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We numerically study strong coupling between terahertz excitations in a hybrid material consisting of a three-
dimensional (3D) topological insulator (TI) and a quasi-two-dimensional (2D) van der Waals antiferromagnet.
We find that the interaction between a surface Dirac plasmon polariton in the 3D TI and a magnon polariton in
the 2D antiferromagnet is mediated by the phonon coupling in the 3D TI material and can result in emergence
of a new hybridized mode, namely, a surface Dirac plasmon-phonon-magnon polariton. We numerically study
the dependence of the strong coupling on a variety of structural parameters of the 3D-TI/2D-antiferromagnetic
(AFM) hybrid material. Our results reveal that the strength of the coupling depends primarily on the anisotropy
constant of the 2D AFM material, as well as on its thickness, and reaches a maximum when the AFM
layer is sufficiently thick to be considered a half-infinite slab. We show that the extremely large anisotropy
constant reported for certain 2D van der Waals antiferromagnets results in a coupling strength that should be
experimentally observable even in the presence of realistic scattering losses.
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I. INTRODUCTION

The tremendous progress in materials science and en-
gineering in recent years has resulted in the synthesis of
numerous new classes of materials with unprecedented prop-
erties and the potential to develop new devices that address
the “terahertz gap” in optoelectronic device technologies in
an important region of the electromagnetic spectrum [1–10].
For instance, three-dimensional topological insulators (3D
TIs) such as Sb2Te3, Bi2Te3, and Bi2Se3, which host two-
dimensional surface Dirac plasmons with energy in the
terahertz regime, could be utilized to guide terahertz signals
within integrated circuits [11–14]. Similarly, two-dimensional
(2D) van der Waals antiferromagnetic (AFM) materials like
FePS3, NiPS3, MnBi2Te3, and CrI3, which host magnons in
the same terahertz energy range, could be employed to transfer
terahertz-frequency information without energy dissipation
due to the absence of charge current [15–22]. However, to
date the generation of terahertz magnons in AFM materials
is still not well controlled, with common techniques relying
on conversion from a thermal source [23–26]. Moreover, the
magnon in an AFM material is insensitive to small external
magnetic fields because of a vanishing macroscopic mag-
netic moment. Those material properties make it difficult to
utilize magnons in antiferromagnets within devices. Finding
ways to generate, control, and detect magnons in an AFM-
material-based heterostructure is therefore one essential step
toward improved devices. In that context, a strong interaction
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between the electric and magnetic degree of freedoms in
a TI/AFM heterostructure, which results in a hybridization
between the magnetic and plasmonic resonances of the two
constituents, may provide an effective alternative for the exci-
tation, manipulation, and detection of the magnon via optical
control of the dispersion of surface plasmons in the TI. More-
over, the hybridization of magnons with photons [27–30] or
phonons [21,26] could lead to emergent properties that offer
even more device opportunities.

We numerically study the emergence of strong cou-
pling between terahertz excitations in a 3D TI/AFM hybrid
material. Specifically, we consider hybridization of two exci-
tations: the Dirac plasmon-phonon polariton (DPPP) on the
surface of a 3D TI and a magnon polariton (MP) in an an-
tiferromagnet. The DPPP on the surface of 3D TI is itself
a hybridized state, as described below, and such polaritons
have been studied extensively [31–37]. MPs, which are the
collective excitations of electronic spins in a magnetic ma-
terial (i.e., spin waves), have also been studied extensively
in numerous material platforms [38–43]. To date there have
been just a few reports on the interaction between the surface
DPPP and the MP in heterostructures composed of a 3D TI
and an antiferromagnet, and these have been limited to 3D
antiferromagnetic materials such as NiO, FeF2, and MnF2

[44–46]. The computationally predicted anticrossing splitting
in the systems studied to date is too small to be observed
experimentally. In other words, these previous reports suggest
that it will not be possible to create hybridized states or reach
the strong-coupling regime in such systems with presently
available materials.

We show that three changes to the 3D TI/AFM hybrid
material composition and structure allow for entry into the
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regime in which strong coupling should be experimentally
observable. First, we consider 2D van der Waals antifer-
romagnets such as FePS3, which has an anisotropy energy
with magnitude between 2.66 and 3.6 meV [26,47–50], up
to three orders of magnitude larger than that of a typical 3D
antiferromagnetic material like MnF3. This remarkably large
anisotropy energy significantly increases the strength of cou-
pling between the magnon polariton in the 2D antiferromagnet
and the surface DPPP in a 3D TI. The relatively high magnon
energy (≈3.7 THz) in FePS3 [26,51] also reduces the need
for an extremely high-quality 3D TI such as that reported
previously for a hybrid composed of a 3D TI and a traditional
3D antiferromagnet [46]. Second, increasing the thickness of
the AFM material allows one to tune the number of magnons
in the hybridized states, which in turn increases the coupling
constant. Third, the coupling of an electromagnetic wave with
a phonon in the bulk of a 3D TI allows one to tune the
energy of the DPPP by changing the thickness of the TI. This
provides a tool for tuning the DPPP toward resonance with the
MP in the AFM material, thereby enhancing the strength and
visibility of the coupling between the excitations in the two
materials.

The paper is organized as follow. In Sec. II, we present the
methods and models employed to investigate the interaction
between the 3D TI layer and the 2D AFM material. We first
introduce a conceptual model and computational framework
for studying the anticrossing between hybridized states of a
DPPP and MP. We next introduce the optical response func-
tions of TIs and antiferromagnets to the electric and magnetic
components of an electromagnetic wave propagating within
each constituent material. We end Sec. II with a description
of the global scattering matrix method we employ to solve
Maxwell’s equations within the TI/AFM heterostructure and
compute a dispersion relation describing the dependence of
the energy (or frequency) of the excitations [E (k) or ω(k)]
on the wave vector k. In Sec. III we discuss the calculated
dispersion relations for the surface DPPPs. We explore the
dependence of these dispersion relations on various material
properties and, in particular, explore the material and device
properties required to obtain strong coupling between the 3D
TI and the 2D AFM heterostructure. The roles of the material
parameters in tuning the strength of this coupling provide
important guidance as to how the strong-coupling regime can
be reached experimentally. Finally, we provide conclusions
and perspectives for this work in Sec. IV.

II. THEORY AND MODEL

A. Conceptual framework

Hybridized states are established when two distinct exci-
tations interact with sufficient strength to create a new mode
whose character and dispersion relation cannot be understood
by considering either excitation alone [33,52,53]. A good ex-
ample is the formation of a surface plasmon polariton, which
is a hybridized state formed from an electromagnetic (EM)
wave (photon) and charges oscillating at a metallic sample
surface (plasmon). The emergence of such a hybridized state
is typically observed through an anticrossing (avoided cross-
ing) in the dispersion relation. The strength of the interaction

can be parametrized by the amplitude of the avoided-crossing
splitting between the two polariton branches. By analogy to
cavity quantum electrodynamics, we define strong coupling to
be the regime in which the observed mode splitting δ becomes
comparable to the linewidth of the involved excitation, making
the cooperativity factor C = δ2

4�1�2
� 1 [54], where �1 and �2

are the linewidths of the isolated excitations that comprise
the hybridized states. These linewidths originate in the loss
(dissipation) for each excitation.

Tuning the DPPP into resonance with the MP results in
stronger and more easily observable coupling. This can be
understood conceptually from a 2 × 2 matrix Hamiltonian:

Ĥ =
[

EDPPP(k, dTI ) Vint

Vint EMP(k)

]
, (1)

where EDPPP(k, dTI) is the energy of the DPPP in the TI, which
depends on the wave vector k and the TI thickness dTI; EMP

is the energy of the magnon polariton in the antiferromagnet;
and Vint is the strength of the coupling between the DPPP and
the MP. The energies of the hybridized state that arises due to
coupling are found from the eigenvalues of this matrix. The
eigenstates are the hybridized modes with both DPPP and MP
characterized, i.e., the superposition �Hybrid = �TI + �AFM

where �TI and �AFM describe the surface Dirac plasmon-
phonon-polariton state in the TI and the magnon polariton
state in the antiferromagnet, respectively.

When EDPPP and EMP are significantly different, the eigen-
states remain largely dominated by either the DPPP or MP
modes. The perturbation induced by the coupling is small and
difficult to distinguish from the normal k dependence of the
energy for the independent DPPP or MP. In other words, the
two excitations are only weakly coupled. Two factors impact
the strength and visibility of the coupling. First, when dTI is
chosen so that EDPPP(k) and EMP(k) are degenerate for some
value of k, the eigenstates at the degeneracy point have energy
EDPPP(k) ± Vint (which is equal to EMP(k) ± Vint for this value
of k). In other words, the eigenstates are fully hybridized
polaritons with equal DPPP and MP composition. For this
reason, the dependence of the DPPP energy on dTI provides
a powerful tool for tuning the excitations into resonance and
creating a fully hybridized state. Second, the magnitude of
the interaction parameter Vint controls the magnitude of the
anticrossing splitting (δ = 2Vint ). As we will show below, the
choice of a 2D antiferromagnet with large anisotropy energy
and an increasing thickness of the AFM material both increase
the strength of the interaction between magnons and the EM
wave.

B. Computational framework

An EM wave will excite both surface DPPPs in the TI and
MPs in the antiferromagnet via its electric and magnetic field
components. Those excitations will interact with each other,
resulting in the hybridization between plasmon-phononic and
magnetic resonance, namely, the creation of surface Dirac
plasmon-phonon-magnon polaritons (SDPP-MPs) that lead
to changes in the dispersion relationship ω(k). We compute
these dispersion relations using a global scattering matrix that
allows us to (a) find a solution to Maxwell’s equations for an
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EM wave propagating in the considered structure subject to
standard boundary conditions at interfaces and (b) pull out
information about the electric field amplitudes at any point
or interface within the heterostructure. From the output of this
technique we plot the imaginary part of the reflection coeffi-
cient, which describes the amplitudes of the evanescent waves
propagating along the surface of the TI layer as a function of
in-plane wave vector and the frequency of EM wave. Local
maxima of the imaginary part of the reflection coefficient
represent the existence of the modes and thus this type of plot
effectively reveals the dispersion relation. Analysis of the dis-
persion relationships for these hybridized modes as a function
of the structural parameters allows us to explore the physical
origins of the interactions. The inputs for this global scattering
method are the optical response function and thickness of the
corresponding material constituents of the system, which we
present next.

C. Optical response function: TI

We consider two potential 3D TI materials, Bi2Se3 and
Sb2Te3, that host two-dimensional spin-polarized Dirac plas-
mons on the surface. The behavior of these Dirac plasmons is
analogous to that in graphene and the Dirac plasmon system
on the surface of a pristine 3D TI layer can be treated as a
conducting electron sheet with optical conductivity given by

σTI = e2EF

4π h̄2

i

ω + iτ−1
, (2)

where EF ≈ 260 meV is the Fermi energy of surface states,
τ ≈ 0.06 ps is the relaxation time [37], and e is the electron
charge.

We note that a TI thin film can acquire a nonzero local
magnetic moment due to proximity with an AFM material
when the two materials are put in contact. However, this effect
is normally weak and can be neglected, especially in the case
of an AFM material [55]. In addition, the hybridized states
at the interface between a TI and another material (e.g., the
antiferromagnet in this work) may change the carrier density
at the interface, as predicted by density functional theory for
the case of a TI/III-V semiconductor interface [56]. In the
case of a structure composed of two van der Waals materials,
this effect is expected to be small and can be ignored. We
therefore assume the same optical conductivity expression for
the conducting surface of the TI and the interface between the
TI and the AFM. In other words, in the following σ0 ≡ σ1 ≡ σ

as given by Eq. (2) (where σ0 and σ1 are respectively the
optical conductivity of the Dirac plasmon on the surface of
the TI and at the interface between the TI and the AFM).

Remarkably, interactions between the Dirac plasmon mode
and the lattice vibrations, i.e., phonons, in a bulk TI sig-
nificantly alter the dispersion of the surface Dirac plasmon
polariton in the TI, resulting in the formation of a DPPP mode
that is different from the polariton modes of 2D materials like
graphene [12,34]. In the case of chalcogenide materials with
a rhombohedral lattice and quantum layer structure, like that
of Bi2Se3 and Sb2Te3, two characteristic phonon modes are
observable when the AC electric field is perpendicular to the
c axis: the α phonon, also known as the (Eu1) mode, and the
β phonon, also known as the (Eu2) mode [57]. The strong

TABLE I. The TI parameters used in this work, taken from
Ref. [36].

Sα ωα �α Sβ ωβ �β

Materials ε∞ (cm−1) (cm−1) (cm−1) (cm−1) (cm−1) (cm−1)

Bi2Se3 1 675.9 63.03 17.5 100 126.94 10
Sb2Te3 51 1498.0 67.3 10 NA NA NA

α-phonon mode oscillation contributes to a large variation in
the TI permittivity in the terahertz regime we consider in this
work. In contrast, the contribution of the β phonon is usually
small and is negligible for the case of Sb2Te3. Incorporating
all of these effects, the frequency-dependent permittivity of
the bulk TI in the far-IR range of interest can be described by
the Drude-Lorentz model [37,46,56]:

εTI = ε∞ + S2
α

ω2
α − ω2 − iω�α

+ S2
β

ω2
β − ω2 − iω�β

, (3)

where ε∞ is the dielectric constant at high frequency (ω →
∞), and ωx, �x, and Sx are the frequency, the scattering rate,
and the strength of the Lorentz oscillator associated with the
α (x = α) and the β (x = β ) phonons of the TI thin film. Nu-
merical values for all TI parameters are taken from Ref. [36]
and are listed in Table I. All the TIs used in this work are
nonmagnetic materials, so their permeabilities are set to unity,
μTI = 1.

D. Optical response function: 2D antiferromagnet

The AFM materials we consider (FePS3, MnPS3, NiPS3,
and CoPS3) belong to a family of quasi-two-dimensional van
der Waals antiferromagnets in which the magnetic lattice is
a honeycomblike structure akin to graphene [19,20]. One of
the important theoretical advances reported here is that we
use a Heisenberg Hamiltonian model that captures the mag-
netic interactions in the quasi-2D AFM material to derive an
analytical expression for the magnetic susceptibility tensor
of FePS3. This analytical expression is generalizable to any
2D AFM material in the family XPS3 (X = Mn, Fe, Co, Ni).
This magnetic susceptibility tensor, which is the input for our
global scattering matrix method, is distinct from that of bulk
(3D) AFM materials because one has to consider interactions
between the spin moments of magnetic atoms up to the third-
next-nearest neighbor. See Appendix A for details.

Because van der Waals layered structures have very weak
interlayer coupling, the dielectric tensor of FePS3 is frequency
independent in the AFM phase and has a strong anisotropy
between the in-plane and out-of-plane dielectric constants of
the bulk materials, which can be written as

εAFM =
⎛
⎝εxx 0 0

0 εyy 0
0 0 εzz

⎞
⎠, (4)

where εxx = εyy = ε‖ = 25 and εzz = ε⊥ = 5 [58]. Below the
Néel temperature of TN = 123 K [59], the magnetic moment
of FePS3 is out of plane along the c direction (z direction). We
assume that the samples are below their Néel temperatures in
the calculations we conduct here. The permeability of FePS3
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in the absence of an external magnetic field therefore can be
expressed as

μ =
⎡
⎣μxx 0 0

0 μyy 0
0 0 1

⎤
⎦, (5)

where μxx = μyy = 1 + 4π
2γ 2HaM0


2
0−(ω+i/τmag )2 , and μzz = 1. See

Appendix A for the detailed derivation of Eq. (5). Here, γ

is the gyromagnetic ratio, Ha is the effective anisotropy field,
M0 is the sublattice magnetization saturation, 
0 is the antifer-
romagnetic resonance or zero-wave vector magnon frequency
in the AFM material, and τmag is the magnetic relaxation time.
For FePS3, M0 ≈ 830 G, Ha = 9840 kOe, 
0 = 3.7 THz, and
�AFM = 1/τmag = 0.035 THz [21]. Below we will consider
how the scattering loss rate in the AFM material influences the
strength of the coupling between the TI and AFM materials.
Finally, the substrate MgO used in this study is a nonmagnetic
material so that its permeability μMgO = 1 and its dielectric
constant is given by εMgO = 9.9 [60].

E. Global scattering matrix approach

Now that we have obtained the optical response functions
for the material constituents of our hybrid structure, we study
the interaction between the TI and the AFM constituents by
solving Maxwell’s equations to derive the dispersion relation-
ship for a monochromatic EM wave propagating in our optical
structure. We do this using the scattering matrix formalism
that has proven to be a powerful tool for investigating the elec-
tric and spin transport properties of layered structures [61–63].
Here we adapt that robust tool to our optical structure. We
note that we have previously used a recursive method [46,56]
to efficiently calculate the transmission and reflection coef-
ficients of hybrid structures, but this recursive approach does
not make it easy to pull out what happens at specific interfaces
within the structure. The ability to isolate and understand what
happens at interfaces within the structure, or in subsets of
the structure, provides important insight into the underlying
physics and the ways in which the structure and composition
can be used to tune the optical response. We therefore develop
here a so-called global scattering matrix method from which
we can easily extract what happens at each interface and
within each layer. We present a detailed description of the
global scattering matrix formalism in Appendix B. The most
important outcome of this formalism for the work presented
here is that we can compute the optical response of the entire
structure and the constituent parts from a global scattering
matrix constructed based on interfacial scattering and prop-
agation matrices that capture what happens at each interface
and within each layer of the structure. The inputs to these
interfacial scattering and propagation matrices are the material
parameters of the system and the optical response functions of
each layer.

Starting from the optical response functions derived in
the previous sections, we employ the global scattering ma-
trix formalism to compute the reflection coefficients for our
hybrid material system. The imaginary part of the reflection
coefficient, Im(r), is proportional to the losses in the system
[37,56,64–67]. The presence of loss in the reflectance spec-

TI

AFM

MgO substrate

z

x

E

,

,

y

0

1

dTI

dAFM

FIG. 1. The TI/AFM bilayer structure on an MgO substrate
investigated here. The optical response functions in each material
are the permittivity εTI/AFM and permeability μTI/AFM. An EM wave
with both TE and TM polarization is incident on the TI from above
with angle of incidence θ . However, only TM-polarized light will
excite both electric and magnetic degrees of freedom in the struc-
ture, namely, surface Dirac-plasmon-phonon polaritons in the TI and
magnon polaritons in the antiferromagnet.

trum indicates that the incident EM wave has generated an
excitation that is carrying energy away laterally, i.e., propagat-
ing in the x or y direction rather than transmitting or reflecting
in the +z or −z directions, respectively. The frequency de-
pendence of such loss thus generates the dispersion curves
for the hybridized excitations in the coupled system, which
is the aim of this study. In the next section we consider how
this dispersion relation depends on structural and material
properties, which allows us to probe the physics underlying
the formation of hybridized excitations.

III. RESULTS AND DISCUSSION

The structure under investigation in this paper is shown
in Fig. 1: an AFM material (FePS3) on a substrate (MgO) is
capped with a TI thin film. In this model, an electromagnetic
wave with both transverse electric (TE)- and transverse-
magnetic (TM)-polarized components is incident on the top
TI layer. As a result of the electromagnetic interaction with
the electric and magnetic field components of the EM wave,
surface Dirac plasmon polaritons in the TI thin film and
magnon polaritons in the AFM material will be excited at
certain resonant frequencies. The excited surface Dirac plas-
mon polaritons can then interact with the phonon in the bulk
of the TI and also couple to the magnon polaritons in the
AFM layer. We note that the TE-polarized EM wave cannot
excite the surface Dirac plasmon polaritons in the TI [56].
Consequently we consider only TM-polarized incident EM
waves in the analysis. For convenience, we denote the Carte-
sian coordinates as in Fig. 1: the z axis is along the growth
direction of the structure, the heterostructure has finite width
W in the x direction, and the heterostructure is infinite in the
y direction. We set the direction of propagation of the EM
wave to be parallel to the x−z plane so that the magnetic field
of TM-polarized EM waves is along the y axis. Throughout
our analysis the color plots in the following figures represent
the amplitude of the imaginary part of the Fresnel reflec-
tion coefficient Im(r) of the entire structure. The maxima of
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the function Im(r) reveal the dispersion relationship for the
coupled modes. We first discuss the emergence and charac-
teristics of coupled surface Dirac plasmon-phonon-magnon
modes and then consider how the strength of the coupling
depends on structural and material parameters.

We first note that in the long-wavelength limit (kxdTI � 1),
the analytical expression for the surface Dirac plasmon mode
in the TI thin film was derived in Refs. [12,13]:

ω2
T I+ = vF

√
2πn2De2

ε0h

kx

εtop + εbot + kxdTIεTI
(6)

and

ω2
T I− = 2ε0εTIhvF + e2

√
2πnDdTI√

4ε2
0ε

2
TIh

2v2
F + 2ε0εTIe2

√
2πnDdTI

k2
x , (7)

where the subscripts T I+ and T I− stand for the optical and
acoustic mode, respectively. Here vF is the Fermi velocity for
the Dirac plasmon in the TI; n2D is the sheet carrier concentra-
tion of the entire TI thin film, including the contribution from
both surfaces; εtop, εbot, and εTI are the permittivity of the top
and bottom dielectric media and the TI, respectively; kx is the
in-plane wave vector; and dTI is the thickness of the TI layer.
In this work, we focus on studying the optical mode of the
surface Dirac plasmon in the TI; only this mode can be excited
in a traditional optical experiment because the acoustic mode
does not have any contribution in the optical dipole matrix
element [13]. In the following parts we will use relation (6) as
a reference for our further analysis of the hybridized modes.

A. Surface Dirac plasmon-phonon-magnon polariton:
Signature of strong coupling

We will start by treating the antiferromagnet as a semi-
infinite slab (i.e., infinitely thick) so that we can focus on
the physics of the TI/AFM interface and the effect of the
TI parameters on the resulting emergent hybridized state.
We apply the global scattering matrix technique described in
Sec. II E to two different configurations of the structure shown
in Fig. 1: (1) an Sb2Te3 layer with thickness dTI = 500 nm on
a half-infinite bare MgO substrate and (2) the same Sb2Te3

layer with thickness dTI = 500 nm on a half-infinite FePS3

material [the thickness of the FePS3 is very large in compar-
ison to that of the Sb2Te3 layer so that, in these calculations,
dAFM ≈ 10dTI) ]. The color plot in Fig. 2 displays the imagi-
nary part of the Fresnel reflection coefficient Im(r) calculated
for the entire structure as a function of the frequency ω and
the in-plane wave vector kx.

In Fig. 2(a) we plot the dispersion relation for the surface
Dirac plasmon-phonon polariton (SDPPP) in a bare Sb2Te3

layer on the half-infinite MgO substrate. The dispersion of
the SDPPP appears in the color plot in the range between
kx = 0.02 × 105 and 0.2 × 105 cm−1. The steeper line in the
color plot between kx = 0 and 0.02 × 105 cm−1, in both this
and subsequent figures, is the dispersion of the photon in
vacuum ω = ck. This photon dispersion is not important to the
focus of this work and we normally neglect it without further
notification. The dashed white curve is an analytical calcu-
lation of the dispersion of the surface Dirac plasmon mode
in a pristine Sb2Te3 layer on a half-infinite MgO substrate

FIG. 2. (a) The dispersion relation of the surface Dirac plasmon-
phonon polariton in a bare Sb2Te3 thin film on the half-infinite MgO
substrate. The dashed white line provides, for reference, an analytical
calculation of the dispersion of the surface Dirac plasmon mode in a
pristine Sb2Te3 layer on a MgO substrate, as described in the text.
The inset shows the existence of the mode at 0.2 THz, which is
∼100× weaker than the modes at higher frequency. (b) The sur-
face Dirac plasmon-phonon-magnon polariton in the Sb2Te3/FePS3

structure. Both dispersion relations are plotted as a function of in-
plane wave vector kx and frequency ω. These calculations were both
performed with the thickness of the TI thin film dTI = 500 nm and the
FePS3 layer in (b) is sufficiently thick to be considered a semi-infinite
layer.

obtained by using Eq. (6). One can see that the dispersion
of the SDPPP represented in the color plot in Fig. 2(a) is
comparable to the analytical curve, with very good agreement
for polariton branches above 2 THz. We note that beside the
upper surface Dirac plasmon-phonon polariton branch with
frequency above 2 THz, which can be observed clearly in the
Fig. 2(a) color plot, there is also a mode at around 0.2 THz
shown in the inset. This lower polariton mode can be seen
clearly from the dashed white analytical curve around 0.2 THz
(the horizontal dashed white line) in Fig. 2(a), but its intensity
is two orders of magnitude less than the intensity of the modes
above 2 THz. This lower intensity is due to a large scattering
loss rate of the surface Dirac plasmon in the Sb2Te3 material
at room temperature. The surface Dirac plasmon, with high
loss, dominates the modes at low frequency and consequently
this lower frequency mode is barely visible in our color plot.
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FIG. 3. The imaginary part of the reflectivity Im(r) on a log-
arithmic scale as a function of frequency ω calculated for an
Sb2Te3/FePS3 structure with the thickness of TI thin film dTI =
500 nm and the FePS3 layer sufficiently thick to be considered a
semi-infinite layer. The result is calculated for a plane-wave vector
kx = 0.03 × 105 cm−1 around the resonance point for the surface
Dirac plasmon-phonon-magnon polariton.

In contrast, for the higher frequency mode (above 2 THz),
the interaction with the α phonon plays an important role and
makes the surface Dirac plasmon-phonon polariton mode be-
come visible. Overall, Fig. 2(a) simply verifies that the global
scatting matrix approach (color plot) agrees with the analyt-
ical dispersion (dashed white line) when applied to a sample
in which interactions with the AFM material are suppressed.
We will next turn on interactions with the antiferromagnet.
Because the energy of magnons in the antiferromagnets con-
sidered here is far higher than the low-energy Dirac plasmon
polariton mode, the interaction between the magnon polariton
in the antiferromagnet and the TI mode below 2 THz is small
and can be ignored.

In Fig. 2(b) the Sb2Te3 is put on top of a very thick FePS3

layer. We observe a significant change in the spectrum of the
dispersion relation around ω ≈ 3.7 THz owing to the interac-
tion between the SDPPP in the Sb2Te3 layer and the MP in the
FePS3. The coupling between the SDPPP and MP results in an
anticrossing highlighted by the green circle in Fig. 2(b). This
interaction and anticrossing lead to the formation of an upper
and a lower mode that are evident through the reduction of the
amplitude of Im(r) around ω = 3.7 THz and kx ≈ 0.3 × 105

cm−1 in the color plot. The magnitude of the splitting between
the two modes that occurs at 3.7 THz due to the coupling
between the SDPPP and MP can be evaluated by plotting the
function Im(r) vs frequency ω at a fixed kx ≈ 0.3 × 105 cm−1

(resonance point) as shown in Fig. 3. In this plot, the peaks at
around ω ≈ 3.5 THz and ω ≈ 4.2 THz indicate, respectively,
the lower and upper modes in the color plot of Fig. 2(b). The
separation between the two peaks denoted by δ is the splitting
between the two modes at the resonance point, which is twice
the strength of the coupling between the two excitations in our
system. The splitting δ ≈ 0.65 THz extracted from Fig. 3 for
the interaction between SDPPP and MP should be experimen-
tally detectable because it is comparable to the linewidth of
the isolated mode in the system. This interaction is entering
the strong-coupling regime if the cooperativity factor C =

δ2

4�TI�AFM
is greater than 1, where �TI and �AFM are, respec-

tively, the scattering loss rates of the Dirac plasmon-phonon
polariton in the TI and the magnon polariton in the AFM.
The full width at half maximum linewidth that represents
the scattering loss rate for the surface Dirac plasmon-phonon
polariton in the TI is �TI ≈ 3 THz [56]. The linewidth of the
magnon polariton in the FePS3 is �AFM = 0.035 THz [21].
Inputting these values results in a cooperativity factor C ≈ 1,
which indicates the formation of a hybridized state that is
approaching the strong-coupling regime.

B. Dependence of the coupling strength on the TI thickness:
The role of the phonon in the TI

Our primary aim in this study is to explore the mate-
rial and structural parameters that enable us to reach the
strong-coupling regime for the interaction between terahertz
excitations in a TI/AFM structure. We will now investigate
the impact of TI structural parameters on the strength of the
coupling between the SDPPPs and MPs in our system. In this
section we maintain the very large thickness of the antifer-
romagnet, i.e., the antiferromagnet is always a half-infinite
medium while the TI’s thickness is varied to understand how
dTI influences the strength of the coupling. In Figs. 4(a)–4(c)
we plot the dispersion relation of hybridized SDPP-MPs for
different thicknesses of the TI layer dTI = 500 nm, dTI = 200
nm, and dTI = 0.5 nm, respectively. We note that dTI = 0.5
nm is about the thickness of a single quintuple layer of Sb2Te3,
which is the minimum practical thickness. One observes from
those plots that the dispersion of SDPP-MPs redshifts, i.e.,
shifts toward the low-frequency regime, as the thickness of
the Sb2Te3 layer is reduced. This arises as a result of the inter-
action between the α phonon and the surface Dirac plasmon
polaritons in the TI thin film, which makes the dispersion
of the surface Dirac plasmon polaritons become thickness
dependent. Indeed, due to a strong coupling between the EM
wave and the α phonon in the TI, the real part of the dielectric
constant of the TI at low frequency possesses a transition
from positive to negative sign when the frequency ω of the
EM wave increases from zero and crosses 2 THz for both
Bi2Se3 and Sb2Te3 TI materials, as shown in Fig. 5. When the
ω keeps increasing, the dielectric constant becomes positive
again and converges to the ε∞. For the Sb2Te3 considered
here, the dielectric constant is negative in the range between
2 and 6 THz, which is why the SDPP-MP mode above 2 THz
redshifts as the TI thickness decreases. This dependence can
also be seen in the analytical expression for the surface Dirac
plasmon mode in Eq. (6) where the thickness of the TI and its
dielectric constant appear simultaneously in the denominator.
Physically, this redshift occurs because the surface Dirac plas-
mon polariton modes in the TI are coupled modes of the two
surfaces. The energy of those coupled modes depends on the
coupling constant, which is proportional to both the dielectric
constant and the thickness of the TI.

A direct consequence of the dependence of the SDPP-MPs
on the thickness of the TI thin film is that the strength of
the coupling between the SDPPP and the MP, which is mea-
sured by the magnitude of the splitting between the upper
and lower modes at 3.7 THz, reduces as the thickness of
the TI decreases. This reduction occurs because the SDPPP
shifts away from the resonance with the MP, thus reducing
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FIG. 4. The imaginary part of the reflectivity, Im(r), as a function
of frequency ω calculated for an Sb2Te3/FePS3 structure with TI
thickness (a) dTI = 500 nm, (b) dTI = 100 nm, and (c) and dTI = 0.5
nm on top of a semi-infinite FePS3 layer.
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FIG. 5. Dielectric function (real part) of Bi2Se3 (blue) and
Sb2Te3 (green) as a function of frequency plotted using Eq. (3).
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FIG. 6. Splitting δ indicating the strength of the coupling be-
tween the surface Dirac plasmon-phonon polariton in the Sb2Te3

and the magnon polariton in the FePS3 as a function of the Sb2Te3

thickness. This calculation is done with the assumption that the
FePS3 layer is very thick and can be considered as a half-infinite
medium.

the contribution of the magnon to the hybridized mode and
reducing the coupling strength [46]. We note that Fig. 4(c)
effectively describes the dispersion relation of a surface Dirac
plasmon-magnon polariton in a graphenelike/AFM system.
This is because the thickness of the TI is vanishinglysmall
in this case, creating a degeneracy of the two surfaces of the
TI and creating a graphenelike system with extremely small
coupling strength compared to that of the Sb2Te3 materials
with finite thickness (e.g., dTI = 500 nm). The analysis here
reveals the important role of the phonon in the TI as a mediator
of the interaction between the surface Dirac plasmon-
phonon polariton in the TI and the magnon polariton in the
AFM.

Using the TI’s thickness to tune the coupling strength be-
tween the surface Dirac plasmon-phonon polariton in the TI
and the magnon polariton in the antiferromagnet provides a
significant advantage relative to what could be achieved using
graphene instead of a TI. Specifically, one can enhance the
interaction and reach the strong-coupling regime by vary-
ing the TI’s thickness whereas the coupling strength for a
graphene/antiferromagnet structure is fixed. Our analysis also
indicates that pursuing a TI with larger negative dielectric
constant in the frequency regime in which the hybridized
mode is formed would reduce the time required to grow the
TI sample: a larger coupling strength could be achieved with
a thinner TI material. Specifically Sb2Te3 is a much better
candidate than Bi2Se3 for this application because the stronger
interaction with the α phonon in Sb2Te3 leads to larger mag-
nitude of the real part of the permittivity, as can be seen
in Fig. 5. Finally, to get a more complete picture of the TI
thickness-dependent coupling strength we plot in Fig. 6 the
splitting δ vs the Sb2Te3 thickness dTI. The splitting δ simply
rises monotonically without saturation upon increasing dTI

across this range of sample thicknesses, from δ ≈ 0.18 THz at
dTI = 100 nm up to δ ≈ 0.9 THz when dTI = 1000 nm. This
calculation shows that dTI � 400 nm would give a splitting
� 0.6 THz that should be experimentally observable and get
us into the strong-coupling regime for the interaction between
terahertz excitations in the Sb2Te3/FePS3 structure.
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FIG. 7. The imaginary part of reflectivity, Im(r), as a function
of frequency ω calculated for an Sb2Te3/FePS3 structure with the
thickness of TI thin film dTI = 500 nm and the thickness of the FePS3

layer (a) dAFM = 2000 nm and (b) dAFM = 1000 nm.

C. Dependence of the coupling strength on 2D AFM structure
parameters and material quality

We now consider the influence of the AFM material prop-
erties and structural parameters on the interaction between the
SDPPP and the MP in the TI/AFM structure. To do this, we
replace the semi-infinite AFM slab with a slab of finite thick-
ness on a semi-infinite MgO substate. The dispersion relations
shown in Fig. 7 are calculated by applying the global scatter-
ing matrix method with a fixed Sb2Te3 thickness of dTI = 500
nm for different thickness of the FePS3 layer, dAFM = 2000
nm [Fig. 7(a)] and dAFM = 1000 nm [Fig. 7(b)].

We previously saw that decreasing the thickness of the TI
redshifted the SDPPP mode, which in turn altered the strength
of the SDPP-MP coupling. Varying the antiferromagnet thick-
ness does not modify the dispersion of SDPP-MP in the same
way. There is no shift in either the MP or SDPPP mode with
antiferromagnet thickness. However, the coupling strength, as
measured by the splitting, increases with increasing antifer-
romagnet thickness. To understand what is happening in this
case, we plot in Fig. 8 the transmission coefficient t23, on
a logarithmic scale, for the EM wave traveling between the
second and third interfaces. These interfaces are, respectively,
(second) the interface between the TI and the antiferromagnet
and (third) the interface between the antiferromagnet and the
MgO substrate, as indicated in the inset of Fig. 8. Please refer
to Appendix B for a detailed description of how we calculated

FIG. 8. Transmission coefficient t23 as a function of frequency
ω at fixed wave vector kx = 0.03 × 105 cm−1 for dAFM = 500 nm
(blue) and dAFM = 200 nm (red). The inset represents the TI/AFM
structure and indicates how the transmission coefficient is calculated
for different paths.

this transmission coefficient from the global scattering matrix
technique. Figure 8 shows the result for dAFM = 1000 nm
(blue curve) and dAFM = 2000 nm (red curve) while keep-
ing dTI = 500 nm fixed. One can see that the transmission
coefficient t23 decreases over the entire range of frequencies
upon increasing the thickness of the AFM layer from 1000
to 2000 nm. This shows that the thinner FePS3 layer is more
transparent to the EM wave. One can think of this in analogy
to an optical absorption: there is a fixed interaction probability
(cross section) and consequently the probability of interaction
between the EM wave and the magnetic degree of freedom
in the AFM layer (MP) increases with antiferromagnet thick-
ness. Essentially, a thinner FePS3 results in smaller amplitude
of the magnon polariton mode and thus a smaller interaction
between the surface Dirac plasmon-phonon polariton in the
TI and the magnon polariton in the AFM layer because fewer
magnons participate.

We plot the splitting δ as a function of antiferromagnet
thickness in Fig. 9. One observes that the splitting δ in-
creases rapidly from 0.38 THz at dAFM = 1000 nm to 0.6
THz at dAFM = 2500 nm. The splitting begins to saturate at
dAFM = 3000 nm with δ ≈ 0.64 THz. The saturation of the
splitting occurs because of a competition between two effects.
The number of magnons generated continues to increase with
increasing AFM thickness. However, the surface electromag-
netic wave associated with the SDPPP decays exponentially
with z, which means that the cross section for interaction be-
tween the EM wave and the local spin moment also decreases
exponentially with z. In other words, magnons generated suf-
ficiently far from the TI/AFM interface do not contribute to
the formation of hybridized states and the splitting saturates
at δ ≈ 0.64 THz when dAFM = 3000 nm. Figure 9 tells us
that the FePS3 layer should be thicker than 3000 nm in order
to obtain a coupling strength close to the saturation, but that
increasing the antiferromagnet thickness above this value is
unlikely to be useful.

We next consider the impact of the anisotropy con-
stant of the AFM material constituent of the TI/AFM
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FIG. 9. Splitting δ indicating the strength of the coupling be-
tween the surface Dirac plasmon-phonon polariton in the Sb2Te3 and
the magnon polariton in the FePS3 as a function of the FePS3 thick-
ness. This calculation is done for fixed Sb2Te3 thickness dTI = 500
nm.

heterostructure. The anisotropy constant is defined by K =
γ 2HaM0, where γ , Ha, and M0 are, respectively, the gyro-
magnetic ratio, effective anisotropy field, and magnetization
of the AFM spin sublattice. In Fig. 10 we plot the disper-
sion of the SDPP-MP for dTI = 500 nm and dAFM = 5000
nm for different values of the anisotropy constant of the
AFM material: K = 1

10 K0 [Fig. 10(a)], K = 1
5 K0 [Fig. 10(b)],

and (c) K = K0 [Fig. 10(c)], where K0 is the value of
anisotropy constant for FePS3 used in our previous calcu-
lations. We find that the strength of the TI/AFM coupling
is proportional to the magnitude of this parameter K . In
other words, a larger value of the anisotropy constant results
in stronger coupling and a larger δ, meaning a larger and
more easily detectable splitting between the SDPP-MP hybrid
modes.

We now explain the physical origin of the increased cou-
pling strength with increasing K shown in Fig. 10. The
magnitude of the anisotropy constant K determines the mag-
netic dipole of the AFM material. A larger magnetic dipole
leads to a stronger interaction between the magnetic com-
ponent of the EM wave propagating in the system and the
local spin moment in the antiferromagnet. A stronger inter-
action between the magnetic component of the EM wave
and the local spin moment means that the EM wave excites
magnon polaritons containing a larger number of magnons.
The increased number of magnon polaritons results in a
stronger interaction between the magnon states in the anti-
ferromagnet and the Dirac plasmon-phonon states in the TI,
resulting in a larger contribution of magnons to the formation
of Dirac plasmon-phonon-magnon hybrid modes. Because the
anisotropy constant is primarily determined by the anisotropy
energy and spin sublattice magnetization saturation of an
AFM material, this suggests that any AFM material with
anisotropy energy comparable to that of FePS3 (of order
1 meV) may be a promising alternative candidate for realizing
strong coupling between a surface-plasmon-phonon polariton
in a TI and magnon polaritons in an antiferromagnet. Possible
alternative AFM materials that are promising include L12

IrMn3 (� = 6.81 meV) [68], Na4IrO4 (� = 5.4 meV) [69],

FIG. 10. Dispersion relation of surface Dirac plasmon-phonon-
magnon polariton in the Sb2Te3/FePS3 bilayer structure with
thickness of Sb2Te3 dTI = 500 nm and half-infinite FePS3 layer for
different value of anisotropy constant K = γ 2HaM0: (a) K = 1

10 K0,
(b) K = 1

5 K0, and (c) K = K0, respectively. Here K0 is the primary
value of anisotropy constant in FePS3.

and Cr-trihalide Janus monolayers with applied strain up to
5% (giving � = 3.77 meV for Cl3-Cr2-I3 monolayer) [70].

Finally, in the calculations presented thus far we have
assumed that the scattering loss rate in the FePS3 antiferro-
magnet is �AFM = 0.035 THz, which is a value taken from
Ref. [21]. This scattering rate parameter depends largely on
crystalline and interface quality, which are specific to indi-
vidual samples. We therefore consider the effect of changing
scattering loss rates in the AFM material on the strength of the
coupling between the TI and antiferromagnet. In Fig. 11, we
plot the mode energies of SDPP-MPs in the TI/AFM structure
shown in Fig. 1 using dTI = 500 nm and a very thick (half-
infinite) AFM layer. We plot the mode energies near ω = 3.7
THz as a function of the scattering loss rate in the AFM
material for a fixed in-plane wave vector kx = 0.03 × 105
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FIG. 11. Mode energies of a SDPP-MP in an Sb2Te3/FePS3

bilayer structure with Sb2Te3 thickness dTI = 500 nm and a half-
infinite FePS3 as a function of the scattering loss rate in the
antiferromagnet. The dashed white line represents the evolution of
lower mode vs �AFM. This calculation is performed fixed in the
plane-wave vector kx = 0.03 × 105 cm−1, which is at the anticross-
ing point.

cm−1. In other words, we focus on the anticrossing point in
the dispersion spectrum. When the scattering loss rate of the
AFM material is low (left side of Fig. 11), we observe two
distinct modes at 3.5 and 4.2 THz. This is the signature of
the interaction between the surface DPPPs in the TI and the
MPs in the AFM layer that results in the anticrossing splitting.
The two distinct modes disappear when the scattering loss
rate exceeds 0.2 THz. The loss of distinct modes (collapse
of the anticrossing) occurs when the loss rate in the anti-
ferromagnet exceeds the coupling strength. �AFM = 0.2 THz
therefore provides a benchmark for the AFM quality required
to experimentally realize observable strong coupling between
a TI and an antiferromagnet. We note that the scattering loss
rates of AFM materials are typically in the gigahertz range,
which is well below this threshold.

FIG. 12. The layered magnetic lattice of FePS3 formed by Fe
atoms. The arrows indicate direction of spin moment with zigzag
AFM phases investigated in this work. This figure is plotted by using
VESTA software [71].

IV. CONCLUSION

We have studied strong coupling between surface Dirac
plasmon-phonon polaritons in a TI thin film and magnon
polaritons in an AFM material using a numerical semiclas-
sical approach. Our results show that spectral signatures
of strong coupling, specifically hybridized surface Dirac
plasmon-phonon-magnon polaritons with cooperativity fac-
tor C > 1, can emerge in an Sb2Te3/FePS3 heterostructure
when (a) the thickness of the AFM material (FePS3) is suf-
ficiently large (≈3000 nm), (b) the thickness of the TI thin
film (Sb2Te3) is about 500 nm, and (c) the quality of the
AFM material is sufficiently high that the scattering loss rate
does not exceed 0.1 THz. All of these structural and materi-
als parameters should be experimentally realizable. Equally
importantly, our analysis as a function of various structural
parameters allows us to understand the physical interactions
that underly the coupling. For example, our analysis reveals
the important role of phonons in the TI as a mediator of
the interaction between the TI and antiferromagnet. Because
of the important role played by phonons, and in particular
the ability to tune the energy of the surface Dirac plasmon-
phonon-polariton mode with the thickness of the TI, TIs have
a significant advantage over 2D materials such as graphene for
achieving strong interactions between surface Dirac plasmons
and magnon polaritons. Finally, our calculations suggest that
any 2D van der Waals and other types of AFM materials with a
large anisotropy constant could be a viable choice for realizing
strong coupling in a TI/AFM hybrid material.

ACKNOWLEDGMENTS

This research was primarily supported by NSF through
the University of Delaware Materials Research Science and
Engineering Center, Grant No. DMR-2011824.

APPENDIX A: MAGNETIC SUSCEPTIBILITY OF XPS3

(X = Mn, Fe, Co, Ni)

In this Appendix, we derive the frequency-dependent mag-
netic susceptibility for 2D antiferromagnetic materials in the
family XPS3 (X = Mn, Fe, Co, Ni), which includes the FePS3

studied in the main text. These materials are van der Waals
magnets that form layered structures weakly bound by van der
Waals forces. Figure 12 shows the layered magnetic structure
of FePS3 established by only the Fe atoms. Within each layer,
the Fe atoms arrange in a honeycomblike lattice structure
with opposite spin moments. We consider in this work the
FePS3 magnetic structure with zigzag AFM phase, but our
method presented in this section can be applied to the general
case of any 2D antiferromagnetic material with different AFM
phases.

Due to the small value of the interlayer exchange interac-
tion J ′ in comparison to the intralayer exchange interaction
Ji (i = 1, 2, 3), these antiferromagnets are, to a very good
approximation, quasi-two-dimensional magnets even in the
bulk. The magnon dynamics in FePS3 can therefore be con-
sidered by investigating a quasi-2D honeycomb structure of
Fe atoms in which the magnetic interactions within the lattice
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TABLE II. The spin-spin interaction parameters of the 2D AFM
materials used in this work.

Materials J1 (meV) J2 (meV) J3 (meV) J ′ (meV) � (meV)

FePS3 [26] 1.49 0.04 −0.6 −0.0073 −3.6
NiPS3 [49] 3.8 −0.2 −13.8 N/A −0.3
MnPS3 [49] −1.54 −0.14 −0.36 0.0019 −0.0086

are described via a Heisenberg Hamiltonian [26]:

H =
∑
i, j �=i

2Ji, jSi · S j + �
∑

i

(
Sz

i

)2

− γ h̄
∑

i

hz
0Sz

i + γ h̄
∑

i

h · Si, (A1)

where γ is the gyromagnetic ratio, h̄ is Planck’s constant,
hz

0 is an external static magnetic field applied to the lattice
along the z direction, h is a driven magnetic field, Si is the
spin operator, Ji j is the exchange energy of the interaction
between sites i and j, and � is the single-atom anisotropy
energy. Table II presents the spin-spin interaction parameters
of the AFM materials used in this study.

Considering a uniform precession of spin moments under
the driven magnetic field h, we use a macrospin approxima-
tion with the uniform sublattice magnetizations in sublattices
A and B, given respectively by MA,B = γ h̄NSA,B, where N is
the number of spins per unit volume and SA,B is the spin in
units of h̄ (S = |SA,B| = 2 in the case of the Fe atom). We
note that in the XPS3 AFM family, one needs to consider
the exchange interactions between two magnetic moments
up to the third-nearest neighbor Ji=1,2,3 associated with the
vectors joining nearest αi=1,2,3, second nearest βi=1,2,3, and
third nearest γi=1,2,3 neighboring Fe atoms as indicated in
Fig. 13 [72]. Using Hamiltonian (A1), one obtains the energy
per unit volume:

E = ξ
(
M2

A + M2
B

) + ηMA · MB + ϑ
[(

Mz
A

)2 + (
Mz

B

)2]
− hz

0

(
Mz

A + Mz
B

) − h · (MA + MB), (A2)

where ξ = 2(J1+J2 )S
γ h̄M0

, η = 2(J1+4J2+3J3 )S
γ h̄M0

, ϑ = �S
γ h̄M0

, and M0 is
the magnetization of one sublattice per volume.

3

21

FIG. 13. The quasi-2D magnetic lattice of FePS3 formed by Fe
atoms. The arrows indicate the direction of the spin moments with
zigzag AFM phases investigated in this work.

Suppose a transverse magnetic field h = h(t ) =
(hx, hy, 0)e−iωt drives the spin dynamics in the lattice
governed by the Landau-Lifshitz equation

d

dt
MA,B = gμB

h̄
MA,B × Feff

A,B, (A3)

where Feff
A,B = −∇A,BE (MA,B) is the effective force acting on

the A (B) spin sublattice and the magnetic moment MA,B =
mx

A,Be−iωt x̂ + my
A,Be−iωt ŷ + Mz

A,Bẑ.
In this case one has

d

dt
MA,B = −iωe−iωt

⎛
⎜⎝

mx
A,B

my
A,B

0

⎞
⎟⎠ (A4)

and

Feff
A,B = −

⎛
⎜⎝

2ξmx
A,Be−iωt + ηmx

B,Ae−iωt − hxe−iωt

2ξmy
A,Be−iωt + ηmy

B,Ae−iωt − hye−iωt

2(ξ + ϑ )Mz
A,B + ηMz

B,A − hz
0

⎞
⎟⎠, (A5)

leading to a set of equations of transverse motion for the two-
spin sublattices A and B:⎛

⎜⎜⎜⎜⎝
mx

A

my
A

mx
B

my
B

⎞
⎟⎟⎟⎟⎠ = D−1C

⎛
⎜⎜⎜⎜⎝

hy

hx

hy

hx

⎞
⎟⎟⎟⎟⎠, (A6)

where

D =

⎡
⎢⎢⎢⎢⎣

iω −γ
(
2ϑMz

A + ηMz
B − hz

0

)
0 γ ηMz

A

γ
(
2ϑMz

A + ηMz
B − hz

0

)
iω −γ ηMz

A 0

0 γ ηMz
B iω −γ

(
2ϑMz

B + ηMz
A − hz

0

)
−γ ηMz

B 0 γ
(
2ϑMz

B + ηMz
A − hz

0

)
iω

⎤
⎥⎥⎥⎥⎦ (A7)

and C = diag(γ Mz
A,−γ Mz

A, γ Mz
B,−γ Mz

B). The determinant
of matrix D [Eq. (A7)] is given by

det |D| = ω4 − 2γ 2[4ϑ2(Mz
0

)2 − 4ηϑ
(
Mz

0

)2 + (
hz

0

)2]
ω2

+γ 4
[
4ϑ2

(
Mz

0

)2 − 4ηϑ
(
Mz

0

)2 − (
hz

0

)2]2
(A8)

= [
ω2 − γ 2

(√
4ϑ2

(
Mz

0

)2 − 4ηϑ
(
Mz

0

)2 + hz
0

)2]
×[

ω2 − γ 2
(√

4ϑ2
(
Mz

0

)2 − 4ηϑ
(
Mz

0

)2 − hz
0

)2]
(A9)
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= [
4γ 2ϑ2

(
Mz

0

)2 − 4γ 2ηϑ
(
Mz

0

)2 − (
ω − γ hz

0

)2]
×[

4γ 2ϑ2
(
Mz

0

)2 − 4γ 2ηϑ
(
Mz

0

)2 − (
ω + γ hz

0

)2]
(A10)

= [

2

0 − (
ω − γ hz

0

)2][

2

0 − (
ω + γ hz

0

)2]
. (A11)

Here we have used 
2
0 = 4γ 2ϑ2(Mz

0)2 − 4γ 2ηϑ (Mz
0)2.

We now define a total magnetic moment as

Mt =
(

mx
A + mx

B

my
A + my

B

)
=

(
χ xx χ xy

χ yx χ yy

)(
hx

hy

)
, (A12)

where (χ
xx χ xy

χ yx χ yy ) is the magnetic susceptibility tensor.
Solving Eq. (A6) within the linear approximation Mz

A =
−Mz

B = Mz
0, one obtains the magnetic susceptibility tensor

given by

χ xx = 4γ 2ϑ
(
Mz

0

)2[
ω2 − 
2

0 + (
γ hz

0

)2]
det|D| , (A13)

χ xy = 8iγ 3ϑ
(
Mz

0

)2
hz

0ω

det|D| , (A14)

with χ xx = χ yy and χ xy = −χ yx.
If we call

He = ηM0 = 2(J1 + 4J2 + 3J3)S

γ h̄
, (A15)

Ha = 2ϑM0 = 2�S

γ h̄
, (A16)

respectively, the effective exchange field and effective
anisotropy field, then in the case of vanishing external mag-
netic field hz

0 = 0, one obtains

χ xx = χ yy = 2γ 2HaM0


2
0 − ω2

, (A17)

χ xy = χ yx = 0, (A18)

where we have used Mz
0 ≈ M0 and 
2

0 = γ 2(H2
a − 2HeHa)

is the antiferromagnetic resonance frequency or zero-wave-
vector magnon frequency in the antiferromagnetic material.
In a system with nonvanishing scattering loss rate, one has

χ xx = χ yy = 2γ 2HaM0


2
0 − (ω + i/τmag)2

, (A19)

χ xy = χ yx = 0, (A20)

with τmag the relaxation time of the magnon.
The antiferromagnetic resonance frequency or zero-wave

magnon frequency in the FePS3 material is 

FePS3
0 = 3.7 THz

[26,51] and its magnetization is MFePS3
0 ≈ 830 (G) [73]. In

order to obtain the Ha effective anisotropy field of FePS3

FIG. 14. Schematic of a heterostructure composed of N interface
with interfacial scattering matrix Si and propagation matrix Pi j

0 de-
scribing a scattering process in this structure.

we note that this effective anisotropy field is proportional
to the magnitudes of the anisotropy energy �, and the spin
S of the antiferromagnetic material, which are respectively
� = 3.6 meV taken from Ref. [26] and S = 2 in FePS3. For
comparison, those values in MnF2 are, respectively, about
0.0024 meV and 2.5, which correspond to the effective
anisotropy field HMnF2

a = 8.2 kOe [74]. We therefore estimate
the value for the effective anisotropy field in FePS3 to be about
HFePS3

a = 9840 kOe and use this value in the calculations
reported in the main text.

APPENDIX B: GLOBAL SCATTERING MATRIX

We now present in detail the so-called global scattering
matrix method used to solve Maxwell’s equations to obtain
the dispersion relations studied in the main text. This method
is similar to the Green’s function technique used to investigate
scattering for a propagating wave in a multilayered structure
by an evaluation of the S-scattering matrix computed from the
scattering path operator and has been successfully employed
to study electric and spin transport in several systems [61–63].
Here we adopt this robust technique for the optical system
studied in this article.

Consider a heterostructure with N interface as shown in
Fig. 14. We denote the z axis as the growth direction of
the structure. The dimension of the heterostructure along the
y axis is infinite and along the x direction it is finite with
a width W . Assuming that an EM wave beam is incident
from the left-hand side of the structure with the direction of
propagation parallel to the x−z plane, within the mth layer
the electric field Em = (Ex,m, Ey,m, Ez,m) and the magnetic
field Hm = (Hx,m, Hy,m, Hz,m ) components of a monochro-
matic electromagnetic wave that is a solution of Maxwell’s
equations propagating along the z direction take the general
form

Em = ei(kx,mx−ωt )

⎡
⎢⎣

eikz,mz 0 e−ikz,mz 0
0 eikz,mz 0 e−ikz,mz

− ε‖
mkx,m

ε⊥
m kz,m

eikz,mz 0 ε‖
mkx,m

ε⊥
m kz,m

e−ikz,mz 0

⎤
⎥⎦

⎛
⎜⎜⎝

Ax,m

Ay,m

Bx,m

By,m

⎞
⎟⎟⎠, (B1)
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Hm = ei(kx,mx−ωt )

μ0μm

⎡
⎢⎢⎣

0 − kz,m

ω
eikz,mz 0 kz,m

ω
e−ikz,mz

1
ωkz,m

(
ε‖

m
ε⊥

m
k2

x,m + k2
z,m

)
eikz,mz 0 − 1

ωkz,m

(
ε‖

m
ε⊥

m
k2

x,m + k2
z,m

)
e−ikz,mz

0 kz,m

ω
eikz,mz 0 kz,m

ω
e−ikz,mz

⎤
⎥⎥⎦

⎛
⎜⎜⎝

Ax,m

Ay,m

Bx,m

By,m

⎞
⎟⎟⎠, (B2)

where A(x,y),m and B(x,y),m are the amplitudes of the x and y components of the forward- and backward-propagating EM waves,
respectively; ω is the frequency of the EM wave; kx,m and kz,m are the x and z components of the wave vector of the EM wave
within the mth layer; and x and z are the coordinates along the x and z directions.

At the mth interface, the amplitudes of the EM wave should satisfy the standard boundary conditions [75,76]

n × (Em+1 − Em)|m = 0, (B3)

n × (Hm+1 − Hm)|m = Jm, (B4)

where

n =

⎛
⎜⎝

0

0

1

⎞
⎟⎠, Jm = σmEm+1, σm =

(
σ xx

m σ
xy
m

σ
yx
m σ

yy
m

)
. (B5)

Here σm is the optical conductivity tensor of the corresponding two-dimensional carrier gas at the mth interface. Substituting
Eqs. (B1) and (B2) into Eqs. (B3) and (B4), one obtains⎛

⎜⎜⎝
Ax,m

Ay,m

Bx,m

By,m

⎞
⎟⎟⎠ = Im

⎛
⎜⎜⎝

Ax,m+1

Ay,m+1

Bx,m+1

By,m+1

⎞
⎟⎟⎠, (B6)

where Im is an interface matrix that relates the amplitudes of the EM wave in the adjacent mth and (m + 1)th layers. If we define

U =
(

1 0 1 0
0 1 0 1

)
, V =

(
1 0 0
0 1 0

)
, (B7)

then the interface matrix Im will read

Im =
(

I11
m I12

m
I21
m I22

m

)
=

(
U
Lm

)−1(
U
Rm

)
, (B8)

where I i j
m (i, j = 1, 2) are 2 × 2 matrices,

Lm = V

μ0μm

⎛
⎜⎝

0 − kz,m

ω
0 kz,m

ω
(ε‖

mk2
x,m+ε⊥

m k2
z,m )

ε⊥
m ωkz,m

0 − (ε‖
mk2

x,m+ε⊥
m k2

z,m )
ε⊥

m ωkz,m
0

0 kx,m

ω
0 kx,m

ω

⎞
⎟⎠ (B9)

and

Rm = V

μ0μm+1

⎛
⎜⎜⎜⎝

0 − kz,m+1

ω
0 kz,m+1

ω

(ε‖
m+1k2

x,m+1+ε⊥
m+1k2

z,m+1 )
ε⊥

m+1ωkz,m+1
0 − (ε‖

m+1k2
x,m+1+ε⊥

m+1k2
z,m+1 )

ε⊥
m+1ωkz,m+1

0

0 kx,m+1

ω
0 kx,m+1

ω

⎞
⎟⎟⎟⎠ +

(
−σ

yx
m −σ

yy
m −σ

yx
m −σ

yy
m

σ xx
m σ

xy
m σ xx

m σ
xy
m

)
, (B10)

where kz,m =
√

ω2

c2 μxx
m ε

‖
m − ε

‖
m

ε⊥
m

k2
x,m.

We now define a scattering matrix at the mth interface Sm such that⎛
⎜⎜⎝

Ax,m+1

Ay,m+1

Bx,m

By,m

⎞
⎟⎟⎠ = Sm

⎛
⎜⎜⎝

Ax,m

Ay,m

Bx,m+1

By,m+1

⎞
⎟⎟⎠. (B11)

This Sm is related to the interface matrix Im by

Sm =
[ (

I11
m

)−1 −(
I11
m

)−1
I12
m

I21
m

(
I11
m

)−1
I22
m − I21

m

(
I11
m

)−1
I12
m

]
. (B12)
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A global scattering matrix S that describes the scattering processes of an EM wave propagating in a heterostructure composed
of N − 1 constituent materials is given by the super matrix form:

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S−1
1 −P(2,1)

0 0 0 ... 0 0
−P(1,2)

0 S−1
2 −P(3,2)

0 0 ... 0 0
0 −P(2,3)

0 S−1
3 −P(4,3)

0 ... 0 0
0 0 −P(3,4)

0 S−1
4 ... 0 0

...
...

...
...

. . .
...

...

0 0 0 0 ... S−1
N−1 −P(N,N−1)

0

0 0 0 0 ... −P(N−1,N )
0 S−1

N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

. (B13)

Here the propagation matrices for an EM wave propagating
between the mth and (m + 1)th interfaces takes the form

Pm,m+1
0 =

⎛
⎜⎜⎝

eikz,m+1dm+1 0 0 0
0 eikz,m+1dm+1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠,

Pm+1,m
0 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 eikz,m+1dm+1 0
0 0 0 eikz,m+1dm+1

⎞
⎟⎟⎠, (B14)

and S−1
m (m = 1–N ) is the inversion of the matrix Sm given in

Eq. (B12). The global scattering matrix S can then be written
in terms of

S =

⎛
⎜⎜⎝

S11 S12 · · · S1N

S21 S22 · · · S2N
...

...
. . .

...

SN1 SN2 · · · SNN

⎞
⎟⎟⎠, (B15)

where Si j (i, j = 1–N ) is a 4 × 4 block matrix element of S
that describes the scattering event of the EM wave that starts at

the jth interface and ends up at the ith interface. In particular,

Si j =
(

S11
i j S12

i j

S21
i j S22

i j

)
=

(
ti j r′

i j
ri j t ′

i j

)
, (B16)

where S11
i j and S21

i j are the block matrices giving the trans-
mission ti j and reflection ri j coefficients associated with the
incident wave propagating along the +z direction. In contrast,
S22

i j and S12
i j (t ′

i j and r′
i j ) correspond to the incident wave prop-

agating along the −z direction. For instance, the reflection
coefficient of the entire system with N interfaces is derived
from the S21

11 element whereas the transmission coefficient
of the entire system is obtained from the S11

N1 element. In
summary, using a global scattering matrix one can compute
the optical response of the entire structure because the global
scattering matrix captures what happens at each interface and
within each layer of the structure. In the main text, we have
calculated the imaginary part of S21

11 and used it to reveal the
dispersion relations for the surface plasmon-phonon-magnon
polariton in a TI/AFM structure.
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