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We model amorphous Zirconia-doped Tantala with machine learning interactomc potentials based on explicit
multielement spectral neighbor analysis (EME-SNAP). These atomic structure models can reproduce partial ra-
dial distribution functions obtained from first-principles calculations and elastic moduli found from experimental
measurements. The two-body pair forces calculated from EME-SNAP further affirm that the potentials capture
the atomic interactions well. Molecular dynamics simulations of simulated annealing with EME-SNAP show that
the final density of the amorphous models depends on the thermal history even when the annealing rate is kept
constant, which captures experimental observations of history-dependent densities. Mechanical spectroscopy is
also simulated using both Morse-Beest-Kramer-Santen pair potentials and EME-SNAP. The success in applying
the EME-SNAP to amorphous Zirconia-doped Tantala pushes the boundaries of simulation accuracy and system
size and enables better and more realistic atomistic modeling for amorphous systems. There are still some
limitations in applying the potentials generated in this paper. They are only optimized for trained amorphous
phases; high-temperature stability and transferability need to be further investigated.
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I. INTRODUCTION

Tantala (Ta2O5) is an important material in the semicon-
ductor industry where it can serve as a barrier layer due to
its sufficient band gap. With a high refractive index and low
optical absorption, amorphous tantala is used in dielectric
mirrors, such as those in the laser interferometer gravitational-
wave observatory (LIGO), alternating with thin layers of silica
(SiO2) [1,2]. Thermal annealing at a higher temperature can
reduce both optical and mechanical losses, the latter important
for reducing thermal noise in precision measurement appli-
cations, such as LIGO. Zirconia also has a high refractive
index, and recent experiments show that zirconia can frustrate
crystallization in tantala thin films, allowing for annealing at
much higher temperatures without crystallization [3]. To bet-
ter understand the doping effects, modeling and simulations
are essential to obtain the underlying atomic structures.

Atomic structures of amorphous materials depend on their
deposition methods and thermal history [3–6], which makes it
very difficult to generate proper structure models even with
the physical constraints from experimental measurements,
such as density and radial distribution functions (RDFs).
Various approaches, such as melting and quenching, simu-
lated annealing, reverse Monte Carlo, etc., have been used
to build realistic models. By combining experimental RDFs
with the reverse Monte Carlo (RMC) method and forces from

*jiangjun413@ufl.edu
†hping@ufl.edu

calculations, force-enhanced atomic refinement has been
shown to produce realistic atomic models of amorphous ma-
terials [7].

Doping introduces additional challenges to the modeling
process as more element types will create more complex
atomic structures. Also, different elements have different in-
teractions. Unified interatomic potentials [8–10] have been
developed to account for this. By simply mixing potentials
from pure oxides of the same form with effective Coulomb
interactions between different metal atoms, complex doping
systems can be described with the combined potentials. Beest-
Kramer-Santen (BKS) potentials were initially invented for
silica (SiO2) and aluminophosphate [8]. Zirconia (ZrO2) BKS
potentials have also been developed and combined with the
silica BKS potential to enable the study of energy recoil
damage in ZrSiO4. The thermal expansion, relative stability
and phase-transition properties calculated with these poten-
tials are consistent with experimental and density functional
theory (DFT) results [9]. By adding a Morse term to the
BKS potential, amorphous SiO2, ZrO2, Ta2O5, TiO2 and
HfO2 are unified into Morse-BKS potential form, and models
based on Morse-BKS potentials give RDFs that agree with
DFT models generated from experimental results [10]. With
these potentials the optimal TiO2-doping concentration for
amorphous Ta2O5 that produces the lowest mechanical loss
from molecular dynamics modeling is consistent with the
experimental measurements [11]. By combining classical pair
potentials with the reverse Monte Carlo RMC method to fit to
experimental x-ray grazing-incidence pair distribution func-
tion (GIPDF) data, it has been shown that annealing reduces
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the percentage of face-sharing and edge-sharing polyhedra
in ZrO2-doped Ta2O5 [12], which led to the discovery of
TiO2-doped GeO2 with superior mechanical loss performance
for LIGO mirror coatings [13]. Morse-BKS potentials have
also been used to identify two different types of two-level
system transitions in amorphous ZrO2-doped Ta2O5, denoted
non-cage-breaking and cage-breaking transitions, which con-
tribute to the loss peaks at different temperatures [14]. In
pure Ta2O5 the in silico broadband mechanical spectroscopy
method, using the Morse-BKS potentials the calculated me-
chanical loss matches experimental measurements closely at
low temperatures [15].

Despite these successful applications of the RMC method
and unified Morse-BKS potential for amorphous-doped ox-
ides mentioned above, there are still some problems that
remain to be solved. For example, the metal-metal interactions
are not accurate. In ZrO2-doped Ta2O5, the Ta-Ta and Ta-Zr
partial RDFs show much lower strength at the first metal-
metal peak compared to experimental and DFT results. The
energies calculated from Morse-BKS potentials do not agree
with the DFT-calculated energies. With exactly the same set
of atomic structures, the potential-energy differences between
any two of them computed with DFT are about three times
larger than those computed with Morse-BKS potentials. The
Morse-BKS potential form is not fit for some amorphous
oxides, such as amorphous germanium dioxide whose BKS
potential gives longer Ge-Ge distances compared to experi-
mental observations [16–20].

Compared to the force field approach, simulations based
on DFT calculations can be quite accurate for these complex
systems, but the size of the models is limited due to the rela-
tively high calculation cost, which increases rapidly with the
number of atoms. For amorphous modeling, simulation boxes
containing more than a few hundred atoms for pure systems
and a few thousand of atoms for doped systems are needed
to give statistically meaningful results from averaging over all
possible atomic environments for which DFT calculations are
prohibitively expensive.

In this paper, we generate an explicit multielement spec-
tral neighbor analysis potential (EME-SNAP) for amorphous
Zirconia-doped Tantala to enable the modeling of amorphous
materials more accurately than the Morse-BKS potentials and
faster than DFT calculations. The SNAP has a general form,
which can potentially be applied to different oxides and doped
systems.

II. METHOD

A. Bispectrum and SNAP formalism

Simulations using machine-learned potentials start from
abstracted features to calculate material properties, such
as energy and force. In this paper, the SNAP is used,
which utilizes bispectrum components as features to char-
acterize the local neighborhood of each atom and linear
regression to fit to targeted properties. The bispectrum was ini-
tially used in Gaussian approximation potentials and proved
to have accuracy comparable to quantum mechanics in
calculating the potential-energy surface without the elec-
trons [21–23]. Instead of the original weighted density (WD)

SNAP [24,25], the EME-SNAP [26] is used due to its im-
proved chemical sensitivity, which is achieved by separating
the contributions from different elements with partial atomic
densities.

To calculate the explicit multielement bispectrum compo-
nents, the partial atomic neighbor density for element μ at
position r is defined as

ρμ(r) = wself
μiμ

δ(0) +
∑

rik<R
μiμk
cut

δμμk fc
(
rik; Rμiμ

cut

)
wμk δ(rik ), (1)

where rik is the position of neighbor atom k relative to central
atom i, and wμ is a dimensionless weight to discriminate atom
types. The cutoff function fc ensures that the neighbor atomic
density decreases smoothly to zero at the cutoff radius Rμiμk

cut .
Only the element μ contributes to the partial density ρμ.

The radial distribution is converted into an additional polar
angle θ0 defined by θ0 = rik θmax

0 /Rμiμk
cut . Thus, the density

function can be represented in three-spherical coordinates
(θ0, θ, φ) coordinates instead of (r, θ, φ), and the density
function on the three-sphere can be expanded with four-
dimensional hyperspherical harmonics U j (θ0, θ, φ) as

ρμ(r) =
∞∑

j=0,1/2,...

uμ
j · U j (θ0, θ, φ), (2)

where the coefficients uμ
j are obtained as the inner product of

the neighbor density functions with the basis function given
by

uμ
j = wself

μiμ
U j (0) +

∑

rik<R
μiμk
cut

δμμk fc
(
rik; Rμiμ

cut

)
wμkU j (θ0, θ, φ).

(3)

The bispectrum components Bj1 j2 j can then be obtained via

Bj1 j2 j =
Nelem∑

κ,λ,μ=1

Bκλμ
j1 j2 j, (4)

Bκλμ
j1 j2 j = 1

2 j + 1
uκ

j1

⊗

j1 j2 j

uλ
j2 · (

uμ
j

)∗
, (5)

where
⊗

j1 j2 j represents the Clebsch-Gordan product of ma-
trices of degrees j1 and j2 that produces a matrix of degree j
defined in the original SNAP formulation [24]; j must satisfy
the conditions ‖ j1 − j2‖ � j � ‖ j1 + j2‖.

In EME-SNAP, the total energy E (rN ) and forces Fk are
expressed as linear functions of projected bispectrum compo-
nents Bi and their derivatives,

E (rN ) =
Nelem∑

μ=1

βμ ·
N∑

i=1

Bi, (6)

Fk = −
Nelem∑

μ=1

βμ ·
N∑

i=1

∂Bi

∂rk
, (7)

where Bi’s are the (NBN3
elem ) EME bispectrum components for

atom i and the βμ are the (NBN3
elem ) coefficients fitted from the

training process.
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B. Training structures and parameters optimization

In this section, we generate an EME-SNAP machine
learning potential for amorphous Zirconia-doped Tantala that
includes three elements (Ta, Zr, and O) explicitly.

The first step in constructing a potential is to prepare
the training set. In addition to the crystalline zirconia and
crystalline tantala models, amorphous zirconia, amorphous
tantala, and amorphous Zirconia-doped Tantala models are
also used as training structures. The crystalline models are ex-
perimentally verified phases from The Materials Project [27].
The amorphous models are made from melting-quenching
crystal structures using classical pair potentials or DFT calcu-
lations. Each model produces a series of training structures by
randomly shifting atoms, distorting cells and creating molec-
ular dynamics (MD) trajectories. The energies, forces and
stresses of these models from DFT calculations are used as
the training set. The comparison between experimental elastic
moduli and calculated ones is discussed in Sec. III D.

MD simulations based on classical pair potentials
and SNAP potentials are performed using the large-scale
atomic/molecular massively parallel simulator (LAMMPS)
software package [28]. The BKS pair potential [9] for zir-
conia and the Morse-BKS potential [10] for tantala are used
as the classical pair potentials. First-principles calculations
are performed using the Vienna ab initio simulation program
code [29–31] derived from self-consistent DFT [32] using
projector-augmented wave potentials [33,34] in conjunction
with the plane-wave expansion. The exchange and correlation
functional are calculated using the parameter-free general-
ized gradient approximation developed by Perdew, Burke,
and Ernzerhof [35]. The energy cutoff is 520 eV. For crystal
structures the k mesh is 7 × 7 × 7 or 11 × 11 × 11 using the
Monkhorst-Pack scheme [36] depending on the unit-cell size.
For amorphous structures, only the 	 point is considered in
the calculations. The energy and force convergence criteria
are 10−6 eV and 0.02 eV/Å, respectively.

Once we have the training set, the bispectrum coefficients
are calculated using the LAMMPS [28] software package devel-
oped by Thompson [24]. The training of the SNAP potentials
is performed using the python package FITSNAP [37]. The
hyperparameters and cutoffs of atoms are optimized through
grid searching. The cutoff radius for Ta is 3.43 Å, for O is
2.45 Å, and for Zr is 3.67 Å. The weights of Ta, O, and Zr are
0.92, 1.00, and 0.67.

III. SNAP POTENTIAL RESULTS AND APPLICATIONS

A. Training errors of energies, forces, and stresses

The training structures for crystal Ta2O5 are mp-10390,
mp-554867, and mp-624688. For crystalline ZrO2, mp-
1190186, mp-1565, mp-2574, mp-2858, mp-556605, and
mp-963 are used. (IDs are indexed in materials project
database [27]) The crystal structures are only primitive cells.
The shifted, distorted, and MD trajectories of the crystal
phases are starting from crystalline supercells, which are 300–
1000 atoms, and the supercells are enlarged to be as cubic in
shape as possible.

The reference energies, forces, and stresses (DFT) and
predicted energies, forces, and stresses (SNAP) from the
training set (randomly selected in all models) are plotted in

FIG. 1. The distribution of training and testing errors for ener-
gies, forces, and stresses when EME-SNAP results are compared to
DFT references.

Figs. 1(a), 1(c) and 1(e), respectively. The testing set (ran-
domly selected from all models besides the training models)
error distributions are shown in Figs. 1(b), 1(d) and 1(f). These
results demonstrate that the energies and forces from SNAP
are in agreement with the DFT references. The total mean
absolute errors (MAEs) are 1.5 meV per atom for energy and
0.22 eV/Å for force. The MAEs of energies and forces for
each type of training set are shown in Table I. The force stress
tensors of each model calculated from SNAP also match the
DFT references reasonably well, even though they are not
training properties. Both the training and the testing errors
show almost the same error distribution and no overfitting is
found during training tests with different training set sizes.

B. Two-body pair force comparison

Unlike the simple form of the classical two-body pair
potential, the EME-SNAP has hundreds of parameters and
includes many-body interactions. Besides comparing ener-
gies, forces and stresses to first-principle calculations, it is
necessary to check two-body interactions and see how well
the EME-SNAP works in this limit. Here, we performed force
calculations between various pairs in the system to give in-
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TABLE I. The MAEs of energies and forces for each type of training set.

Type Nconfig Nforce EMAE (eV/atom) FMAE (eV/Å)

Crystalline Ta2O5 860 2.7 × 104 1.2 × 10−3 1.5 × 10−1

Crystalline ZrO2 2104 9.2 × 104 8.2 × 10−4 6.5 × 10−2

Liquid O2 37 7.1 × 104 2.1 × 10−3 2.9 × 10−1

Amorphous Ta2O5 261 5.7 × 105 8.7 × 10−4 1.8 × 10−1

Amorphous ZrO2 540 1.1 × 106 7.3 × 10−4 1.1 × 10−1

12% ZrO2-doped Ta2O5 48 1.4 × 105 7.5 × 10−4 2.1 × 10−1

25% ZrO2-doped Ta2O5 56 1.6 × 105 9.0 × 10−4 2.1 × 10−1

38% ZrO2-doped Ta2O5 69 2.0 × 105 6.7 × 10−4 2.1 × 10−1

50% ZrO2-doped Ta2O5 1143 3.0 × 106 2.9 × 10−4 2.9 × 10−1

50% ZrO2-doped Ta2O5 small 3926 3.3 × 106 3.0 × 10−3 3.3 × 10−1

sight into the EME-SNAP. With only two atoms included the
forces are calculated by continually changing the distance be-
tween the two atoms. There are six types of pairs: Ta-O, Zr-O,
O-O, Ta-Ta, Zr-Zr, and Ta-Zr. The two-body pair forces of
each type are shown in Fig. 2. The forces shown are calculated
based on self-consistent DFT, the Morse-BKS pair potentials,
and the EME-SNAP for comparison.

From these results, we find that the EME-SNAP two-body
pair forces for Ta-O and Zr-O are similar to the forces de-
rived from the Morse-BKS potentials, which are almost on
top of the DFT results below 3.5 Å. All sets of forces have
a minimum near 2.0 Å for Ta-O and 2.1 Å for Zr-O with
similar magnitudes. In amorphous oxides, the metal atoms
are mostly surrounded by oxygen atoms, which makes the
metal-oxygen “bonds” one of the most important interac-
tions. From previous studies [8–10], the analytic form of the
Morse-BKS potential comes from physical understanding and

has proven to be very successful in modeling amorphous
oxides, such as Ta2O5 and ZrO2. On the other hand, the EME-
SNAP is only trained from the energies, forces and stresses
from first-principle calculations, and, thus, there is no physical
understanding, such as bonds or effective charges included.
The similarity in the two-body pair forces of Ta-O and Zr-O
from DFT, Morse-BKS, and EME-SNAP is solid evidence
that both the Morse-BKS potential and the EME-SNAP have
captured the physical interactions between metal and oxygen
atoms in amorphous ZrO2-doped Ta2O5 . These metal-oxygen
interactions are directly related to the short-range order of the
RDF in amorphous oxides, and indeed the RDFs in the follow-
ing section affirm that both potentials agree on the short-range
order.

The two-body pair forces of O-O from the Morse-BKS po-
tential are always repulsive, whereas O-O from EME-SNAP
shows bonding behavior near 1.4 Å, similar to DFT, which

FIG. 2. Two-body pair force comparison among the DFT (black), the EME-SNAP potential (red), and the Morse-BKS potential (blue) for
(a) Ta-O, (b) Zr-O, (c) O-O, (d) Ta-Ta, (e) Ta-Zr, and (f) Zr-Zr in amorphous ZrO2-doped Ta2O5.
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FIG. 3. Cohesive energies of RMC- and DFT-relaxed models
(50% ZrO2-doped Ta2O5 with 975 atoms) from DFT, the Morse-BKS
potential and EME-SNAP. The horizontal axis is the cohesive energy
from DFT and the vertical axis is the calculated cohersive energy
from Morse-BKS or EME-SNAP. The black dotted line is for refer-
ence where the calculated energy match the DFT energy. The square
symbols are RMC models and the cross symbols are models whose
atomic structures are relaxed by minimizing their DFT energies.

makes the EME-SNAP more correct physically when consid-
ering only O-O interactions. For the Morse-BKS potentials,
Ta-Ta, Ta-Zr, and Zr-Zr pairs include only the Coulomb re-
pulsion from effective charges. The EME-SNAP gives the
same trend in forces for each pair, but they are slightly
different from the Morse-BKS potentials, as expected. The
metal-metal pairs in amorphous oxides are connected through
oxygen atoms, and their pair distances are longer than 3 Å.
The slightly different two-body pair forces and many-body
contributions in SNAP beneficially affect the Ta-Ta, Ta-
Zr, and Zr-Zr RDFs beyond 3 Å, which is noted in the
following subsection. The DFT O-O and metal-metal pair
forces in the calculations only consider the interactions be-
tween a single type of element, different from pair forces of
the Morse-BKS potentials and EME-SNAP for amorphous
oxides.

We also compared cohesive energies Ec of amorphous 50%
ZrO2-doped Ta2O5 models computed by various potentials.
The cohesive energy from DFT is computed as

Ec = [Etotal − NTaETa − NZrEZr − NOEO]

Ntotal
, (8)

where Nx and Ex are the number and the energy of element
x, and Ntotal and Etotal are the total number of atoms and total
energy of the system in the unit cell.

Figure 3 shows cohesive energies computed from Morse-
BKS and from EME-SNAP potentials on the vertical axis vs
DFT cohesive energies on the horizontal axis. Each point in
the plot represents one structural model. Two sets of models
are investigated, one generated by RMC (square symbols,
blue and red) and the other (cross symbols, purple and or-
ange) from RMC models further relaxed using DFT energy

minimization. The black dotted line is where the calculated
cohesive energy matches perfectly the DFT energy. From the
results, we find that the calculated cohesive energies from
EME-SNAP are closer to the dotted lines compared to Morse-
BKS for both RMC- and DFT-relaxed models. Deviations of
EME-SNAP from DFT energies are around 0.05 eV, and of
Morse-BKS are around 0.25 eV. The EME-SNAP behaviors
as lines parallel to the black dotted line, means the energy
differences between models have even lower errors besides
the total energy shift, which are more important in the MD
simulations.

C. Radial distribution function

In order to get a better idea about the amorphous atomic
structures, we calculate partial RDFs for models from DFT,
EME-SNAP, and Morse-BKS potentials. The calculated par-
tial RDFs in Fig. 4 are from two sets of models with different
numbers of atoms. One set comes from models with 975
atoms (solid lines) that are initially generated by fitting to
the experimental x-ray GIPDF using the RMC method [14],
and the other comes from models with 19 500 atoms (dotted
lines) starting from randomly generated structures based on
the experimental measured density followed by heating up
and cooling down from 3000 K with the NVT ensemble. The
black lines are the references, which represent the atomic
structures starting from RMC models and relaxed with DFT
energy minimization. From previous work, we find the RMC
models are slightly different from the DFT models after en-
ergy minimization [12,14]. EME-SNAP is generated based on
DFT calculations; here, we are only focusing on the com-
parison between Morse-BKS and EME-SNAP with DFT as
a reference. The red and blue lines represent configurations
collected from MD trajectories generated at 300 K in the
isothermal isobaric ensemble (NPT) based on the Morse-BKS
potentials and EME-SNAP, respectively. Their initial atomic
structures are also from the same RMC models. Here, due to
the extremely long DFT calculation time for models with 975
atoms, we use DFT-relaxed structures as references instead of
configurations from room-temperature MD trajectories. From
the results, we find that the partial RDFs from the EME-
SNAP models with 975 atoms (red solid lines) match the
DFT results (black solid lines) fairly well through the whole
range. Meanwhile, the partial RDFs from models with 975
atoms generated from the Morse-BKS potentials (blue solid
lines) also have good agreement with the DFT partial RDFs,
except for slightly underestimating the first peaks of Ta-Ta,
Zr-Zr, and Ta-Zr pairs. The partial RDFs from the 975-atom
models are in agreement with the DFT results because both
the Morse-BKS potentials and EME-SNAP are both good
at describing atomic structures near the same initial RMC
structures. Figures 4(d) and 4(f) show significant differences
in metal-metal partial RDFs from the 19 500 atom mod-
els generated from the Morse-BKS potentials (blue dotted
lines) and DFT (black solid lines), especially for the first
peak of the Ta-Ta and Ta-Zr pairs, whereas EME-SNAP-
generated models (red dotted lines) still give similar partial
RDFs compared to those from DFT generated models. Since
all 19 500 atom models are from random structures and pre-
pared with the same recipe, we assert that the EME-SNAP
is more robust and can lead to structures that agree with
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FIG. 4. Radial distribution function comparison of the Morse-BKS potential, the SNAP potential, and DFT results.

partial RDFs from DFT models without the need for RMC
fitting.

D. Elastic modulus

The elastic moduli from experimental measurements can
be used to verify the quality of the potentials, providing
additional information for modeling and simulations. For
amorphous materials, calculating elastic moduli with small
samples (such as 364-atom models) tend to have signif-
icant variations. It is necessary to average over multiple
configurations or use a larger model with more atoms to
obtain converged results. The calculations with DFT need a
huge mount of computational resources, which make it pro-
hibitively expensive. On the other hand, calculations using
classical pair potentials and machine learning potentials can

easily solve this problem since they can be, at least, 103 times
faster than DFT.

In this paper, the elastic moduli of amorphous ZrO2-doped
Ta2O5 are calculated using models with 19 500 atoms based
on the Morse-BKS potentials and EME-SNAP. The elastic
moduli are calculated from the elastic strain tensors accord-
ing to Voigt-Reuss-Hill approximations [38–41]. By changing
the simulation box size along different directions, the elastic
strain tensors are calculated from the change in the system
energies under strain. Compared to the models with 975 atoms
or 364 atoms, the larger models (19 500 atoms) the elastic
tensors are more isotropic in different directions, and the cal-
culations of the elastic moduli are more consistent due to the
better statistics. Table II contains the elastic properties from
the Morse-BKS potentials and EME-SNAP, as well as the
experimental measurements. The Morse-BKS potentials tend
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TABLE II. Elastic properties of ZrO2-doped Ta2O5 from the Morse-BKS models, the EME-SNAP models, and the experimental
measurements.

Zr:Ta2O5 Zr (%) Density (g/cm3) Young’s (GPa) Bulk (GPa) Shear (GPa) Poisson ratio

EME-SNAP 50 6.4 125 91 49 0.27
Morse-BKS 50 6.8 172 123 68 0.27
MLD 2018 [3] 50.2 ± 0.3 130 ± 2
UMP 551 [3] 41 ± 3 6.1 ± 0.2 125 ± 2 0.21 ± 0.05
UMP 554 [3] 43 ± 3 5.9 ± 0.2 114 ± 2 0.36 ± 0.03
UMP 678 [3] 47 ± 2 6.6 ± 0.2 111 ± 4 0.28 ± 0.09
UMP 680 [3] 47 ± 2 6.5 ± 0.2 110 ± 4 0.28 ± 0.09
CSU III [3] 54 ± 3 7.1 143 ± 5 0.37 ± 0.05

to overestimate Young’s modulus, whereas the EME-SNAP
results agree well with experiments [3].

E. Simulated annealing with MD simulation

The experimental estimated density of amorphous
Zirconia-doped Tantala with 50% Zr cation concentrations is
about 6.5 g/cm3 [12]. We use this value as the initial density
for the models. The final density of the amorphous models
from the Morse-BKS potentials and EME-SNAP are 6.8
and 6.4 g/cm3, respectively, after having been equilibrated at
300 K with the NPT ensemble. From Table II, we found that
there is a nonlinear relationship between density and doping
concentration. The experimental densities of the amorphous
materials are also dependent on the deposition methods and
annealing processes, further complicating the comparison
between experiments and models.

We simulate the annealing of 50% Zirconia-doped Tantala
with the EME-SNAP by heating and cooling the models at
different rates. First, we heat the models at 20 K/ps from
300 K, then cool the snapshots from different temperatures
with different rates. All simulations are performed using mod-
els with 19 500 atoms, and we take one snapshot every 10 fs.
The results are plotted in Fig. 5.

Figure 5 gives the density and temperature of each con-
figuration. From these results, the models cooled with slower
rates from higher temperatures had lower energies, and the
potential energies and the densities of models after simu-
lated annealing depend on both annealing temperature and
cooling rate. The final densities range from 6.2 to 6.4 g/cm3,
which is slightly lower than the targeted experimental value
of 6.5 g/cm3. The experimental atomic density vs the temper-
ature curve during annealing is not available for comparison,
but the large variation of the experimental densities of
amorphous SiO2 [5], amorphous Ta2O5 [5], and amorphous
ZrO2-doped Ta2O5 [3] suggest a nontrivial dependence on the
deposition conditions and annealing temperatures.

F. Simulated mechanical spectroscopy

By applying a periodic strain on the simulation box and
calculating the stress responses from MD simulations, we can
simulate the mechanical spectroscopy [42–44] of the amor-
phous materials. The strain vs the potential-energy curve can
reveal the potential-energy response to the strain, and it can
also be used to check the volume stability of the models.

Mechanical spectroscopy has been used to extract mechanical
loss properties successfully for amorphous tantala [15].

We applied periodic strain with 0.01 amplitude to 50%
Zirconia-doped Tantala with both Morse-BKS and EME-
SNAP to simulate mechanical spectroscopy (see Fig. 6).
Before we collect the results, 50-ns simulations are performed
to allow the atomic structures to be further relaxed under
strain. We found that both potentials give similar mechanical
spectroscopy. As soon as the additional strain is applied, the
potential energies go up. Compression strains show larger
energy changes compared to tensile strains with the same
amplitude. Comparing the results from Morse-BKS and EME-
SNAP, we note that Morse-BKS gives larger energy changes
and stress responses, which is consistent with results that
Morse-BKS gives a larger elastic modulus in Table II.

IV. CONCLUSION AND DISCUSSION

With training from the energies, forces, and stresses from
DFT calculations, we generated an EME-SNAP for amor-
phous Zirconia-doped Tantala. The EME-SNAP faithfully
reproduces the energies, forces, and stresses compared to

FIG. 5. Temperature vs atomic density of amorphous models
during simulated annealing. The blue triangle represents models
from Morse-BKS potentials. The gray region is the experiment
densities.
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FIG. 6. Mechanical spectroscopy simulations of 50% ZrO2-
doped Ta2O5. The frequency of the strain is 1 × 109 Hz at 300 K.
(a), (c), and (e) are from models with the Morse-BKS potential, and
(b), (d), and (f) are from models with EME-SNAP.

the DFT references. The amorphous Zirconia-doped Tan-
tala models generated from SNAP are able to capture the
correct short-range order and better metal-metal partial pair
RDFs than the well-built Morse-BKS classical pair potentials.
Without any prior knowledge, EME-SNAP is able to learn
from training and give a computable potential for the targeted
system. The relatively fast calculation speed of EME-SNAP
enables large-size models and long-time simulations, which
makes more realistic amorphous models with better statistics
for properties, such as RDFs and elastic moduli. Doping is
also automatically included and becomes a nonissue com-
pared to the classical pair potentials.

Despite the success of the EME-SNAP in this paper, there
are still some problems that must be mentioned. In this paper,
the EME-SNAP is developed for zirconia-doped amorphous
tantala with both crystals and amorphous structures included
in the training set, but it cannot capture the recrystallization
process when we cool very slowly from high temperatures
(>1000 K). The atoms will have the chance to aggregate
together and result in unphysical structures with extremely
high potential energies. The higher the temperature is and the
slower the cooling rate is, the higher chance the potential fails.

This behavior is partially mitigated by using EME-SNAP in-
stead of WD-SNAP, which improves the chemical sensitivity
and force accuracy by explicitly considering the partial atomic
density for each type of element. Failed structures, DFT MD
trajectories at higher temperatures are also added into the
training set. They can improve the high-temperature stabil-
ity, but they also increase errors in the amorphous structures
of interest in this paper. Failure in the simulations can also
be triggered by the formation of oxygen molecules. Oxygen
molecules may exist in real amorphous oxides, and in the
two-body force test SNAP shows O-O bonding in oxygen
molecules around 1.4 Å. But currently, SNAP does not include
them properly, even with liquid oxygen added to the train-
ing set. We can avoid this problem by adding an additional
repulsive interaction between O atoms, but this modifica-
tion will increase the training errors significantly and lead to
low-density states which are not close to experimental mea-
surements. To avoid these failures, the best approach for now
is smoothly mixing 10% to 20% Morse-BKS potentials in the
EME-SNAP at high temperatures. Another possible solution
is applying the machine learning on-the-fly technique [45,46]
to add training structures during simulations and adjust the
parameters based on the different atomic environments.

To summarize, the EME-SNAP based on machine learning
techniques give us an alternate way of calculating forces and
energies with a good balance of accuracy and calculation
cost, which enables the modeling of complex systems, such
as doped amorphous oxides. With a proper training of the
targeted structures, it can be used to study energy landscapesas
well as elastic and thermal properties. More effort in improv-
ing generality and stability of the potential is required to study
more complex physics, such as recrystallization and phase
transitions.
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