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We propose and describe a framework to understand the structure of supramolecular network crystals formed
in soft matter in terms of mesoatomic building blocks, collective groupings of amphiphilic molecules that play
a role analogous to atomic or molecular subunits of hard matter crystals. While the concept of mesoatoms is
intuitive and widely invoked in crystalline arrangements of spherelike or cylinderlike (micellelike) domains,
analogous notions of natural and physically meaningful building blocks of triply periodic network (TPN)
crystals, like the double-gyroid or double-diamond structures are obscured by the complex, bicontinuous domain
shapes and intercatenated topologies of the double networks. Focusing on the specific example of diblock
copolymer melts, we propose generic rules for decomposing TPN crystals into a unique set of mesoatomic
building blocks. Based on physically motivated principles, the combination of symmetries and topologies of
these structures point to mesoatomic elements associated with the nodal connections, leading to mesoatomic
volumes that are nonconvex and bound by smoothly curved faces, unlike the more familiar Voronoi polyhedral
shapes associated with spherelike and cylinderlike mesoatoms. We analyze the shapes of these mesoatoms,
their internal structure, and importantly, their local packing with neighbor mesoatomic units. Importantly, we
hypothesize that mesoatoms are kinetically favored intermediate structures whose local shapes and packing
template network crystal assembly on long time scales. We propose and study a minimal energetic model of
mesoatom assembly for three different cubic double-network crystals, based on local shape packing, which
predicts a detailed picture for kinetics of intercatenation and surface growth. Based on these analyses, we
discuss several possible extensions and elaborations of the mesoatomic description of supramolecular soft matter
network crystals, most notably the implications of mesoatomic malleability, a feature that distinguishes soft
matter from hard matter crystals. We describe experimental observations of malleable mesoatomic units in the
precursor sponge phase as well as in ordered cubic networks and suggest possibilities for observing mesoatoms
in primordial, precrystalline states.
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I. INTRODUCTION

Supramolecular assembly into long-range ordered soft
crystals occurs for nearly every class of soft molecular as-
sembly, from surfactants in water [1] and liquid crystals to
block copolymers (BCPs) [2] and so-called giant amphiphiles
[3]. Paradigmatic examples of this are the micellar lattice
phases of amphiphilic molecules [4]. Local segregation be-
tween chemically immiscible regions on the same molecule,
caused by both repulsive and attractive local forces, drive
the aggregation of groupings of molecules, as mismatch be-
tween local shapes of distinct parts of the molecule, possibly
in combination with affinity for solvent exposure, can favor
curvature of the interface between those distinct molecular
regions favoring, for example, cylindrical or spherical micelle
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aggregates. In neat systems, or at high enough concentrations
in solvated systems, the micellar units strongly interact [5,6],
leading to the formation of periodically ordered equilibrium
states. In these ordered states, micellar groupings of molecules
are situated in crystalline arrangements [e.g., body-centered
cubic (BCC) or face-centered cubic (FCC) lattices] [7–9],
and hence, an individual micelle can be thought of as a
mesoatom1, analogous to the atomic units that serve as the
building blocks of solid-state crystals.

Broadly speaking, this mesoatomic perspective has been
highly valuable for two key reasons. For one, assessing
the geometry of mesoatomic volumes based on space-filling
tessellations of the crystal packing has enabled rational frame-
works for understanding thermodynamic selection of the
crystal symmetry. For example, a common heuristic approach
is to assume that spherelike mesoatoms are deformed to
conform to polyhedral, Voronoi-like partitions that bound
the occupied Wyckoff sites and then to compare different

1To our knowledge, soft matter “mesoatoms” were first invoked
in a slightly different context of symmetry-programmed colloidal
particles by Shin, Bowick, and X. Xing [10].

2475-9953/2023/7(4)/045603(23) 045603-1 Published by the American Physical Society

https://orcid.org/0000-0001-5911-6524
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevMaterials.7.045603&domain=pdf&date_stamp=2023-04-21
https://doi.org/10.1103/PhysRevMaterials.7.045603
https://creativecommons.org/licenses/by/4.0/


GREGORY M. GRASON AND EDWIN L. THOMAS PHYSICAL REVIEW MATERIALS 7, 045603 (2023)

measures of geometric distortion relative to ideal spherical
shapes (e.g., minimal area) [11–15]. Rational arguments and
theories along these lines predict, for example, that under
certain conditions, canonical simple crystal packings like
BCC become unstable to surprising and much lower sym-
metry structures, like Frank-Kasper crystals [16–20]. Beyond
equilibrium states, the mesoatomic picture has obvious impli-
cation for kinetics and transformation pathways to soft crystal
formation, in which aggregation of mesoatomic units them-
selves are the primary step in the hierarchical pathway for the
ultimate structure formation followed by the subsequent bind-
ing and rearrangement of mesoatoms into crystalline arrays
taking place on a much longer time scale. Hence, the structure
and collective behavior of mesoatomic intermediates has a
critical impact on the time scales that soft crystal structures
form (i.e., nucleation and growth) as well as on the nature
of defects present in the structures. Moreover, in most sys-
tems, soft crystals are formed by controlled quenches from a
lower concentration and/or higher temperature, and hence, the
conditions at which mesoatomic units are born are in general
quite different from the final state of the material, which is
often solvent free. The pathway dependence gives rise to rich
possibilities for creating long-lived, essentially frozen, out-of-
equilibrium states, with symmetries that are distinct from the
more limited palette of purely equilibrium states.

While the picture is intuitive for periodic assemblies of
convex and discretely defined domain shapes (e.g., spheres
and cylinders), the basic notion of a mesoatomic unit is con-
founded by a whole class of supramolecular crystals, namely,
triply periodic networks (TPNs), sometimes called bicontin-
uous phases. These are most often cubic phases that form
at conditions that are intermediate to lamellar or cylindrical
domain shapes [1], in which the domains themselves are
continuous and topologically intercatenated throughout the
bulk structure. Two canonical examples are the double-gyroid
(DG) and double-diamond (DD) phases, which in the simplest
cases are composed of two types of subdomain: the inner re-
gion (usually minority component) of interconnecting tubular
domains (3- and 4-valent nodal connections for DG and DD,
respectively) separated by a slablike matrix domain, whose
undulating shape roughly approximates a triply periodic min-
imal surface (TPMS), known as gyroid and diamond minimal
surfaces for DG and DD, respectively [21,22]. The tubular
phases of DG and DD form two intercatenated networks: The
respective tubular networks of DG and DD interlink in 10- and
6-member links (i.e., 10,3 and 6,4 nets).

The complex structures of TPN crystals are highly attrac-
tive and long sought after for a range of functional material
applications due to the high volumetric surface areas afforded
by their intermaterial dividing surfaces (IMDSs) and poly-
continuous domain topologies [23]. However, numerous basic
questions remain about how and why they form. In the con-
text of the mesoatomic paradigm summarized above, it is
unclear what the elementary building blocks of TPN crystals
are since the simplest notions of domain would imply that
each bulk structure contains only two domains (i.e., the sub-
networks) containing an extensive number of links between
them. Hence, the kinetically accessible pathways that guide
the combination of long-range positional order and topolog-
ical domain connectivity of TPN crystals are not presently

known, nor is it clear whether these correspond to characteris-
tic groupings of molecules and how these relate to the ultimate
structures.

In this paper, we propose and outline a mesoatomic con-
struction for understanding the structure of TPN crystals of
supramolecular soft matter crystals. Our discussion is pri-
marily centered on the specific case of diblock copolymer
melts as a paradigmatic example of a TPN-forming system,
although it can be understood that this perspective extends to
other classes of soft-molecular building blocks, not to mention
more complex BCP systems. Here, we propose some elemen-
tary principles that guide the definition of the mesoatomic
building blocks of network crystals. We show how these
mesoatomic units can be defined as the nonconvex analogs
to the Voronoi-like polyhedra that tesselate crystals composed
of spherelike domains. In the case of TPN crystals of AB
amphiphiles (e.g., diblocks), mesoatoms are associated with
high-symmetry nodal regions of the network morphologies
and, unlike polyhedral (e.g., Voronoi) cells, are bounded by
positively and negatively curved (saddle-shaped) faces as well
as (approximately) planar faces. We describe the structure
of canonical TPN crystals, including DG, DD, and double-
primitive (DP) structures, in terms of the local packing of
mesoatomic clusters and the topology of the networks these
units form. Next, we consider a simple model in which con-
tact between shape-complementary neighbors templates the
assembly, growth, and intercatenation of the TPN crystals and
ultimately guides larger length-scale morphological features
such as surface faceting. We also discuss the experimental
context for the observations and implications of the mesoatom
concept in BCPs. Finally, we outline a series of open ques-
tions posed by and possible extensions to the mesoatomic
hypothesis for the formation and properties of TPN
crystals.

II. DEFINING THE MESOATOM

Here, we outline the principles for defining and extracting
the mesoatomic building blocks of TPN crystals. Our defini-
tion specializes to the case of linear AB diblock copolymer
melts, as a prototypical example. In this system, ordered
phases consist of uniformly filled but molten (i.e., solvent
free but fluid) packing of brushlike subdomains of chemically
distinct A- and B-type polymer chains, covalently joined at
their junctions, which are localized to two-dimensional (2D)
IMDSs that separate the unlike brush subdomains [2,24]. In
the discussion that follows, we outline possibilities and chal-
lenges to extending this paradigm to other molecular systems
that form these structures. As a starting point, we assume cor-
rect knowledge of the crystallographic space group of the final
crystal, the shapes and topologies of the A and B domains,
and the basic model of how the chains are packed in those
domains. Notably, the first two of these three descriptors can
be measured by careful experimentation (except for more re-
alistic deviations from idealized crystallographic order), while
the last is currently essentially invisible to experimental char-
acterization. Hence, the expected chain trajectories rely on
information from computational models as well as heuristic
assumptions about likely chain trajectories (as discussed in
detail in Ref. [25]).
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FIG. 1. Domain anatomy of block copolymer crystal phases. (a) Schematic illustration of subdomain packing of linear diblock copolymer
chains in melt domains, where a single domain is defined as a set of chains whose A-B junctions are associated with a particular intermaterial
dividing surface (IMDS; darker blue and red melt regions corresponding to a single domain of the quasilamellar geometry). (b) Putative shape
of compact spherelike domains (darkened red volumes) surrounded by a blue outer volume with the expected faceting of the outer terminal
boundaries separating neighboring spherelike mesoatom domains. (c) Single mesoatom domains of double-network crystals. Unlike the sphere
case, due to network connectivity, there are only two domains in the entire volume (one for each network).

To begin with, we clarify our objective in terms of the
arguably much more intuitive case of crystals of spher-
ical or cylindrical domains. In this case, one can break
these structures into micellar (i.e., spherical or cylindrical)
building blocks, which when packed together become warped
into lower-symmetry polyhedral volumes. Beyond being the
structural elements of the ultimate crystal, such micellar
mesoatoms are often understood as kinetic intermediates,
forming first into spherical or cylindrical groups and then over
longer time scales organizing into long-range ordered and
densely packed crystals [26,27]. In this context, we clarify
our intended notion of mesoatoms of a more general class
of supramolecular crystals, which are not necessarily com-
posed of convex quasispherical or quasicylindrical molecular
groupings. That is, more generally, we aim for a notion of
mesoatoms as groups of molecules that act collectively as
building blocks of a supramolecular structure and which can
be identified from the ultimate crystalline structure (akin to the
Voronoi-like polyhedral volumes for quasispherical domains,
see, e.g., BCC and FCC structures in Fig. 1). Ideally, the
packing and deformation of mesoatoms should be useful to
describe the behavior of the crystalline structure as a whole.
Further, so-defined mesoatoms should represent likely kinetic
intermediates whose structure and organization form the basis
to understand how the crystal structure forms and evolves
toward its final mature state.

Before proceeding to construct the mesoatoms of TPN
phases, it is important to point out that the notion of shape
malleability is fundamental to their properties. While BCP
and other supramolecular systems may favor specific local ge-
ometries, it should be recognized that free energy differences
between distinct local motifs can be fairly small compared
with the relevant thermal energy. Hence, shape distortions
away from idealized symmetries, as well as polymorphism

between distinct symmetries, will be essential to their physical
behavior. Moreover, malleability implies that the shapes and
packing of mesoatomic groups into distinct periodic arrange-
ments are intrinsically coupled, a notion that has recently
gained currency in the context of complex crystals of soft
spherical mesoatomic assemblies (e.g., Frank-Kasper phases)
[13].

To understand the complexity of defining a useful notion
of mesoatoms for TPN phases, we briefly review the anatomy
of the DG crystal of diblocks as a concrete example. The
DG is a cubic network morphology with Ia3̄d space group
symmetry [28,29]. In diblock melts, it is composed of two
tubular network regions, usually the minority component (say,
the A block), separated by a matrix B-block layer. The IMDSs
then have the shape of a tubular surface that interconnects the
3-valent nodes. The nodes of the distinct networks, each of
which can be considered a single gyroid (SG), are centered
on Wyckoff positions 16b. The nodes of one SG network
correspond to 8 of the 16b sites (specifically, these are either
8a or 8b positions of the I4132 subgroup), while the 8 nodes
of the second network are given by inverting the first network
through the center of the unit cube. For DG, each of the SG
networks is chiral, with a handedness that can be associated
with the dihedral rotation between neighboring nodes [30].
For this paper, we refer to the alternate single networks of the
double-network crystals as + or −, independent of whether
the network is chiral.

As we describe below, the notion of mesoatoms is inti-
mately connected to the concept of a domain in the BCP melts,
following the topological definitions introduced in Ref. [25].
Simply put, a domain corresponds to the volumes occupied
by chains that have their junctions located on or associated
with a particular IMDS. Hence, each domain is a type of
double layer of A and B brushes, separated by the IMDS
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containing their common junctions. This domain decompo-
sition, by necessity, introduces a second set of boundaries at
the outer and inner edges of the domain, referred to as the
terminal boundaries. The terminal boundaries are the divid-
ing points between brush domains of the same chemistry: A
segment at the terminal boundary has equal probability to as-
sociate with at least two distinct IMDSs (or IMDS positions).
Colloquially, the terminal boundary can be thought of as the
contact surface between two opposing brushlike subdomains,
each of which stems from the IMDS of distinct domains.
Given this notion, it has been proposed that the terminal
boundary is well approximated by medial sets of the IMDSs
[25,31,32], which are loci of midpoints within a region of the
A or B component between distinct IMDS regions. For the
DG network, the outer terminal surface that separates the two
networks closely approximates the gyroid minimal surface,
and the corresponding boundary for DD and DP closely match
the Schwarz D and P minimal surfaces, respectively [33].

In this context, the DG includes exactly 2 domains, one
for each of the SG networks (which are enantiomeric), and
the outer terminal boundary that separates them in the mid-
dle of the B matrix is a close approximation to Schoen’s G
minimal surface [34]. Note that, for the crystal packings of
spherelike and cylinderlike domains [e.g., Fig. 1(b)], each
domain corresponds to a single compact mesoatom, whereas
in the double-network crystals like DG, DD, and DP, only
2 constituent domains span the entire volume of the crystal.
Figure 1(c) shows examples of these macroscopic network
domains for DG, DD, and DP in contrast to the compact dis-
crete shapes of the crystalline packings of spherical domains.
As topologically well-defined objects, the 2 single-network
domains of these double-network morphologies are natural
groupings of molecules.

However, for the purposes of the mesoatomic construc-
tion, single-network domains are obviously problematic. First,
each is macroscopically large, spanning the entire volume, and
second, the two networks in the final morphology are topo-
logically intercatenated. Simply put, there is no way for two
preformed single-network domains to interlink into the final
double network without a (kinetically prohibitive) process of
a multitude of breaking and relinking events. Note that this
topological problem of interlinked domains is not encountered
for quasispherical or quasicylindrical domains, where each
domain (corresponding to each spherical or cylindrical IMDS)
constitutes a single convex mesoatomic unit. From this per-
spective, it may now be intuitive to see that mesoatoms need
to be defined as prelinked (i.e., not yet linked) subelements
of these single-network domains. Next, we ask, what is the
natural and generic method to decompose the single networks
into their mesoatomic constituents?

To define mesoatomic elements of TPN morphologies, we
propose three basic principles:

(1) The ultimate crystal structure is a symmetric space-
filling packing of many copies of a single (or at most, a few)
mesoatomic motif(s).

(2) Mesoatom shapes correspond to (average) volumes
occupied by specific groupings of molecules (i.e., mesoatom
boundaries do not cut across average chain trajectories).

(3) Mesoatoms correspond to thermodynami-
cally/kinetically favored local structures.

(a) Mesoatoms possess high point group symmetry (i.e.,
the crystal volume includes many copies of a favored
subdomain packing motif).

(b) Mesoatom dimensions should be comparable with
molecular size.

While the first two propositions guarantee that the ultimate
structure could be rebuilt by assembly of the mesoatomic
units, the third proposition is motivated by the notion that
mesoatoms identified in the final structure can be connected
to groups of molecules that are likely to preassemble un-
der many growth conditions. To that end, proposition (3.a)
implies that packing adopts multiple copies of a favored lo-
cal geometry, conferring it with a low free energy, while
(3.b) is a requirement for the reasonably fast nucleation time
to form (micellelike) aggregates. Of course, (3.a) and (3.b)
do not themselves guarantee that such an arrangement is
kinetically favored under all conditions without careful con-
sideration of the nonequilibrium pathways of formation, but
we nevertheless argue that these principles provide a rea-
sonable zeroth-order framework to extract likely candidates
based only on geometry, topology, and symmetries of the
final phase morphology and one which can be generalized to
self-assembled crystals with more complex domain topologies
than spheres and cylinders.

Next, we describe how these physical principles can be
translated into a prescription for identifying the mesoatoms
from a final TPN crystal of a BCP melt. This approach breaks
into three steps:

Step (1): Divide the ultimate crystalline structure into indi-
vidual domains (i.e., single networks).

Step (2): Identify the centers of the mesoatoms as the set
of highest point symmetry positions (i.e., Wyckoff sites) fully
enclosed by the single-network domains.

Step (3): Divide the single network into volumes according
to the mesoatom centers.

These three steps are illustrated in Fig. 2 for mesoatoms
within 1 of the 2 SG domains of the DG.

In this case, the mesoatom centers correspond to Wyckoff
positions 16b, which are situated at the center of 3-valent
junctions (black spheres in step 2 of Fig. 2). These positions
are the intersection of 3 twofold rotation axes that meet along
a threefold rotation axis normal to the plane spanned by the
twofold axes, which run along the struts of the skeletal graph
of the (10,3) network. This D3 point symmetry (or .32 in
Hermann-Mauguin notation) implies that there are six copies
of the same asymmetric motif in this region. Notice that there
are Wyckoff positions (24c) that sit at the centers of struts
between 16b sites, but these have point symmetry (D2) with
fewer (4) copies of fundamental (asymmetric) local packing
motif than position 16b. (In terms of the number of copies of
asymmetric unit per Wyckoff position, it is intuitive that posi-
tions with the greatest number of motif copies per site have
the highest point symmetry.) As we discuss in more detail
below, while Wyckoff position 16a (with point symmetry C3i)
has the same number of asymmetric motifs (when accounting
for point inversion), this position sits at the terminal boundary
between two SG domains, and as such, it cannot be used to
define the center of a mesoatom. We note that, as consequence
of these rules and the particular symmetry of the DG crystal,
we find that DG mesoatoms split into two opposite chi-
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Step 1) Indentify & separate
 domains (single gyroids)

Step 2) High symmetry points as 
mesoatom centers (Wykcoff 16b)

Step 3) Subdivide in mesoatoms
by centers (nodal volumes)

Single mesoatom (right-
handed single gyroid)

into mesoatoms

FIG. 2. Mining the mesoatom. Schematic sequence of domain-to-mesoatom decomposition in + network domain of the double gyroid
(DG). On the right, we show the final (enlarged) mesoatom, with the black tubes highlighting the portion of the single-gyroid network to which
it belongs. Additionally, we highlight that this mesoatom itself is composed of 6 copies on the asymmetric unit (highlighted in lighter colors)
that can be generated by the elements of the D3 point symmetry.

ralities, consistent with their centers at noncentrosymmetric
site 16b.

In Fig. 2, we show the last step is to divide the gyroid do-
mains according to their centers (at 16b sites) into mesoatoms.
Strictly speaking, proposition (2) above requires that this
dividing surface avoids crossing through mean molecular tra-
jectories (see Discussion in Sec. V.A). Specifying such a
surface, of course, requires some detailed knowledge about
the mean trajectories of those molecules, such as could be
provided via BCP tessellations used in strong-segregation the-
ory calculations [31,35]. However, to a good approximation,
chains along the struts between nodes of the DG (or other
networks) tend to radiate roughly normally to the so-called
skeletal bond that connects between the node centers (a more
accurate picture has trajectories extending from 2D weblike
terminal surfaces [25]). Hence, for our purposes, we approx-
imate surfaces that divide between neighbor mesoatoms as
planes normal to those skeletal bonds (i.e., local chain tra-
jectories are assumed to be parallel to those dividing planes).
Partitioning the network into mesoatoms of equal volumes is
performed by perpendicularly bisecting the plane through the
struts of the SG separating two neighboring 16b sites.

The result of this process is shown in Fig. 2, with two sets
of mesoatoms required for the DG assembly. Each mesoatom
is chiral, deriving from one of the two enantiomeric SG do-
mains, and inherits the D3 symmetry of the 16b sites as well
as 1

16 of the volume of the cubic Ia3̄d unit cell. Notably
the nonconvex shapes of these DG mesoatoms (as well as
the counterparts for DD and DP) are more complex than the
polyhedral mesoatomic shapes expected from simple crystals
of spherical domains (e.g., BCC and FCC). The obvious dis-
tinction is that mesoatom volumes form DGs, and other TPNs
are bounded by two types of surfaces: negatively curved and
approximately minimal surface faces and roughly planar faces
derived from subdivision of the single-network domains into
high point symmetry objects. These two types of surfaces cor-
respond to contact between mesoatoms of two distinct types:
internetwork (the saddle faces) and intranetwork (quasiplanar
strut faces). In the following sections, we analyze the shapes
of these complex mesoatomic particles, their local packing ge-
ometry in the DG, as well as their counterparts in DD and DP.

III. ANATOMY AND PACKING OF MESOATOMS:
DG, DD, AND DP

We now describe the geometric features of mesoatoms
defined by the decomposition principles mentioned above
for the three canonical cubic double networks: DG, DD,
and DP. For the purposes of modeling the principal shape
characteristics, we model the terminal surfaces dividing
the two single-network domains using the single-Fourier
mode level set approximation to the gyroid, diamond,
and primitive TPMSs [36,37]. Given a diblock copoly-
mer domain, and particularly an IMDS for the structure,
better approximations to this terminal boundary could be
constructed from the medial surface in the matrix domains.
Again, we make the assumption that mean chain trajectories
are well approximated as normal to the skeletal bond between
two nodes (i.e., mesoatom centers), such that the faces that
divide two neighbor mesoatoms within the same network are
planar and perpendicular to those bonds (struts). We expect
these approximations are sufficient to capture the primary
structural mesoatomic motifs of distinct structures, although
one should also expect at least subtle variations in the detailed
shapes of both the internetwork and intranetwork face shapes,
not to mention questions about temporal evolutions, thermal
fluctuations, and distortions away from any idealized shape, a
point that we return to in the Discussion (see Fig. 15).

Figure 3 shows the mesoatomic units for the three cubic
double networks, highlighting the topology of distinct net-
works with black or white struts that protrude through the
strut faces according to whether the units belong to the + or
− network domains, and a view of mesoatoms whose centers
belong with a cubic repeat of the structures (the translational
symmetry of DG and DP are body centered, while DD is
primitive). Very briefly, the shapes of these mesoatoms are
constructed following the three steps defined above, using
a (single-Fourier mode) level surface approximation [36,37]
for the minimal P, D, and G surfaces (for DP, DD, and DG,
respectively) as a model of the matrix terminal boundary that
divides the double networks into two continuous domains.

Notably, like the DG mesoatom introduced above, for DD
and DP, mesoatoms are centered on the nodal centers of the

045603-5



GREGORY M. GRASON AND EDWIN L. THOMAS PHYSICAL REVIEW MATERIALS 7, 045603 (2023)

Double gyroid
(reduced) surface
 area, 

1.23

a

a

Double diamond

Double primitive

1.14

1.13

a

FIG. 3. Comparison of mesoatoms of the cubic double-gyroid
(DG), double-diamond (DD), and double-primitive (DP) phases. The
right-most column highlights volumes of mesoatoms whose centers
lie within an elementary cubic repeat of each crystal. The struts
emanating from the faces of the mesoatoms are colored black and
white to indicate which of the two networks they belong to (referred
to as + or − networks in the text).

single network, corresponding to sites of tetrahedral or oc-
tahedral coordination, respectively. Additionally, mesoatomic
shapes are bounded by two types of surfaces: saddled-shaped
surfaces that divide between neighbors on different networks
and planar faces that divide between neighbors on the same
network. We note that the DG structure is composed of two
sets of chiral mesoatoms and that chirality is reflected in the
shape of the saddle skin, closely following the chiral shape of
an oriented gyroid surface [34].

Given the mesoatom shapes extracted from the final mor-
phology, it is straightforward to analyze and compare their
basic geometry. As nonconvex volumes, it is intuitive that
such shapes are bounded by relatively large surface area.
Indeed, the dimensionless surface-to-volume ratio (or equiv-
alently the isoperimetric quotient) is commonly invoked in
either heuristic or geometric theory for symmetry selection
in crystals of quasispherical mesoatom domains. Here, we
measure this by

A ≡ (area)

[36 π (volume)]
2
3

,

which is the ratio of the bounding surface area (including strut
and saddle boundaries) to the area of an equal volume sphere,
a dimensionless number that is strictly �1. For comparison,
for the (mostly) convex polyhedral cells for sphere packings,
like BCC or even more complex Frank-Kasper variants, A is
the in the range 1.09–1.1 [13,20], in this sense, roughly 10%
more area than the spherical volume. The dimensionless area
values for mesoatoms of cubic double networks are shown in
Fig. 3, indicating increases of the surface area >∼ 5–12%
higher than the mesoatomic elements of spherical domain
crystals, an intuitive consequence of the nonconvex shapes
of network mesoatoms. The hexavalent DP mesoatom with

1st neighbors 2nd neighbors 3rd neighbors complete shell

number

dist./a

3 2 12 17

% surface 
per contact

monkey saddle

elbow
strut

19.6 12.1 1.4

(a) (b)
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FIG. 4. Shape and packing of double-gyroid (DG) mesoatoms.
(a) One of the elementary DG mesoatoms which is recolored in
(b) in terms of the regions of contact between the 17 neighboring
mesoatoms that touch its surface. These neighbors fall into 3 distinct
sets according to their center-to-center distance and surface contact
as detailed in (c).

the highest point group symmetry (Oh), whose shape is like a
truncated octahedral shape of the BCC Voronoi cell, is lowest
among the network mesoatoms. Network meosatoms with
the lowest point group symmetry, trihedral DG mesoatoms,
exhibit a substantially larger area.

Beyond the basic geometry of individual shapes, the
mesoatomic decomposition provides valuable insights into the
local packings of contacting-neighbor units, which differ con-
siderably between the network types. We begin by describing
local packing of a DG mesoatom and its surrounding first shell
of neighbors, corresponding to the set of mesoatoms sharing
contact with the surface of a central particle. As shown in
Fig. 4, DG mesoatoms have 17 contacting neighbors, which
are classified into three sets according to the center-to-center
distances. A DG mesoatom has three nearest neighbors, which
are strut neighbors belonging to the same SG network (and
hence have the same chirality) whose centers belong to the
common plane of the 3 twofold axes. The remaining 14 neigh-
bors belong to the other gyroid network and are in contact
with the central mesoatom along its saddle surface. In this
set, there are two next-nearest neighbors, which are situated
above and below the threefold axis of the central particle (i.e.,
stacked along a 〈111〉 direction). These stacked pairs nestle
along minimal monkey-saddle-shaped regions. The remaining
12 third-nearest neighbors contact the central particle along
the elbow regions of the saddle surface that span between two
struts.

In Fig. 4(b), we color the surface of the DG mesoatom
according to these regions of local contact, and in Fig. 4(c),
we give the fraction of the surface that is contacted by a
neighbor of each of these types. In this way, we see that most
of the neighbor contact (57.6%) is composed of like-network
strut neighbors. The remaining fraction is split between the
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FIG. 5. Shape and packing of double-diamond (DD) mesoatoms.
(a) One of the elementary DD mesoatoms which is recolored in
(b) in terms of the regions of contact between the 14 neighboring
mesoatoms that touch its surface. These neighbors fall into 3 distinct
sets according to their center-to-center distance and surface contact
as detailed in (c).

2 monkey-saddle neighbors (24.2%) and the 12 elbow neigh-
bors (16.8%). Not unlike the better-known case of Voronoi
polyhedra, here, we also find that contact area decreases with
neighbor separation (center to center). Due to the very unequal
distributions of contact areas between the two populations,
intranetwork contacts dominate the surface coverage of DG
mesoatoms, even though they are overwhelmed in number
14:3 by internetwork contacts. Below, we consider the po-
tential ramifications of the contact area distributions between
neighbors for physical models of mesoatom association dur-
ing crystal formation.

Figures 5 and 6 show the corresponding analysis of the
local mesoatom packing for DD and DP, respectively. Relative
to the DG mesoatoms, these structures exhibit a few key
differences. First, the mesoatomic units of DD and DP are
achiral and hence equivalent (up to rotations) between the
two single-network domains. Second, they exhibit a smaller
fraction (less than half) of their contact with intranetwork
(a.k.a. strut neighbors): 45% for DD and 32% for DP. The DD
packing is still like DG in that its closest (and highest con-
tact) neighbors belong to the same network, with its second-
and third-nearest neighbors belonging to the second diamond
network domain. However, DP packing has a distinct pattern
where its closest highest-contact neighbors are its 8 monkey-
saddle faces with the second primitive network domain, while
its 6 lower-contact strut neighbors are more distant yet belong
to the same primitive network domain.

Taken as sequence, the mesoatomic shapes from DG to
DD to DP represent a progressive increase in the number of
point symmetry elements (and asymmetric motif copies) from
6 to 24 to 48, respectively, in addition to the correspond-

8 6 14

monkey saddle

strut

8.4 5.4

number

dist./a

% surface 
per contact

1st neighbors 2nd neighbors complete shell

(a) (b)

(c)

FIG. 6. Shape and packing of double-primitive (DP) mesoatoms.
(a) One of the elementary DP mesoatoms which is recolored in
(b) in terms of the regions of contact between the 14 neighboring
mesoatoms that touch its surface. Center-to-center distance and sur-
face contact of two distinct sets of neighbors detailed in (c).

ing increase in network valence. Along with this increasing
symmetry, we observe a transition in the distribution of
intranetwork and internetwork neighbors in the constitu-
tive mesoatomic units of the double networks. In lower-
symmetry/coordination structures, like-network mesoatoms
are relatively closer and have higher contact, sheathed by
a larger number of more distant neighbors of the opposing
network. While in higher-symmetry/coordination structures,
internetwork saddle contacts are pulled closer and strut con-
tacts are pushed out, lowering the intranetwork contact per
mesoatom. Notably, for the highest symmetry DP mesoatoms,
a distinct set of elbow contacts are absent, with the entire
saddle surface taken up by a single set of monkey-saddle
contacts.

Lastly, we note that the distinct neighbor correlations of
mesoatoms also encode the local topology of the network
assemblies, shown in Fig. 7. For each of the cubic double
networks, the internetwork neighbors in the first complete
shell of neighbors (i.e., the contacting mesoatoms) compose
the f elementary loops that catenate the f struts emerging
from a central mesoatom (i.e., each of the struts emerging
from a node is looped by neighbors in the contacting shell of
mesoatomic neighbors). For DG, loops are composed of two
series of 4 elbow neighbors that join at the 2 monkey-saddle
neighbors that sandwich the central mesoatom (i.e., loops of
10 total). As a set, the 14 internetwork mesoatoms form a
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(a) (b) (c)

FIG. 7. The set of catenating mesoatom neighbors on the − (network) that envelope a central mesoatom on the + network (black) are
shown for the (a) double-gyroid (DG), (b) double-diamond (DD), and (c) double-primitive (DP) phases. The (black) skeletal bonds of the
catenated+connected to the central mesoatom are shown to illustrate the local bond topology.

trihedral cage that enmeshes the central particle and encircles
each of the like-network struts that emerge from it. Similarly,
the 10 and 8 internetwork mesoatoms for DD and DP, respec-
tively, compose tetrahedral and cubic cages for these networks
[38].

In the following section, we consider how the local geom-
etry neighbor contact encoded in the shapes of mesoatoms
plausibly templates the kinetics of intercatenation in a sim-
plistic model of assembly.

IV. MESOATOMIC IMPLICATIONS FOR NETWORK
CRYSTAL FORMATION: A MINIMAL MODEL

In the prior section, we described the elementary
mesoatomic molecular groups of tubular network crystals
extracted using symmetry-based principles from the final
equilibrium morphologies of neat diblock copolymer melts.
In this sense, these shapes describe the mature state of these
mesoatomic elements, as opposed to transient structures oc-
curring as the system evolves toward the idealized equilibrium
state. Here, we proceed one step further to consider how the
anisotropic shapes of these mesoatomic elements might pro-
vide a plausible basis to template the nonequilibrium kinetic
pathways to long-range-ordered and topologically nontriv-
ial double-network crystals. Noting that these so-defined
mesoatoms pack perfectly to tile space and moreover possess
outer terminal surface shapes that would likely promote and
stabilize strong orientational correlations between neighbors
based on shape complementarity alone, we ask the basic ques-
tion: How would particles with the shapes of such mesoatoms
assemble? In the context of BCP melt assembly, this model
proposed assumes that, under relevant conditions, mesoatomic
groupings of molecules form first, and to a good approx-
imation, the shapes and packings of the ultimate mature
mesoatoms then template the kinetics of higher-order crystal
formation. Assuming preformed mesoatoms, we consider the
simplest possible assembly model for the local interactions
between those mesoatomic units and, from this, model the
nonequilibrium process of crystal growth and intercatenation
between constituent network domains. We leave the numerous
open questions raised by this proposition (e.g., how might
more realistic models incorporate dynamic evolution or coop-

erative distortion of mesoatoms into the assembly process?)
for a later discussion.

Schematically, the underlying assumptions of this minima
model are summarized in Fig. 8. Crudely, the process is split
into two parts. First, we assume that assembly kinetics favors
rapid preassembly of primordial mesoatomic groups. Second,
these primordial mesoatoms assemble into multimesoatom
crystalline structures, with the relative affinity for mesoatom
addition predicted by the contact geometry of the ultimate
mesoatomic shapes. Implicitly, the model assumes that the
mesoatoms take their ultimate highly nonconvex shapes by
the time they bind to the face of an existing multimesoatomic
cluster. We emphasize that the initial shape of the priomor-
dial mesoatom may be variable, ranging from spherically
symmetric micellelike shapes to potentially lower-symmetry
shapes that may be intermediate in shape to spheres and the
ultimate mature mesoatom shape. In the former case, it would
be necessary that the mesoatom is reshaped upon binding,
while in the latter, it is possible that some of the nonconvex
shaping may take place in the priomordal state. This latter
case would be the case when the local shape energetics of
molecular packing internal to the mesoatom strongly favors
a local saddle-wedge geometry over, say, spherical or cylin-
drical conical wedges, as can be predicted from models that
vary the shape motif of local packing [35,39]. Notably, while
specific rates between these extreme scenarios may depend
significantly on whether malleable mesoatoms assume their
forms preassembly or else get into shape upon binding, the
basic predictions of our model will be unchanged since our
underlying assumption is only that the mesoatomic groups
add to an existing cluster in the most energetically favorable
location, as we now describe in detail.

A. Model

Our model considers simple nonequilibrium growth ki-
netics of TPN crystals via the sequential binding of nodal
particles whose shapes and contact geometries are determined
by the mesoatomic shapes described in Figs. 5–7. We consider
a process driven by a simplistic model of mesoatom inter-
actions in which the binding energy of cohesive interactions
between mesoatoms is purely determined by their mutual
surface area of contact. We consider in turn each of the DG,
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FIG. 8. Schematic illustration of the range of assembly kinetics which underly the considerations of the minimal mesoatomic assembly
model, with the left column showing a range of possible primordial mesoatomic shapes which form first prior to assembly into multimesoatomic
crystals. The top row highlights a pathway in which spherically symmetric mesoatoms adopt their nonconvex shapes only upon addition to
growing crystal, while the bottom row highlights a pathway in which intramesoatomic packing leads to partial evolution toward the ultimate
mature mesoatom shape prior to assembly. Our model assumes, for both extremes, that mesoatoms add to the most energetically favorable
location in a growing crystal.

DD, and DP structures: the DG with its 3 strut bonds and
10 mesoatoms per loop, the DD with its 4 strut bonds and
6 mesoatoms per loop, and the DP with its 6 strut bonds and
4 mesoatoms per loop.

Defining φi j as the fractional surface contact between
neighbor mesoatoms i and j (i.e., φi j = 0.196, 0.121, and
0.014 for first, second, and third neighbors of DG mesoatoms),
the energy of a cluster of mesoatoms is

E ≡ −
∑

〈i j〉
φi j,

where the sum is taken over occupied neighbor pairs of
mesoatoms. Implicitly, this model neglects possible differ-
ences in the (free) energies of contact between strut neighbors
(like-network) and saddle neighbors (internetwork), which
could arise due to entropic differences of brush domains meet-
ing parallel to or perpendicular to mean chain directions. Also,
surface energy of different faces may vary due to enthalpic
differences in the cohesive free energy density in tubular
and matrix blocks and the composition differences at those
faces, which, e.g., would depend on the relative solvent qual-
ity and concentration for solution-cast assembly. For ordered
phase formation from a higher-temperature bulk melt state
[via the order-disorder transition temperature (ODT)], there
is obviously no effect of solvent on cohesive free energy
density nor variation of the volume fraction of the subdomains
via a preferential solvent. Neglecting these potential physical
chemical factors implies that the differences in mesoatomic
binding energies derive purely from the complementarity of
their anisotropic shapes. In addition, we assume that rigid
mesoatomic units only bind in perfectly oriented and spaced

arrangements (i.e., their centers can only lie on the appropriate
set of Wyckoff positions and adopt orientations consistent
with the symmetry required by the space group of the ultimate
crystal structure). Such a model considers mesoatom surface
interactions to be extremely short range and further assumes
that the complementarity of the nonconvex shapes restricts
relative rotations. The latter effect is quite plausible for nested
contacts between the threefold monkey-saddle faces, which
provides a mechanism to template the long-range order and
complex topologies of double-network crystals even at the
level of two-body contacts.

Assembly is modeled as a kinetic process following very
simple nonequilibrium dynamics, which adds the N + 1
mesoatom to an existing cluster of N mesoatoms at the avail-
able location with the lowest total binding energy. Hence, after
each step of the assembly process, the unoccupied neighbor
positions of all N particles are scored according to the total
binding energy of adding the mesoatom at that position, and
the next mesoatom is added to the boundary position with
the strongest binding. If there are multiple locations with the
same minimal binding energy, one of those degenerate sites is
simply chosen for mesoatom placement. In this way, assem-
bly is modeled via a greedy kinetic pathway that lowers the
energy by the largest possible amount at each step, following
a process that is irreversible and largely deterministic (except
for degeneracy of the strongest binding positions). While there
obviously is no guarantee that the state clusters are close
to ground states, this simple algorithm allows us to explore
the interplay between local packing, mesatomic binding, and
topological evolution via a plausible dynamic scenario for
crystal growth. It is, of course, possible to consider more
complex sampling approaches, for example, which attempt to
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FIG. 9. Snapshots of the simulated growth of double-gyroid
(DG) crystals for distinct numbers of added mesoatoms N. For each,
the most recently added Nth mesoatom is highlighted by coloring the
outer terminal surface of that mesoatom white. The skeletal bonds
for occupied mesoatom positions are shown from the same viewing
direction with the mesoatom volumes removed.

consider near-equilibrium assembly conditions at controlled
chemical potential and temperature.

Below, we first discuss the results of this simple model for
growth of DG crystals, focusing on the evolving topology of
double-network assembly. We follow this with a comparison
with the growth of DD and DP crystals and finally briefly
discuss results of the model for facet formation for growing
crystals.

B. Results—DG assembly

We begin with the case of DG crystal assembly. Here, we
note the kinetic growth algorithm considers addition of DG
mesoatoms without explicit bias for chirality (i.e., both DG
mesoatomic enantiomers maintain fixed, equal availability).
Figure 9 shows several snapshots of the growth of a crystalline
DG cluster up to N = 195 mesoatoms, showing both the
space-filling structure of assembled mesoatoms as well as the
skeletal bonds corresponding to those assembled mesoatoms.
In each of those snapshots, the final (Nth) mesoatom added
to the cluster is highlighted with a white shading of its outer
terminal surface. In Movie 1 in the Supplemental Material
[40], we show an animation of the sequence of mesoatomic
additions for a cluster growing up to N = 89 units.

To understand how the local packing of DG elements
templates the dynamic intercatenation of the double-network
crystal, we analyze the coevolution of binding energetic and
network topology with increasing cluster size. In Fig. 10,
we plot the binding energy per subunit E (N )/N as well
as �E (N ) = E (N ) − E (N−1), the binding energy of the
Nth mesoatom, with points colored black/gray according to
whether the Nth mesoatom joins the +/− SG network, respec-
tively.
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FIG. 10. (a) Plots of the binding energy density of simulated
double-gyroid (DG) crystals vs mesoatom number, with each point
colored according to + (black) or − (gray) network placement of the
Nth mesoatom. (b) Plots the binding energy of the Nth particle vs N
and indicates the number of closed loops added upon binding. The
dashed lines indicate snapshots (i)–(v) shown in Fig. 9. (c) Plots the
frequency of consecutive mesoatom additions to the same networks
of length, �Nsame, with mesoatomic simulations shown in blue and
random (uncorrelated) additions shown in orange for comparison.

First, we observe a notable alternation for mesoatom ad-
dition between the networks, in which sequences of a few
mesoatoms add to the same network before switching to the
opposing network. The basic origin of this effect is easiest to
understand for the first sequence of 7 mesoatoms [up to the
first snapshot in Fig. 9(i)]. Because strut-strut face bonds are
most favorable among all contacts, the first neighbor in the
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cluster is added as the closest neighbor in the same network.
Such strut bonds within the same network remain preferred for
the next several steps up to the N = 6 mesoatom because the
total amount of saddle surface contacts a possible neighbor on
the alternate network results in weaker binding than �Estrut =
−0.196. This situation persists until the cluster forms 6

10 ths
of a closed loop of a single network. Such a structure is
formed by black network mesoatoms in Fig. 9(i). For this
configuration, it is straightforward to see that the partial loop
envelops a high binding energy pocket, wherein a single ad-
ditional particle (on the opposite network) can simultaneously
form 2 monkey-saddle bonds plus 4 elbow bonds, resulting
in a binding energy −0.298 > �Estrut which is stronger than
an additional intranetwork strut bond. Hence, before closing
the first loop, the assembly switches to the alternate network
and proceeds to add to that network the next sequence of 5
mesoatoms. From this point, the mesoatom addition alternates
back and forth, as partially completed network loops create
new strong-binding pockets via their saddle faces.

Given this alternation of added particles between the net-
works, the formation of the first loop in the structure does
not occur until the 18th mesoatom is added [snapshot of
Fig. 9(ii)], far more than the minimum 10 mesoatoms needed
to form a single loop of the gyroid network. In Fig. 10(b),
the binding events are labeled according to the number of
network loops (0, +1, +2, or +3) added. Added loops are
labeled as open circles (here, loops are counted as the filled
10-mesoatom fundamental cycle of the gyroid graph), show-
ing clearly that these binding steps are particularly strong
binding events due to the addition of at least 2 intranetwork
strut bonds, generically exhibiting lower energies than bind-
ing events that leave the topology unchanged. This suggests
that cluster states that correspond to loop closure in the Nth
mesoatom addition will be particularly stable and relatively
longer-lived states of growing DG crystals.

In the sequence of the first 4000 mesoatom additions,
61% of the binding events leave the number of closed loops
unchanged, with the remaining fraction of corresponding
binding events increasing the number of loops by +1 (3%),
+2 (11%), or +3 (25%). We note from Fig. 10(b) that the most
energetically favorable binding events tend to add multiple
loops (i.e., +2 and +3), consistent with the addition of a DG
mesoatom along a 〈111〉 neighbor, creating at least 2 strut
(intranetwork) and 1 monkey-saddle (internetwork) bonds,
hence resulting in a large binding energy = −0.513.

We next analyze the alternating network growth kinet-
ics in the model of DG growth in terms of the number
of sequenced mesoatoms that add to the same network
(�Nsame). In Fig. 10(c), we plot the frequency of �Nsame

like-network additions for clusters up to N = 4000. For
comparison, we also plot the (exponential) distribution that
would be expected if the subsequent binding to + or −
networks was completely uncorrelated. This shows the rela-
tive excess of 2- and 4-mesoatom runs to the same network.
While this is indicative that strong intranetwork binding
promotes like-network correlations, 〈�Nsame〉 = 2.6, which
is much less than the length of the 10-atom loop, consis-
tent with the observation that additions switch back and
forth multiple times between loop closure events in the DG
crystals.
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FIG. 11. (a) Plots of the number of closed loops in the + and −
networks in the simulated double-gyroid (DG) crystal vs mesoatom
number. (b) Plots the +/− excess of mesoatom number and loop
number vs number of added mesoatoms in the DG crystal. The
dashed line has the scaling N1/3, discussed in the text.

In Fig. 11, we plot the kinetics of loop formation in the
growing DG cluster. We first focus, in Fig. 11(a), on the
number of loops nloop(±) in the 2 SGs (denoted as + or −) in
the early stages of cluster growth illustrated in the highlighted
snapshots of Fig. 9. Beyond the latency of the first loop form-
ing after the 18th particle, we observe a surprising asynchrony
in the looping of the two networks. The first three loops form
in the same + network, well before the opposing − network
forms even its first loop at the N = 44 mesoatom [shown in
the snapshot in Fig. 9(iii)]. Following this, a rapid sequence of
2 loop additions in the − network quickly equalizes with the +
network, eventually overtaking looping in that network after
the N = 89 mesoatom [shown in the snapshot in Fig. 9(iv)].
The cluster maintains an excess of − loops over a fairly large
span, up to the N = 195 mesoatom [shown in the snapshot in
Fig. 9(v)], after which point the looping in networks remains
fairly equal from several additional mesoatoms.

In Fig. 11(b), we plot the differences in the looping be-
tween the two networks, as well as the difference between
the total number of mesoatoms in each network, for cluster
growth up to N = 4000. This shows that the initial loop imbal-
ance roughly equalizes between N = 195 and N ∼ 1000 but
at longer times starts to exhibit a more regular sawtooth pat-
tern alternating swings of + or − loop excess. For N > 1000,
loop excesses seem to be in lockstep with broader swings in
the excess numbers of mesoatoms added to + vs − networks
albeit with a lag between loops and mesoatom excess. This,
in combination with the fact that their magnitude grows with
N, seems to suggest these fluctuations are dictated by fairly
regular patterns of surface layer growth, presumably with
steps of the surface growth exposing different numbers of
strong binding pockets on the like vs unlike gyroid networks
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FIG. 12. Results of simulated mesoatomic growth double-diamond (DD) crystals, showing (a) energy density, (b) binding energy, (c) +/−
network excess vs number of added mesoatoms for up to N = 4000. (d) shows a snapshot of a growing cluster of simulated DD mesoatoms
and the skeletal network of bonds corresponding to occupied mesoatom positions.

along distinct regions (i.e., facets) of the growing crystal.
We return to the geometry of growing facets in the crystal
below.

C. DD and DP assembly

The above results for the mesoatomic model DG assembly
illustrate how the local shape and packing of the noncon-
vex building blocks of double-network crystals template the
dynamics of intercatenation. Here, we compare results for
our deterministic model of mesoatomic crystal growth for the
higher coordination DD and DP networks.

As shown, in Figs. 12(a) and 12(b), compared with predic-
tions for DG [Figs. 10(a) and 10(b)], addition of mesoatoms
in DD alternate much more frequently between the disjoint
networks, even at the early stages. For example, only the first
2 mesoatoms bind to the same network before switching to
the lower energy binding on the opposite network for the third
and fourth particles. This higher alternation reflects the fact
that, in comparison with DG, next-nearest-neighbor (internet-
work) contacts are closer in surface area to nearest-neighbor
(intranetwork) contacts for DD. The higher alternation is
also consistent with the smaller loop size: 6 for DD com-
pared with 10 for DG. Distinct from DG, as highlighted in
Fig. 12(b), DD assembly exhibits binding events that add up
to +4 loops. Compared with simulated DG assembly, such
events are likely enabled by the higher coordination (4) of
the DD network. Indeed, the lowest energy binding events
are triple- or quadruple-looping events [such as the N = 182
particle addition highlighted in Fig. 12(d)], corresponding to
addition along a threefold 〈111〉 direction, forming 3 intranet-
work bonds, 1 monkey-saddle internetwork (second nearest
neighbor), and 3 elbow internetwork bonds (third nearest

neighbor). Within the first 4000 mesoatoms added, 35% bind-
ing events do not increase the number of loops with the
remaining fraction adding +1 (5%), +2 (40%), +3 (7%), or
+4 (13%) network loops. In Fig. 12(c), we observe again the
fluctuations in the addition to the two distinct networks of
DD. This assembly also shows an initial period of + vs −
addition (and looping) imbalance at early stages that recovers
to a balanced crystal around N ∼ 100 mesoatoms. However,
unlike DG assembly, in DD crystals, fluctuations of network
excess do not seem to show a coherent alternation, at least
up to N = 4000. Also, there is no significant lag between
fluctuations of mesoatom addition to networks and the loop
addition, with the latter tending to be simply proportional to
the number excess of + vs − mesoatoms in the crystal.

Turning now to mesoatom assembly in the 6 strut-bond DP
(results summarized in Fig. 13), whose mesoatoms possess
the highest valence and smallest basic loop among the DG,
DD, and DP set and who have stronger internetwork bonds
than intranetwork bonds, we find several notable distinctions.
First, the rate of alternation between network additions be-
tween + and − networks is the highest among the 3 cubic
network crystals. The mean span of like-network additions
in simulated assembly for N up to 4000 〈�Nsame〉 for DP is
only 1.15 compared with 1.7 for DD and 2.6 for DG. The
enhanced tendency of DP to rapidly switch between + and
− network additions (i.e., 85% of like-network spans in DP
assembly include only a single mesoatom) is clearly a result
of the stronger binding to internetwork (monkey saddle) faces
than for intranetwork (strut) faces in DP relative to the other
networks. Second, as shown in Fig. 13(b), DP assembly is
characterized by a surprisingly limited distribution of loop
additions upon binding. For N up to 4000, 97% of added
mesotoms increase the number of loops in structure, and these
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FIG. 13. Results of simulated mesoatomic growth double-primitive (DP) crystals, showing (a) energy density, (b) binding energy, and (c)
+/− network excess vs number of added mesoatoms for up to N = 4000. (d) shows a snapshot of a growing cluster of simulated DP mesoatoms
and the skeletal network of bonds corresponding to occupied mesoatom positions.

are confined to only +1 (24%) and +3 (73%) loop additions.
The especially loopy assembly is consistent with the fact
that, in the final DP crystal, the ratio of loops to mesoatoms
is 3:1, which is a much higher density of loops relative to
DD (2:1) and DG (3:2). Last, we observe that, like the DG
assembly, the fluctuations in mesoatom and loop addition to +
vs − networks in DP crystals [Fig. 13(c)] falls into a regular
alternating sequence after an early period (N � 100), which
we again attribute to a repeating pattern of surface growth
with successive layers of crystal growth. However, unlike
DG assembly [in Fig. 11(b)], the magnitude of these excess
fluctuations does not appear to grow with N, suggesting that
the network excess is associated with features of the crystal
surface that do not grow with size (i.e., vertices of a faceted
shape). In the following section, we return to this observation
in the context of the emergent external shapes (crystal habits)
of single crystals during simulation of double-network crystal
growth.

D. Crystal habits

Beyond a detailed picture for evolution of topology in
intercatenated network crystals, the mesoatomic assembly
model provides direct predictions of the external shape of
growing crystals. Equilibrium crystal habits are generically
described through the Wulff shapes, which derive from the
anisotropic surface energies of distinct crystal facets. The
local contact model described above is sufficient to fully deter-
mine the surface energetics of DG, DD, and DP crystals (i.e.,
the distinct surface energies among various Miller planes).
Again, while our deterministic kinetics are not guaranteed
to sample ground-state clusters for a given N, the model
obviously favors growth on high surface energy faces (i.e.,
particular strong binding directions). Indeed, for sufficiently

large clusters, we observe the clear formation of well-defined
and stable faceting.

In Fig. 14(a), we show the external surfaces of an evolv-
ing DG cluster (viewed from the 〈111〉 direction), with the
protruding skeletal networks. The sequence shows that, for
relatively small clusters (e.g., N = 125 and 250), the cluster
boundary appears roughly spheroidal, but by N = 500 and
beyond, the surface shape of the DG begins to exhibit a char-
acteristic pattern, ultimately growing into a cuboidal shape
with rounded corners and edges for N = 1000. Subsequent
snapshots of the surface shape show fluctuations around this
basic shape but with the same dominant {100} faces showing
apparently the same characteristic fraction of the surface area
at late stages.

Similar faceting behavior is found for DD and DP crys-
tals but with large clusters exhibiting different crystal habits.
Figure 14(b) shows the N = 1500 snapshots for DG, DD, and
DP (all viewed from a common 〈111〉 direction), with Miller
indices of the largest area facets labeled. Notably, the largest
faces of the DG crystal are the {100} planes, while in DD
and DP, the facet planes are {110} (with minor facets along
{211} for DD and DP), yielding habits roughly corresponding
to rhombic dodecahedra.

Focusing on the crystal habits of the DG, in addition to
{100}-type facets, we also observe prominent {111} facets,
leading to a somewhat rounded-cube shape. As well, there are
smaller {110} regions along the edges. We note that these
{110} facets have normals that correspond to directions of
intranetwork bonds, which have relatively strong binding en-
ergy compared with the internetwork monkey-saddle bonds
along 〈111〉, and hence might be expected to possess relatively
high surface energies and low facet areas in the corresponding
Wulff shape. Notably, the bonds that protrude through the
{110} edges for the cuboidal shapes appear to be dominantly
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FIG. 14. (a) Growing clusters of double-gyroid (DG) crystals, with semitransparent pink surface facets surrounding the centers of occupied
mesoatom positions. (b) shows the crystal habits of simulated DG (left) double-diamond (DD; middle), and double-primitive (DP; right) phases
at the N = 1500 snapshot, all viewed from a common 〈111〉 direction. The colored arrows highlight the orientation of prominent surface
directions on the apparently faceted shapes of the crystals. The apparent breaking of the cubic symmetry in the distribution of facets is a result
of the nonequilibrium growth pathways from which the snapshots are taken.

of one network chirality [i.e., in the case shown in Fig. 14(b)].
Thus, if the + vs − excess derives predominantly from these
edge regions of the cuboidal crystals, we would expect the
fluctuating chiral excess to grow with the edge length as
N1/3. This scaling is consistent with increasing magnitudes
of mesatom excess for DG assembly in Fig. 11(b) (dashed
line). This suggests that directional energetics of mesoatom
binding could give rise to spontaneous fluctuations of surface
chirality (i.e., + vs − excess) that grow arbitrarily large with
crystal size. In contrast with the growing asymmetry of DG
crystals with N, the + vs − network excess of DP appears to
be constant with N, suggesting that this excess is associated
with the vertices of the quasipolyhedral crystal (for rhombic
dodecahedra, these correspond to the eight 〈111〉 and six 〈100〉
directions).

V. DISCUSSION

A generic construction of the elementary mesoatomic
units of supramolecular network crystals, focusing on the
cubic double networks of diblock copolymer melts was pro-
posed with the DG as an illustrative detailed example. This
generalizes the notion of micellar groupings of molecules
that constitute building blocks of three-dimensional (3D)
crystalline or 2D columnar arrays of spherelike and cylin-
derlike domains, respectively, which are ultimately confined
to quasipolyhedral volumes that tile the given crystal. Like
those cases, mesoatoms of network crystals are associated

with maximal-symmetry subvolumes of domains within the
equilibrium network crystal (i.e., the set of Wyckoff positions
within single domains with the highest point symmetry). Un-
like spherical or cylindrical domains, however, mesoatoms
in double-network crystals are nonconvex shapes and derive
from two types of faces that divide nearest neighbors: planar
faces separating like-network neighbors and saddle-shaped
faces separating adjacent neighbors on the opposing network.

The mesoatomic construction of network crystals provides
a useful structural description of supramolecular network
crystals, breaking their complex structure into local motifs,
akin to more familiar cellular (e.g., Voronoi) constructions
for compact domains. Going beyond this purely descriptive
notion, we conjecture that this symmetry- and geometry-based
deconstruction provides physical insight into collective prop-
erties of network crystals and plausible kinetic pathways by
which they form. The three various intercatenated tubular net-
work structures ultimately stem from constraints of packing
nonconvex mesoatomic shapes as well as expected differences
in physical contact between domains along distinct faces, e.g.,
saddle faces sit at contact between opposing (matrix) domains,
whereas strut faces include contact between both minor and
matrix components. The latter distinction suggests an analogy
between mesoatomic and atomic crystals in which we view
faces that divide brushes on opposing network domains as
analogs of noncovalent (i.e., van der Waals) binding, while we
associate faces composed of contact between multiple com-
ponents (strut-bond faces) as analogs of covalent binding. In

045603-14



HOW DOES YOUR GYROID GROW? A MESOATOMIC … PHYSICAL REVIEW MATERIALS 7, 045603 (2023)

this analogy, the total cohesive energy between mesoatoms in
double-network crystals includes both covalent and noncova-
lent contributions, whereas in crystals of spherelike domains,
where shapes are polyhedral relatives of Voronoi cells, inter-
mesoatom binding is purely of the noncovalent type.

A. Minimal model of mesoatomic growth:
Assumptions and extensions

In the simplest version of the model introduced in Sec. IV,
we considered the distinct physical effects of various types of
contacting faces to derive the assembled structure purely from
the amount and type of same-block–to–same-block surface
area of contact, implicitly assuming that free energy of surface
contact is independent of which components are in contact and
how chains are oriented across the contact faces. It is straight-
forward to consider generalizations of this simple binding
model that relax this constraint. For example, considering the
growth of double-network crystals in a solvent that is selective
for one or the other component, it is possible to consider how
the relative strength of binding along distinct faces would
change depending on both the area fractions of minority and
matrix components along each mesoatom face as well as the
relative surface energetics of solvent contact to those com-
ponents. For the situation where mesoatoms are forming and
then assembling into crystals in a solvent that is selective for
the matrix, there would be a correspondingly higher binding
along strut bonds, as these better shield the minority domains
from solvent contact. This in turn would impact predictions
for binding and catenation dynamics as well as for the facet
formation in large-scale crystal structures. Stronger (weaker)
intranetworks, as should be expected for a solvent selec-
tive for the matrix (tubular minority), might be expected to
increase (decrease) persistent addition of mesoatoms to the
same network �Nsame, thereby alterating the lag dynamics of
intercatenation. Alternatively, it may be possible to consider
this mesoatomic model for a case where mesoatoms form in a
melt, in which case a population of disordered molten chains
would serve as the solvent medium in which mesoatoms form
and then sample optimal binding on the faces of a growing
double-network crystal. In this context, the mesoatomic model
provides a natural and predictive framework to understand
how highly interconnected topologies for supramolecular net-
work crystals form, based on local rules based on packing and
binding thermodynamics.

The essential elements of the mesoatomic growth model
described here are predicated on the following propositions:

(1) The dominant pathway for network crystal formation is
one where micellelike groups (mesoatoms) of chains break
isotropic (i.e., spherical) symmetry into lower point group
symmetry, with nonconvex shapes before, during, or upon
assembly with other mesoatoms into crystals.

(2) The optimized packing of the nonconvex asymmetric
mesoatoms derives from both covalentlike and van der Waals–
like binding, which dictates the ultimate crystal space group
symmetry and topology of the crystalline assembly.

(3) To a good approximation, the shape and packing char-
acteristics of the primordial mesoatom adding to a crystal can
be derived from the structure of its ultimate mature shape in

the final crystalline state observed experimentally and com-
puted theoretically.

Each of these propositions raises open questions for ex-
perimental and theoretical studies of actual supramolecular
network assembly. In our analysis above, we restricted our
focus to diblock copolymers, but the relevance of mesoatoms
clearly extends to other macromolecular contexts where these
or similar morphologies occur. We offer some brief comments
about extensions of mesoatom concepts to other molecular
architectures below.

The proposition that kinetically favored nonconvex
mesoatom shapes template the assembly process may be rea-
sonable on its face but raises several important questions,
illustrated by the schematic shown Fig. 8. How much do the
thermodynamic prerogatives of molecular groups, due to the
balance of entropy and enthalpy within those groupings alone,
select the complex nonconvex shapes and node functionality
of the ultimate networks vs adopting those nonconvex shapes
upon assembly into multimesoatomic clusters? The preshap-
ing scenario suggests that it should be possible to identify
some range of thermodynamic conditions where individual
(isotropic) spherical micellar domains (near to but slightly
above the critical aggregation conditions) break symmetry
into the elementary trihedral, tetrahedral, and octahedral sym-
metries consistent with the mature mesoatoms of DG, DD,
and DP, respectively. In the absence of strong thermodynamic
forces to preshape mesoatoms, mesoatoms might instead
break symmetry upon binding with other mesoatoms. More
generally, even if primordial mesoatoms are partially pre-
shaped by their internal packing thermodyanmics, one should
expect at least some difference between the shape and sym-
metry characteristics of the primordial mesoatomic elements
with respect to the ultimate mature bonded mesoatoms in the
crystal. For example, as noted previously, mature DG atoms
are chiral, and it is very plausible at this spontaneous chirality
(in + vs − types) would emerge only at the stage of binding
with other mesoatoms in a growing cluster. Certainly, the free
energy calculations (e.g., self-consistent field theory) may ex-
plore the extent of and range of conditions where preshaping
in micellarlike groups might become unstable to nonconvex
shapes with the trihedral, tetrahedral, or octahedral symme-
tries of the cubic TPN phases. More generally, this question
points to the need for experiments that capture primordial
mesoatom shapes, as we discuss below.

We note that our primary heuristic for identifying which
particular positions of the ultimate crystal correspond to kinet-
ically favorable groupings is purely based on topological and
symmetry grounds (i.e., subregions of domains with maximal
point symmetry). There are likely many conditions for double
networks with a kinetic bias for other groupings. For example,
should thermodynamic conditions at which mesoatoms first
aggregate favor surface contact of one domain over another
(i.e., nonselective solvent), the addition differences in the rel-
ative surface exposures of A- or B-type domains could bias
assembly toward other high-symmetry points. In Fig. 15, we
show comparative renderings of the mesoatoms of DG based
on both 16b and 16a Wyckoff positions of Ia3̄d . These con-
structions exploit a more refined strong-segregation packing
description [31] which includes distributions of chain trajec-
tories modeled by prismatic wedges extracted from medial
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FIG. 15. Comparison of expected shapes of (a) 16b mesoatoms
to (b) putative 16a mesoatoms based on the medial tessellations of
the double gyroid (DG). Triangular prismatic regions model mean
chain trajectories extending between terminal boundaries. While 16b
mesoatoms are bound only by the triply-periodic minimal surface-
like (outer) terminal surface of the matrix block, large fractions
of 16a mesoatom surfaces are bound by weblike (inner) terminal
surface of the tubular block. In the 〈111〉 view, only the threefold
axis is highlighted of the respective D3 (16b) and C3i (16a) shown.

surfaces of gyroid surfaces that model the terminal boundaries
in the matrix and tubular domains. In this case, we observe
that the strut faces of the 16b mesoatom must be at least
slightly nonplanar to avoid cutting chain trajectories. The
shape of the 16a mesoatom is otherwise markedly different, in
that its surface is not bound by the TPMS-like terminal bound-
ary of the matrix domains but instead the twisted-web shape
of the terminal surface of the inner domains, which closely
approximates the inner medial surface of the IMDS. Because
of more complex and disconnected geometry of these bound-
ing terminal surfaces, the putative 16a mesoatom is clearly
more complex in shape, with an even larger surface to inte-
rior volume ratio than the 16b position. Additionally, because
it includes subdomain regions from each of the two gyroid
networks, it possesses two disjoint regions of the IMDS, as
opposed to the single IMDS patch of the 16b mesoatom. Pre-
suming that thermodynamics of IMDS formation is dominant
in the formation of primordial mesoatoms, this suggests that
the 16a mesoatom type would require two IMDS nucleation
events to form, as opposed to the single IMDS nucleation for
the 16b mesoatom, and hence, kinetics of mesoatom forma-
tion of the 16a mesoatom (or any other mesoatom composed
of fragments from multiple domains) would likely be much
slower than the 16b mesoatom. However, it is possible that,
under conditions where increased surface exposure of the
minority domains is favorable over the majority domain, nu-
cleation of 16a-type mesoatoms could preempt formation of
the 16b-type mesoatoms. Notably, unlike the 16b mesoatoms,
16a positions are achiral and are not described by a tubu-
lar junction motif but instead a double-layer minimal saddle

patch. While the shape and local contact of such a distinct
domain will template altogether distinct assembly kinetics,
it is straightforward to consider how to extend the analysis
and arguments presented here to these alterative shape and
symmetry mesoatoms.

The second and third propositions that packing the non-
convex mesoatomic shapes templates the ultimate crystal
formation raise an important question about the malleabil-
ity of mesoatoms. Mesoatomic groupings are composed of
large numbers of flexible molecules. For example, in the DD
and DG assemblies from polystyrene-b-polydimethylsiloxane
(PS-PDMS) diblocks reported in Refs. [25,41], one can
calculate that the respective tetrahedral and trihedral nodal
volumes possess roughly 2500 and 1100 chains. Owing to
their many mobile, flexible, and independent constituent parts,
mesoatoms are inherently malleable objects, and the ther-
modynamics of their intermesoatomic packing takes place
at a similar free energy scale to thermodynamics of their
internal rearrangements. This means that mesoatomic shapes
are far from static and likely evolve and adapt significantly
during the binding event to a growing crystal. As alluded
to above, binding along intranetwork struts by match-up of
the respective block regions across the strut bond is likely
to require some degree of radially combing chains along the
normal to the skeletal graph at the endcaps of the primordial
mesoatom (e.g., Fig. 15). It is also reasonable to expect the
shape of the outer saddle skin of mesoatoms to adjust some-
what as opposing brushes come into close contact. Notably,
for DG mesoatoms, there is an additional question about when
and how primordial mesoatoms that compose the alternate
+ and − networks break achiral symmetry. One possibil-
ity (consistent with the assumptions of our minimal growth
model) is that primordial mesoatoms themselves are unstable,
spontaneously breaking symmetry into distinct populations
of opposite chirality, and this preexisting chirality organizes
the subsequent kinetics of crystal formation. An alternative
scenario, arguably more plausible for achiral constituents, is
that primordial mesoatoms of DG are achiral and become
chiral upon binding and adapting to the intercatenating DG
crystals. These effects all suggest a more realistic physical
model of mesoatomic assembly will require malleability of
the shapes and intermesoatom correlations, most crucially
allowing bonding along different faces to take place over a
more flexible range of angles and distances.

Several classes of discrete particle models have been de-
veloped in recent years that incorporate anisotropic binding
directions and strengths, mimicking the key features of our
mesoatomic particle model. These include models of convex
hard polyhedra [42], whose complex shapes and symmetries
lead to the formation of a rich array of crystalline and liquid
crystalline morphologies, purely due to entropy and close-
packing considerations (i.e., what has been dubbed entropic
bonding [43]). Relative to such models, our description of
mesoatom assembly assumes that binding is cohesive and
likely more important and that the nesting of nonconvex
particles is necessary to guide the formation of properly inter-
catenated double networks. Beyond such hard particle models,
a range of patchy sphere models has been explored in the
recent decades motivated by questions as broad as colloidal
glass formation, functional DNA liquid assembly, and thermo-

045603-16



HOW DOES YOUR GYROID GROW? A MESOATOMIC … PHYSICAL REVIEW MATERIALS 7, 045603 (2023)

dynamic anomalies of water [44–46]. These typically involve
building short-ranged sticky patches on otherwise isotropic
(spherical) cores [47], with a fixed number and symmetrical
arrangements. Notably, these models parameterize a degree
of angular fluctuation in the binding, which would serve as a
proxy of mesoatomic malleability [48]. However, at present,
most models include only attractions along strut directions
of what might ultimately result as like-network contacts
(e.g., only trivalent or tetravalent sticky bonds). Consider-
ing the above results, it would be interesting to understand
how the incorporation of attractive interactions along direc-
tions that enable internetwork binding would influence the
thermodynamics and kinetic accessibility of intercatenated
double-network crystal formation. Lastly, we note the exis-
tence of network forming models where the local building
blocks (i.e., the mesoatoms) of the crystals themselves are
composed of at least a few distinct particles. The interac-
tions between the components of those mesoatomic motifs
both template the stable local symmetries of those units, as
well as their flexibility and potential ability to reconfigure
between different types of mesoatoms, much like what would
be expected for supramolecular mesoatoms. Based on a bi-
nary mixture of two classes of attractive particles, Kumar and
Molinero [49] and Marriott et al. [50] have developed and
explored a model in which DG crystals compete with lamel-
lar and columnar phases, leading to rich insights into phase
formation, transformation pathways, nucleation, and growth
of DG crystals [51]. A model of anisotropically sticky spheres
developed by Morphew et al. [52] and Rao et al. [53] has been
shown to exhibit assembly into tetravalent and hexavalent
network crystals. However, at present, only single networks
(e.g., single diamond [48]) have been observed in simulations
of these models, presumably because the close packing of
bound spherical cores obstructs the incorporation of a second
intercatenated network. Certainly, generalization and exten-
sions of such models as coarse-grained representations of
mesoatoms hold potential for more extensive studies of equi-
librium and nonequilibrium assembly from mesoatomic units.
One challenge will be to parameterize the complex shapes,
anisotropic binding, and deformability of these coarse-grained
mesoatoms in terms of physical models that connect to
intradomain deformation of supramolecular packing within
those units.

The malleable nature of mesoatomic elements has im-
portant consequences not only for the fluctuations of local
bonds/bond angles in growing crystals but even more pro-
found consequences for the complex possibilities of distinct
states of disorder or defects in network assemblies as well
as pathways of interconversion from one type of network
to another. Next, we describe this and other experimental
implications for the putative mesoatomic building blocks of
network crystals.

B. Experimental fingerprints of network mesoatoms

The conjectured notion that mesoatomic units extracted
from the final ideal double-network crystals are the natural
building blocks of these structures leads to two basic ques-
tions:

(1) Where, when, and how might mesoatomic assembly be
observed?

(2) How might properties of malleable mesoatoms influ-
ence postassembly behavior and properties?

We first address the question of observing mesoatoms
in the primordial state and their assembly. Crudely speak-
ing, one can expect two classes of kinetic pathways where
mesoatomic elements form: (1) mesoatom-first formation fol-
lowed by mesoatomic aggregation into ordered structures and
(2) spinodallike formation of randomly connected network-
like domains, which later mature into ordered structures.

This first path (mesoatoms-first) suggests conditions at
early times of an initially disordered (mixed) system, evolving
into discrete primordial, micellelike groupings before their
association into multimesoatom arrangements of the type that
ultimately become ordered crystals. Primordial mesoatoms
would be expected to form an initially homogeneous melt
by cooling or from a homogeneous solution by solvent evap-
oration and may or may not necessarily adopt nonconvex,
symmetry-broken states prior to assembly into clusters (e.g.,
Fig. 8). Processing routes that may give rise to mesoatom-first
assembly are twofold. In a neat system (i.e., pure diblocks)
near the binodal curve (but outside of the spinodal region),
it may be possible to image the formation of primordial net-
work mesoatoms that take the form of nonconvex micelles
coexisting with disaggregated chains. Such is the natural
picture for the disordered sphere phases that form at the
high-χN and high-compositional asymmetry regime of di-
blocks but, for formation of mesoatoms of a tubular cubic
phase, implies that chain compositions are likely closer to
regimes favoring packing intermediate to lamellar or cylin-
drical morphologies, where the gap between binodal and
spinodal regions is typically smaller. Therefore, a second
processing route in which assembly is cast from a volatile
solvent may be favorable for mesoatom-first assembly since
it allows formation of primordial mesoatoms (with potentially
complex shape) but at initially dilute conditions. However, as
a two-component system, this processing route introduces the
complexity that, as the solvent is evaporated, the appearance
of a variety of mesoatoms and mesoatom aggregates would
depend on the solvent concentration and solvent quality for
each block, including the possibility for the formation of
alternative mesoatoms leading to nonequilibrium, metastable
phases.

Observing mesoatom-first assembly is challenging, as it
requires both temporal resolution but also the ability to char-
acterize low-symmetry shapes with complex features at the
scale of few to tens of nanometers. In principle, time-resolved
in situ scattering may be used to note the formation of some
sort of transient features associated with the early stages
of mesoatomic group formation prior to the onset of long-
range order. This is the scenario described, for example, for
time-resolved small angle x-ray scattering (SAXS) studies of
solution-cast PS-PDMS assemblies [54], where scattering at
intermediate times suggested the formation of some sort of
aggregates without long-range order prior to the signal of
established long-range order of the periodically ordered state
(e.g., DG). However, in this and other cases with isotropically
averaged scattering intensity, data are difficult if not impossi-
ble to interpret what the (likely polymorphic) 3D shapes are

045603-17



GREGORY M. GRASON AND EDWIN L. THOMAS PHYSICAL REVIEW MATERIALS 7, 045603 (2023)

that give rise to that scattering peak. This shortcoming then
points to microscopy methods to observe mesoatoms in their
primitive states to cast further light on how their shapes evolve
upon fusion with a growing crystal.

In principle, electron microscopy (EM) experiments can
reveal much more specific geometric detail for low-symmetry
shapes of polymeric domains at the scales of putative
mesoatom assembly pathways. However, such methods are
traditionally limited to particular snapshots of arrested struc-
tures. For example, for solvent-cast systems, one might expect
that cryo-EM is suitable to capture mesoatoms in their primi-
tive states as well as complex geometries of multimesoatom
assembly. Such an approach relies on controlled vitrifica-
tion via rapid thermal quenching (∼1010 K/s) of the solvent
prior to imaging. Such studies have been applied to sol-
vent surfactant systems to capture complex 3D morphologies,
notably the disordered membrane structure formed in surfac-
tant/water microemulsions, denoted as L3 or the sponge phase
[55,56]. Research on the solution behavior of amphiphilic
macromolecules [53,54] has adopted the same techniques for
successful imaging of mesoatoms of spherical and cylindrical
micelles [57] as well as for revealing nodal Y junctions be-
tween wormlike micelles [58]. Notably, these trivalent local
regions share the same trihedral symmetry as the putative DG
mesoatom and may indeed be precursors to spongy assemblies
in polymeric surfactant assembly. A principal shortcoming of
these cryo-EM-based approaches, for the purposes of moni-
toring evolution of mesoatomic assembly, is the lack of time
resolution. Recently, variable temperature liquid cell (VTLC)
sample holders for transmission electron microscopy (TEM)
have been developed with thin, electron-transparent windows,
enabling direct, real-time imaging of nanoscale assembly
[59]. Korpanty et al. [60] made VTLC TEM measurements
of transient intermediate structures from thermally induced
rearrangement of the inner core region of ABC triblock spher-
ical micelles, which when compared with changes in the form
factor from variable temperature SAXS show good correspon-
dence with changes in domain shape. Future application of
VTLC and cryo-EM techniques for imaging the primordial
mesoatoms in tubular network polymers seem very promising.

A second path (sponge-first) to forming TPN crystals is
arguably simpler, which would follow from cooling a sin-
gle component diblock from its high-temperature disordered
near-homogeneous melt state to a temperature below the ODT
where, over time, compositional fluctuations may lead to
(nearly) spinodal decomposition into a disordered microphase
separated state (sometimes also referred to as a sponge phase)
which then evolves via nucleation and growth into the ordered
crystal from the parent disordered network state. In this path,
a stage where mesoatoms are observed as individual, disas-
sembled units may not even exist, but nevertheless, we posit
that the collective behavior of the system—most importantly,
its longer-term evolution to an ordered structure—is likely to
be controlled by the collective reconfiguration of these local
groupings.

Capturing complex network assemblies in disordered
arrangements has been previously accomplished by EM to-
mography (EMT), particularly in a diblock-homopolymer
blend, resulting in a 3D reconstruction disordered networklike
macromolecular sponge phase alongside ordered grains of

270 nm 255 nm

442 nm

ordered DG network sponge

(a) (b)

FIG. 16. Three-dimensional (3D) slice and view scanning elec-
tron microscopy tomography (SVSEMT) reconstruction of a region
of a PS-PDMS diblock showing the boundary between a grain of the
double-gyroid (DG) crystal with intercatenated trihedral networks
(left) and a region of a spongelike phase (right). (a) Skeletonization
of the highlighted subregion spanning the boundary the interface
between ordered and random networks. Skeletal graph bonds are
shown as red/blue on the alternating gyroids of DG, while the random
network bonds (a single fused network) are shown as black. (b)
Volume with spatial dimension for scale. Over 88% of the units in the
disordered network are trihedral, with all mesoatom units belonging
to a single network. (Figures courtesy W. Shan). Note: This sample
is not from spinodal decomposition, rather rapid evaporation of a
solution (e.g., Ref. [39]).

DG [56]. Detailed analysis of the skeletal axes of the tubular
domains revealed that locally trihedral nodal regions dominate
in the disordered sponge (89% of the nodes of the associated
skeletal graph had 3 functionality) along with some small,
perforated layerlike regions. Further analysis of regions where
a growing DG cluster evolves from an adjacent disordered
region would shed much light on possible mechanisms for
the disordered-to-ordered phase transformation and the role
of malleable mesoatoms (e.g., local rotations and relinking
of trihedral nodal junctions at the crystal growth front). A
relatively new electron microscope technique, slice and view
scanning EMT (SVSEMT), provides systematic imaging of
much greater regions than TEM of thin sections—indeed,
many hundreds to tens of thousands of cubic micron volumes
(containing ∼ 10 million unit cells) can be 3D reconstructed
[41]. SVSEMT involves creating a series of images at differ-
ent depths of a sample by using a low-voltage electron beam
to image the near surface of the sample, followed by ion-beam
milling to remove a thin (∼3 nm) slice of the sample, repeated
over and over to produce a high-fidelity 3D tomographic re-
construction with ∼10 nm feature resolution (see Fig. 16).

An interfacial region between the gyroid sponge phase and
a DG grain is shown in Fig. 16 for a PS-PDMS diblock (for
details of sample and methods, see Ref. [41]). The viewing di-
rection of the reconstruction can be chosen based on software
manipulation of the 3D data, and at the left is along the [111]
direction of the DG grain. The intercatenated minority compo-
nent PDMS networks are readily identified, and their topology
and geometry can be quantified by skeletonization of the 3D
reconstruction. Interestingly, skeletonization of the adjoining
sponge phase shows that ∼90% of the nodes in a volume of
108 nm3 are trihedral units. Analysis of the strut directions in
the sponge phase gives a nearly isotropic distribution, while
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as expected within the ordered grain, the struts are all well
aligned along the 〈110〉 directions of the unit cell. Due to
the orientational disorder, dihedral angles between adjacent
nodes which are used to determine network chirality in the
ordered DG phase have a near isotropic distribution in the
sponge phase. Moreover, in the region examined, there are
no discrete, nonnetwork PDMS regions; rather, the minority
PDMS component forms a single continuous network but
without loop intercatenation. This disordered network struc-
ture is not unlike the atomic-scale continuous random network
(CRN) model previously proposed for amorphous semicon-
ductors (i.e., at f = 3, amorphous arsenic would correspond
to disordered DG, while at f = 4, amorphous silicon would
correspond to a DD CRN).

How the sponge phase transforms into the DG crystal is,
at present, unknown. The transformation likely involves local
translation and rotation of the trihedral mesoatoms to create
the correct saddle shapes for the outer terminal surface that
can then nest against one another while directing strut orien-
tations along 〈110〉 directions. However, the sponge network
must be occasionally disrupted to split the single noncatenated
network with its wide range of loop sizes into two indepen-
dent, intercatenated, opposite chirality, 10-3 loop networks.
If mesoatoms are indeed the key structural elements of net-
work assembly, we posit that they are not only the building
blocks of the assembly but also capture the relevant degrees of
freedom for the disorder-to-ordered network transformation.
Future work needs to address the details of the distributions of
the strut-strut angles, the strut lengths, and strut directions as
well as characterization of the loop distributions, topologies,
and various types of network point defects (e.g., f = 4 and
5 nodes as well as network breaks) as the structure evolves
across the interface from single disordered sponge network to
ordered DG networks. Moreover, future studies may uncover
properties of prototypical mesoatoms via direct experimental
observation of statistically large ordered/disordered network
assemblies, for example, by analyzing the spread of its char-
acteristic features (i.e., distributions of strut-strut angles, strut
lengths, mesoatom volume, IMDS curvature, and surface area,
dihedral angles between a mesoatom with its linked neighbors
as well as the partitioning of its outer terminal surfaces with
the surrounding mesoatoms and specification of the type and
number of contacting neighbors).

C. Learning about mesoatomic malleability from defects

Going beyond the formation of TPN crystals, we posit fur-
ther that mesoatomic groupings also describe the fundamental
excitations of the crystalline state, in the form of the various
defects they support. Studying how the local symmetries of
a crystal can be disrupted by various defects yet allow the
distorted structure to accommodate into the surrounding crys-
tal with an overall small strain field (and hence low energy)
can give insight into how mesoatomic units can adapt to their
surroundings, which itself reflects the combinations of ther-
modynamics of the interior chain packing within mesoatoms
as well as the effects of intermesoatomic packing. Defect
identification and classification in tubular network BCP crys-
tals is a relatively recent endeavor [61–63]. Unlike defects
in atomic crystals where the structure simply rearranges the

(a)

(b)

(c)

FIG. 17. Examples of the intermaterial dividing surface (IMDS)
within mesoatom point defects occurring in an ordered double-
gyroid (DG) grain. (a) Extracted defect mesoatoms with f = 4 and
5. (b) A functionality point defect having one or more extra struts ne-
cessitates changes to the network topology and new types of network
circuits (donuts and loops) differing from the normal 10 − 310 loop
are formed. (c) A bridge defect occurs when the two networks fuse
together. Reproduced from Ref. [64].

immutable atoms, in self-assembled crystals with malleable
mesoatomic units, distortions and defects can and do strongly
alter the shape and symmetry of the basic motif. Since defects
disrupt the periodic packing scheme in the crystal, their pres-
ence influences both reciprocal-space data (scattering) and
real-space data (microscopy). Therefore, as we have previ-
ously discussed, real-space analysis is necessary for detailed
characterization. Next, we do a brief survey of defects with
particular attention to how various defects in the DG phase
create changes to the malleable f = 3 DG mesoatomic units.

Defects can be classified as point, line, or surface imper-
fections (zero-dimensional-, one-dimensional-, and 2D-type
defects) that respectively break symmetry at a point or along
a continuous curve or over a surface. Due to the mesoatoms
forming a double intercatenated network structure, the notion
of point defects needs to be extended to allow for somewhat
larger motifs sometimes containing multiple mesoatomic
units that together break symmetry in a local region (point) but
allow rapid return of the structure to its ordered symmetries
in adjacent regions. A variety of point defects in the DG
phase were identified using SVSEMT [61]. These include
node defects (so-called f defects), loops, and donuts as well
as network-network bridges and network strut-break defects.
Figure 17 shows a few examples of f , donut, loop, bridge,
and break defects that are associated with various departures
from the basic f = 3 mesoatom unit that is organized into
10 − 310 intercatenated left- and right-handed chiral loops of
the DG crystal. [The notation X − Y n here denotes a loop
consisting of X nodes, each node has a functionality (valence)
of Y, and there are n consecutive nodes circumventing the
loop with this valence.] Analysis of the network topology
of the DG revealed small, closed paths, denoted as donuts
(e.g., a 5−4, 34) that, due to the small diameter of the path,
were not catenated, whereas larger loop paths containing
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[1̄1̄1̄][112̄]

[11̄0]

50 nm

(a) (b) (c)

FIG. 18. A twin boundary defect (mirror plane indicated by the orange line) visualized by three-dimensional (3D) slice and view scanning
electron microscopy tomography (SVSEMT) tomography of a PS-PMDS diblock creates two new types of double-diamond (DD) mesoatoms.
(a) Experimental reconstruction of the (222) twin boundary in the DD phase as viewed along [112] (adapted from Ref. [62]). Two new types
of mesoatoms having (b) f = 3 and (c) f = 5 are formed on the terminal boundary, both with D3h point group symmetry instead of the Td

tetrahedral symmetry of normal DD mesoatoms. Experimental images courtesy of X. Feng and M. Dimitriyev.

multiple f defects were intercatenated (e.g., 9−4, 32, 4, 35).
In general, point defects are found to occur in small clusters
such that, away from the cluster, the structure has returned to
the normal crystalline ordered packing. These point defects in
network phases exemplify the malleability of the mesoatoms
(in this case, locally trihedral motifs like the 16b mesoatom of
DG), with the ability of the motifs to adapt their local detailed
shapes to maintain a smooth, continuous IMDS with relatively
mild distortions of the minority and majority domain shapes
and thicknesses to minimize the excess chain frustration that
the defect(s) creates.

Dislocations are extended, generally 3D curved, line de-
fects and break the translational symmetry of the crystal,
around which the displacement slips by a net translation
vector (called the Burgers vector) b. A recent TEMT study
characterized a dislocation defect in the DG phase [65]. Due to
the limited volume of the reconstruction only a relatively short
(∼600 nm) length of dislocation could be investigated. Never-
theless, a dislocation line along [111] of mixed edge and screw
character and a rather large Burgers vector b = ao [012] could
be clearly identified from the reconstruction. Surprisingly, the
dislocation core did not exhibit any apparent new mesoatom
features (e.g., nodal regions with other functionalities other
than 3), although far-field compression away from the core
apparently led to fusion/fission type point defects. Presum-
ably, dislocations with different Burgers orientation and along
different symmetry directions will in general require the for-
mation of distinct mesoatoms, which do not appear as features
of equilibrium, ideally ordered structures, but which do appear
in recent studies of grain boundaries of DG and DD crystals.

Here, 2D surface defects (i.e., grain boundaries) occur due
to impingement of neighboring grains during growth of the
ordered phase, due to the misorientation of the lattices in the
neighboring grains (i.e., tilt or twist). A twin boundary is a
special type of tilt grain boundary where the boundary acts
as a mirror plane for the adjacent grains. Twins are quite
common low-energy defects in hard matter. Indeed, recently
numerous twins have been found in both DG and DD phases
[62,63]. Twins in the DG occur on (422) planes, and since

the two networks are enantiomorphic, the twin acts as a topo-
logical mirror. The influence of the twin boundary on the
mesoatom networks depends on if the nodes reside on the
boundary or adjacent to the boundary. Three new types of
achiral mesoatoms are created on the DG twin boundary as
well as two new types of achiral loops. The IMDS is smooth
and continuous across the twin boundary, and the new IMDS
within the mesoatoms has similar mean and Gaussian curva-
tures as the normal IMDS within a 16b mesoatom, consistent
with a low-energy defect.

Twins in the DD occur on (222) planes (see Fig. 18).
Interestingly, in atomic diamond (the single-network structure
of C, Si, Ge, etc.), twins occur on (111) planes. For the DD
BCP network, the mesoatom network with its nodes offset
from the boundary has the same structure as that of a twin in
hard diamond where the struts (corresponding to the atomic
bonds in diamond) connecting nodes on either side of the
boundary are perpendicular to the boundary and retain their
Td symmetry. As was the case for the DG twin, the nodes
of the second mesoatom network, which lie in the plane of
the boundary and as such must exhibit mirror symmetry par-
allel to the boundary, transform to adopt D3h symmetry [see
Fig. 18(b)]. Twinning results in substantial modification of
the normal mesoatom tetrahedral Td point group symmetry
to form two new types of mesoatoms (pentahedral f = 5
and trihedral f = 3) which both adopt D3h symmetry. These
mesoatoms alternate and link to form a hexagonal mesh com-
prised of [6 − (5, 3)3] loops in the plane of the boundary.
Thus, the packing requirement of the mirror defect induces
the mesoatomic point group symmetry to change from Td to
D3h.

An additional key role for malleable mesoatoms lies
with their contribution in order-order phase transformations
in BCPs [28,66–69]. To convert from one phase with a
particular space and point group symmetry mesoatom(s) to
a second phase with a different space and point group sym-
metry mesoatom(s), the mesoatoms must undergo a size and
shape transformation. In many studies, the new phase forms
an epitaxial relationship with the existing phase that provides
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a pathway for the transformation. Minimization of the dis-
ruptions to preferred packing on either side of the interphase
boundary often results in a narrow transition zone across
which the mesoatoms undergo restructuring, which implies
the existence of new intermediate types of mesoatomic units.

D. Concluding remarks

We conclude with some brief remarks about basic chal-
lenges and questions opened by the mesoatomic concept when
extended to chain architectures beyond the basic polymer am-
phiphile shape of linear AB diblock copolymers. Our simple
mesoatom is defined by its inner terminal surface, the IMDS,
and its outer terminal surface. Such discrete mesoatoms aggre-
gate and pack via brush-brush interactions across the exposed
terminal surfaces as well as linking and fusing of nearly par-
allel blocks across strut faces to smoothly extend the IMDS.
Clearly, this mesoatom concept readily applies to tubular
network forming AB diblock–homopolymer A or B blends—
appropriately generalized to incorporate guest homopolymers
in either the tubular or matrix domains. However, definition
of the mesoatom of the AB diblock double network does
not simply generalize to double networks formed by ABA
triblocks (e.g., Refs. [70,71]), even of the same symmetry,
since a portion of chain configurations bridge from one tubu-
lar network to the other spanning the midblock matrix [72].
For example, in DG, to dissect out the 16b mesoatoms (as
argued for AB diblocks) from the final structure requires cut-
ting bridging B chains to form the outer terminal mesoatom
surface. In general, the presence of bridging blocks in the
matrix phase that covalently connect two different IMDSs
would then require the choice of a mesoatom with two IMDSs
[i.e., mesoatom 16a in Fig. 15(b)]. A 3-subdomain, 2-IMDS
mesoatom version of 16a would work for alternating ABC gy-
roids predicted and observed in linear ABC terblocks [73,74].
Moreover, in practice for terpolymers with three solvent-block
interactions, it is very likely that, as solvent evaporates dur-
ing the assembly, the shape and symmetry of the primordial
mesoatoms evolve due to variations in the relative strength of
enthalpic and entropic interactions as well as relative com-
ponent volume fractions. Thus, the primordial dilute solution
mesoatoms will likely evolve as the (necessarily preferen-

tial for 3 blocks) solvent evaporates, causing, for example,
a primordial mesoatom initially comprised of 2 regions and
1 IMDS (say, an A domain+a solvent core region and an
outer mixed B-C+higher solvent content region) to evolve
during aggregation to demix the B and C blocks as solvent
evaporates to create a new second IMDS between B and C as
well as enabling the A and C blocks to link up to form tubular
networks.

Beyond linear architectures, much more complex polycon-
tinuous network topologies are predicted for ABC miktoarm
stars, including extended and linked lines of periodically
spaced triple junctions where all three domains meet [75,76].
Here, the constraint for all three blocks to covalently link
at a single junction creates a new type of IMDS where the
junctions are confined to parallel lines as opposed to spreading
uniformly over surfaces [77]. Mesoatoms for star architectures
will likely internally partition to reflect the relative volume
fractions of each component and the cost of the various types
of IMDSs between pairs of blocks, predicted to lead complex
patterns of interwinding network domains, such as striped
gyroids [76]. Whether a single generic set of rules can be
constructed to divine mesoatomic shapes when accounting for
the vast variations of nonlinear molecular architectures, inter-
domain topologies, and crystallographic (and potentially even
quasicrystallographic) symmetries remains as a challenge.
Clearly, the rich and ever-expanding palette of supramolec-
ular chemistry demands improved understanding of how the
molecules manage their local environments along the way
from either the initial melt state or from the dilute solution
state to the final ever-expanding suite of ordered morpholo-
gies.
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