
tion shell extends up to a distance r = 3.75 Å, the second up
to r = 6.25 Å, and the third up to r = 8 Å, which is the largest

FIG. 9. Pair correlation functions computed on a the T = 300 K
(full) and T = 1253 K (dashed lines) replicas of a HEAall box. Black
lines correspond to the unresolved pair correlation, while red (Cr-
Cr) and blue (Y-Y) lines provide representative examples of pair
correlations resolved by species. The vertical dotted lines indicate
the regions used in the definition of the pair ordering.

distance we consider given the size of the box. We then define
a variation on a theme of the SRO parameter [85], which we
dub the relative pair probability (RPP),

RPP	r (A, B) = p	r (A, B)

p	r (
, 
)

ρ2

ρAρB
, (9)

which computes the number of pairs between species A
and B that occur within a range 	r of distances, divided
by the number of all pairs found in that same region, and
normalized by the number density of the two species, ρA,B

and the overall number density ρ. RPP = 1 indicates that
the two species are as likely to be found within a given
separation range than any atom pair. RPP > 1 (<1) indicate
that they are more (less) likely to be found in that distance
range.

Qualitatively, the value of the RPP in the first coordination
shell is indicative of the propensity of two elements to cluster
together or to separate from each other. However, the values
cannot be interpreted in isolation without considering the
overall setup of the simulation: the finite size of the supercell,
the imperfect equilibration, and the many-body interactions
between all 25 species mean that the strong affinity between
Y and Au, or the poor compatibility of Mn and Pd, do not nec-
essarily imply the same quantitative effect when considered
as part of a different overall composition. Figure 10 shows
a heat-map representation of RPP	r (A, B) for the HEAall at
300 K and 1253 K, and for the three regions indicated in
Fig. 9. A few qualitative observations can be made. First,
in our simulations HEAall evolves to be far from random.
Certain atom pairs have a strong tendency to associate or sep-
arate at low temperature, and the high-temperature samples
(which are well equilibrated) show similar, even though less
pronounced, trends. This correspondence is interesting, as it
suggests one may use high-temperature trajectories, which
are easier to converge, to extract insights on the propensity
of different species for association. The trends observed in
the second and third regions are very similar to those in
the first-extended-neighbor shell, although progressively less
pronounced: given the finite size of the simulation, and incom-
plete equilibration, the simulation does not generate clear-cut
phase-separated regions.

Considering the RPP along the elements, one can observe
a clear periodicity in behavior. Sc, Y, Hf, as well as the noble
metals, Cu and Zn, tend to separate from V, Cr, Mn, Fe,
which on the other hand have a tendency to cluster together,
and also have positive associations to their heavier counter-
parts Nb, Mo, Ta, W. On the other hand, Sc, Y, and (to a
lesser degree) Hf associate strongly with noble metals, Cu,
and Zn. The noble metals, Cu, and Zn also tend to cluster
together. Ti, Co, Ni, Zr, Ru, Ir have less clear-cut associations
and are closer to having a random distribution throughout
the box. Another way of looking at the association plots in
Fig. 10 is to check for consistency with known HEAs. The
Cr-Mn-Fe-Co-Ni system is one of the prototypical sets of
HEA formers, and indeed we observe strong mutual associ-
ation tendency between Cr-Mn-Fe in the first shell, and also
with Co and Ni in the second extended shell. Second-shell
mutual association is also observed for noble-metal-based
compositions such as Ni-Cu-Pd-Pt-Au. Let us reiterate that
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FIG. 10. A plot of the relative pair probability for all atom pairs
and the three regions corresponding to the first, second, and third
peaks in the total pair correlation function (Fig. 9). Each plot is split
across the diagonal, showing results for simulations of HEAall at
two temperatures, 300 K (lower-left corner) and 1253 K (top-right
corner), averaged over the trajectories and discarding the first 100 ps
(50 000 combined MD/MC steps).

(a)

(b)

FIG. 11. (a) Element similarity matrix based on the RPP distance
(10) for the nearest-neighbor shell, in the HEAall simulation at T =
1253 K. (b) The element similarity map (color-coded based on the
group of the various transition metals) is built by applying metric
multidimensional scaling to the distance matrix and provides a visual
aid to recognize groups of elements that have similar affinity patterns
to the other d-block metals.

strong mutual association for a group of elements in the
HEAall runs is a necessary, but not sufficient, condition for
that group of elements to be good HEA-forming candidates.
For instance, some elements may have a strong tendency to
form ordered intermetallics and might separate out of the
mixture.

B. Data-driven Hume-Rothery rules

This analysis allows us to substantiate and quantify some
of the empirical principles that are used in the design of HEAs,
such as Hume-Rothery rules [86] that stipulate what elements
can be substituted for each other with little effect on the
HEA-forming propensity. We use the first-neighbor affinity of
each species to all the other elements in the alloy to define a
measure of dissimilarity as

dRPP(A,B)2 =
∑

X

[
log10

RPP1(A,X)

RPP1(B,X)

]2

, (10)

that, roughly speaking, measures the relative strength of in-
teractions between the two species and the other components.
Two elements with a small distance are predicted to behave
similarly, and vice versa. Figure 11 paints a picture that is con-
sistent with the observations we made on short and midrange
order between the elements in the HEAall, and with much of
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the common wisdom in HEA research. We base this analysis
on the high-temperature simulations to obtain a statistically-
converged, and somewhat more nuanced, definition, but the
qualitative features of the map are similar to those one would
obtain from the RPP computed at T = 300 K. Elements in
the same group usually show strong similarity, but this is not
always the case: for example, Cu is more similar to Zn than
to Ag. The similarity matrix can also be converted to a 2D
map, in which the Euclidean distance between elements ap-
proximates their RPP-based similarity (also shown in Fig. 11),
which provides an easy-to interpret visual representation of a
set of data-driven rules to design HEAs. The element similar-
ity that can be inferred from the RPP-based map differs—both
quantitatively and conceptually—from that associated with
the alchemical coupling matrix in Fig. 3. Whereas the weights
are associated with the similarity in terms of the interatomic
potential, the RPP similarity is a result of the collective behav-
ior of the HEAall at the prescribed thermodynamic conditions,
not unlike the relation between a pair potential and the poten-
tial of mean force. This means, for example, that one could
compute dRPP for a different alloy composition (extending or
refining the assessment of alloying behavior) from a different
type of interatomic potential or even from experimental data
on partial structure factors.

VII. BULK STRUCTURE OF HIGH-ENTROPY ALLOYS
FOR CATALYSIS

Having demonstrated the accuracy of the HEA25-4-NN
model and having used it to investigate the mutual affinity
of the full set of 25 transition metals we considered in a
Cantor-type computational experiment, we now turn our at-
tention to a more focused study of three specific equimolar
compositions. The first is the prototypical CoCrFeMnNi alloy,
which was reported by Cantor et al. [2] in their seminal paper.
This alloy is also known to be effective as a catalyst [87,88].
Furthermore, we investigate CoCrFeMoNi [11,89,90] as an
example of an alloy obtained by element substitution that
has been broadly studied for its improved mechanical and
tribological properties [91,92], as well as a catalyst of oxygen
evolution reactions. We then consider IrPdPtRhRu [21,93–96]
as an example of an alloy based on sixth-period elements
that has recently received much attention as a catalyst for
hydrogen evolution and is often synthesized in the form of
nanoparticles.

To model the alloys, we used fcc lattices with 500 atoms
per cell (5 × 5 × 5 supercell). We ran two independent
REMD/MC runs according to Sec. III D with a time step
of 2 fs and 32 temperature replicas, logarithmically spaced
between 300 K and 1253 K. We discard the first 100ps for
equilibration. Given that all these alloys maintain a regular fcc
structure throughout the simulation, we analyze their structure
in terms of Cowley’s SRO [85], which is commonly used in
the study of HEAs and takes a value of zero when atoms
are distributed fully randomly, becomes negative for pairs of
atoms that tend to cluster together, and tends to one when two
atom types never appear as first neighbors. In the Supplemen-
tal Material [53], we also report an analysis in terms of the
RPP that incorporates second-neighbor and long-range corre-
lations. In interpreting these results, one should keep in mind

FIG. 12. (a) Cowley’s short-range (SRO) parameters for the first
shell in CoCrFeMnNi HEA, shown for the ten replicas between 300
and 1253 K, averaged over the last 1000 steps and two independent
runs. At low temperatures, a tendency of Fe-Mn segregation can
be seen. In contrast, Co is very well mixed. There are two phase
transformations around 400 K and 900 K. The y axis is adjusted to
the example shown in Fig. 14 to facilitate comparison. (b), (c) Snap-
shot from MC/MD simulations at T = 300 K and at T = 720 K,
respectively. In the 300 K snapshot, two planes of Ni can be seen,
while in the higher temperature snapshot, Cr order is evident (see the
Supplemental Material [53]).

similar considerations to those we discussed for the HEAall

simulations: (1) the SRO (and the RPP) are only meaningful
for homogeneous phases, and in case of phase separation
the values computed for the whole cell serve only to signal
the occurrence of a phase transition; (2) a combination of
finite-size effects and glassy behavior can hinder reaching
full equilibrium in simulations; and (3) since they allow for
atom exchanges, our simulations cannot give quantitative in-
dications on whether different phases are only metastable nor
on the kinetics of diffusion processes that are required for
precipitation.

We start by analyzing the Cantor alloy CoCrFeMnNi. The
SRO computed at different temperatures [Fig. 12(a), plotted
for all element combinations] indicate the presence of at
least two phase transitions. The high-temperature phase is
homogeneous and disordered but shows substantial ordering,
particularly for the Cr-Cr pair. At approximately 900 K, we
observe a first transition that is associated with the ordering
of Cr atoms. The SRO for the Cr-Cr pair tends to one (as
there are almost no first-neighbor chromium atoms) but the
RPP shows a clear increase of second-neighbor Cr-Cr pairs,
consistent with the formation of a simple cubic sublattice. The
other elements remain relatively disordered, and no discontin-
uous behavior is observed in the SRO. As the temperature is
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FIG. 13. (a) Cowley’s short-range (SRO) parameters for the first
shell in CoCrFeMoNi HEA, shown for the ten replicas between 300
and 1253 K, averaged over the last 1000 steps and two independent
runs. Good mixing of atomic species can be assumed due to the small
values of SRO parameters. The y axis is adjusted to the example
shown in Fig. 14 to facilitate comparison. (b), (c) Snapshot from
MC/MD simulations at T = 300 K and at T = 1253 K, respectively.
In the 300 K snapshot, two planes of Ni can be seen.

reduced further, a second transition occurs around 400 K. The
most prominent structural transformation is the formation of
(100) Ni planes, separated by (Co, Fe, Mn)-rich regions form-
ing a layered superstructure. Figures 12(b) amd 12(c) show
snapshots of the simulations at 300 K and 720 K, that give an
idea of the partially ordered structure of the two phases.

Substituting Mn with Mo changes the segregation behavior
significantly [Fig. 13(a)]: the SRO parameters are generally
smaller, with the largest segregation tendency found for the
Mo-Ni atom pair. The tendency of Cr to form a cubic sublat-
tice is less pronounced than CoCrFeMnNi, and one only sees
the increase of SRO parameters at around 500 K. At low tem-
perature, (100) planes of Ni form that are very similar to those
observed in the Mn-based counterpart [Figs. 13(b) and 13(c)]
that are separated by (Co, Fe, Mo)-rich regions. Given the
sizable energy errors of the ML models, as well as those of the
underlying DFT reference, one should not overinterpret the
details of the structures we observe. Even if fcc CoCrFeMnNi
is paramagnetic, neglect of magnetism in the presence of sev-
eral elements which form ferromagnetic phases is worrisome
(see, e.g., Ref. [97] for a thorough discussion of magnetism
in CoCrFeMnNi and CoCrFeMoNi). That said, our observa-
tions provide strong indications of the tendency to form partly
ordered phases with a complex structure, which, together with
the low vacancy-mediated diffusivity [98] help explain the
observed stability of HEAs that contain (Co, Fe, Cr, Ni). A

FIG. 14. (a) Cowley’s short-range parameters for the first shell
in IrPdPtRhRu HEA, shown for the ten replicas between 500 and
933 K, averaged over the last 1000 frames and with an error estima-
tion from independent repetition runs. The most pronounced local
order can be seen for the Pd-Pd atom pair (light green line, math-
ematically smallest SRO). Demonstration of the phase segregation
tendency by highlighting the (b) PdPt and (c) IrRhRu atoms in an
MC/MD snapshot.

tendency to develop short-range ordering is consistent with
previous simulations in other classes of HEAs [99] and with
observation of phase separation in equimolar CoCrFeMnNi in
high-mobility environments such as grain boundaries [100] or
under deformation [101].

While the leading effect in CoCrFeMnNi and CoCr-
FeMoNi is the appearance of partial ordering at low temper-
atures, in the case of IrPdPtRhRu we observe clear-cut phase
separation between a (Pd, Pt) and a (Ru, Ir, Rh) phase, with
Rh accumulating preferentially at the interface between the
two phases [see Figs. 14(b) and 14(c)]. The strong tendency
to segregate is already evident in the high-temperature regime,
where the system is visually well-mixed, but with large SRO
parameters. This is in contrast to the experimental observation
that this HEA forms a complex solid solution with random
atom distribution [21,95]. As shown in the Supplemental Ma-
terial [53], the large enthalpic gain arising from demixing is
not an artifact of HEA25-4-NN, and the ML error on the free-
energy change upon ordering is of the order of 3 meV/atom.
These observations suggest that kinetic trapping, or finite-size
effects associated with the synthesis in the form of nanoparti-
cles, might be key to stabilize a homogeneous phase.

VIII. CONCLUSIONS

The notion that different chemical elements may behave
similarly when combined with others is one of the founding
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principles of chemistry and is often used as guidance in the
design of unique materials. We build a ML framework that
incorporates this notion in the form of a linear compression
of chemical space and succeed in training a potential that
can describe with semiquantitative accuracy bulk phases of
arbitrary combinations of 25 d-block elements. The physically
motivated, intuitive functional form of the contraction allows
us to analyze critically the model performance, allowing us
to show that three to four dimensions suffice to capture the
diversity of behavior of the transition metal block. The opti-
mized values of the combination weights reveal relationships
between the elements that match their arrangement in the
periodic table to the point where we show it is possible to fill
in the blanks for missing elements, with only a moderate loss
of accuracy.

We use the potential to run an ambitious computational
experiment, in which we attempt to equilibrate an equimolar
mixture of all 25 elements, resulting in the formation of a dis-
ordered structure with strong element segregation. The affinity
between elements is consistent with several known HEAs and
allows us to define a data-driven version of the Hume-Rothery
rules that could be further adapted to subsets of elements that
are relevant for a given application. We also investigate in de-
tail three specific compositions—the archetypal Cantor alloy
CoCrFeMnNi, which we observe to be undergo a sequence of
transitions towards complex ordered phases as the tempera-
ture is lowered; that arising from the Mn → Mo substitution,
which also leads to similar, although less pronounced, order-
ing; and the noble metal alloy PdPtIrRuRh that shows a strong
tendency to decompose into into PdPt and IrRhRu phases.

We are only scratching the surface of what can be achieved
within this framework. Extending the data set to an even

more diverse palette of compounds, and to structures that
include molten and defective configurations, is an obvious
direction for further improvements. A more systematic ex-
ploration of the design space of chemical compression is
another promising research direction, even though doing so
may sacrifice, at least in part, the interpretability of the lin-
ear contraction we use here. On a more application-focused
front, a systematic study of the stability of four- and five-
element HEAs along the same lines of the simulations of those
which we present here, based on the current HEA25-4-NN
model, will provide much-needed insights into the stability
range of multi-principal-component alloys, guiding synthetic
efforts towards compositions that are stable towards phase
separation.

All data and code used to train the HEA25-4-NN model as
well as the fitted parameters and code to run the simulations
discussed in this paper are available in the Supplemental Ma-
terial [53] or from publicly accessible repositories [102,103].
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