
PHYSICAL REVIEW MATERIALS 7, 044407 (2023)

Prediction of large magnetic moment materials with graph neural networks and random forests
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Magnetic materials are crucial components of many technologies that could drive the ecological transition,
including electric motors, wind turbine generators, and magnetic refrigeration systems. Discovering materials
with large magnetic moments is therefore an increasing priority. Here, using state-of-the-art machine learning
methods, we scan the Inorganic Crystal Structure Database (ICSD) of hundreds of thousands of existing materials
to find those that are ferromagnetic and have large magnetic moments. Crystal graph convolutional neural
networks (CGCNNs), materials graph network (MEGNet), and random forests are trained on the Materials
Project database that contains the results of high-throughput density functional theory (DFT) predictions.
For random forests, we use a stochastic method to select nearly 100 relevant descriptors based on chemical
composition and crystal structure. This gives results that are comparable to those of neural networks. Our findings
suggests that magnetic properties are intrinsically more difficult to predict than other DFT-calculated properties.
The comparison between the different machine learning approaches gives an estimate of the errors for our
predictions on the ICSD database. Validating our final predictions by comparisons with available experimental
data, we found 15 materials that are likely to have large magnetic moments and have not yet been studied
experimentally.
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I. INTRODUCTION

In recent years, materials informatics and machine learning
methods have been introduced in the search for materials
with specific properties, such as high-temperature supercon-
ductors [1], photovoltaics [2], radiation detector materials
[3], and metallic glasses [4]. These methods have the ad-
vantage of allowing to explore sets of materials that would
be prohibitively large for conventional theoretical methods
or experiments. Though traditional machine learning methods
such as tree-based algorithms [5,6], kernel methods [6,7], sup-
port vector machines [6], and multilayer perceptrons [6] have
shown some success in the prediction of magnetic properties,
the frequent introduction of new large materials databases
[8–11] has also enabled the development of sophisticated
neural networks for this type of application. In particular,
recent Graph Neural Networks algorithms (GNNs) have re-
cently been shown to obtain state-of-the-art performance on
benchmark tasks [12–14]. These methods have been shown
to successfully predict formation energy, band gap, and bulk
modulus with error magnitudes similar to those of density
functional theory (DFT) calculations, but have not yet been
used for the study of magnetic properties.

Demand for strong permanent magnets for technologi-
cal applications is rising [15]. This is closely related to the
fact that many countries are looking to transition away from
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fossil fuels to more sustainable energy sources. Indeed, one
of the main drivers of demand for permanent magnets is the
production of motors for hybrid and electric vehicles, which
are rapidly gaining popularity. Another growing application is
wind turbine generators. For most applications, Nd2Fe14B is
the material of choice. However, discovering rare-earth free
permanent magnets would be highly desirable for environ-
mental and economic reasons.

Materials that have a large magnetic moment per mass
unit, but that are not permanent magnets, still have multiple
applications of interest. A promising application for such
materials is magnetic refrigeration. Magnetic refrigeration is
a technology based on the magnetocaloric effect, through
which the temperature of a magnetic material varies with the
adiabatic application of a magnetic field [16–18]. Because it
requires the use of solid state materials instead of gaseous
refrigerants, magnetic refrigeration is a more environmentally
friendly technology than traditional refrigeration. However,
it requires ferromagnetic materials with a Curie temperature
around room temperature that also have many specific proper-
ties, such as a low specific heat and a high electrical resistivity.
The reference materials that exhibit a large magnetocaloric
effect around room temperature are gadolinium and some
Gd-based alloys such as Gd5Si2Ge2 [19,20]. These materials
are expensive, which limits their commercial use, and are
metallic, which diminishes energy efficiency due to heat loss.

Often, the search for new materials that exhibit specific
properties is done through trial and error, limiting the num-
ber of materials that can be studied both theoretically and
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FIG. 1. Data flow for model training, including cleaning, preprocessing, and prediction steps.

experimentally. Considering the challenges that surround the
design of new materials for magnetic refrigeration and other
applications, we investigate the usefulness of machine learn-
ing for materials in the study of magnetic properties as a first
step towards the discovery of new materials.

In this paper, we assess the performance of two recently
proposed neural networks, crystal graph convolutional neu-
ral networks (CGCNNs) [12] and materials graph network
(MEGNet) [13], and compare it to that of the random forest,
a statistical machine learning method [21–23], for the pre-
diction of the magnetization of materials. To do so, we train
our models on the Materials Project database, a DFT database
frequently used as a training set in the field of machine learn-
ing for material properties [8]. We characterize the Materials
Project data set and describe a preprocessing scheme based
on the energy above hull to reduce bias in its distribution of
magnetic orders. Figure 1 shows the steps used in training the
models. Our work reveals that neural networks are comparable
to random forests for the prediction of magnetization. We
also find that the performance of machine learning models
in fitting magnetization is comparatively worse than for other
properties such as formation energy, suggesting that it is an
intrinsically more difficult task. We then apply our trained
models on the ICSD database, which contains around 100 000
stoichiometric experimentally studied materials [24]. We dis-
cuss the suitability of the proposed materials for the specific
application to magnetic refrigeration.

In the following section, we describe the data sets.
Section III explains the machine-learning methods, followed
by our predictions and error estimates in Sec. IV. A discussion
in Sec. IV B is followed by the conclusion in Sec. V.

II. DATA SETS

We first discuss the Material’s Project database that was
used to train the models and then the ICSD database of mate-
rials that we use to make predictions.

A. Materials Project

The training data used in this work comes from the Materi-
als Project data set (V2020.06) [8]. It is one of the largest data
sets obtained from high-throughput DFT calculations and has
become standard in machine learning based materials studies.

The Materials Project comprises stoichiometric crystalline
materials, and provides their chemical composition, relaxed
structures, and a number of properties such as the formation
energy, the energy above hull, the band structure, and the
spontaneous unit cell magnetization. To our knowledge, this
last property in Materials Project has not yet been used for
machine learning applications. Our first objective is to deter-
mine whether or not the magnetization is a property that can
be modeled properly with machine learning algorithms.

We note that all the calculations are initialized in the ferro-
magnetic configuration. Antiferromagnetic configurations can
be reached in the crystal relaxation stage. However, it has been
shown that this method favors ferromagnetic configurations,
even when low-spin antiferromagnetic or ferrimagnetic con-
figurations could have lower energies [25]. In 2019, a new
workflow was introduced as an effort to include appropriate
antiferromagnetic ground states and counter the ferromagnetic
bias [25]. At this time, new ground-state calculations using
this workflow were performed for about 520 materials, less
than 2% of the Materials Project data set.

The most difficult materials to simulate with DFT calcula-
tions are the ones in which electronic correlations are strong
[26]. This is most notable in materials that contain d or f
valence electrons, such as the transition metals and the rare
earths. These electrons are also the ones that participate in
the magnetic properties. In the Materials Project data set, all
calculations on oxides containing Co, Cr, Fe, Mn, Mo, Ni,
V, and W atoms are performed with the generalized gradi-
ent approximation+U (GGA+U ) scheme that aims to better
represent the electronic correlations. We still note that the
magnetic ground state can be significantly influenced by the
effect of electron-electron interactions beyond the GGA+U
approximation.

We filter the entries of the Materials Project data set to
create our training set. This is because the predictions of our
machine learning models can only come from the identifi-
cation of patterns within this data set. It is therefore crucial
to identify biases and potential obstacles to generalization
in this training distribution [27]. We first remove duplicates
from the data set. Indeed, in the data set there is an entry
for each calculation, and not each material, which results in
having entries with only marginal structural differences. We
use a simple heuristic to remove duplicates from the data
set. Two materials are considered similar if they share the
same unit cell composition and space group. This criterion
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FIG. 2. Distribution of the energy above hull attribute in the
Materials Project data set for the subset of entries that are also in
the ICSD data set.

is conservative, but computationally tractable and allows to
effectively remove duplicates.

Another important source of errors comes from the fact
that DFT can relax to unstable, high-energy structures. Not
only is it that these materials cannot be synthesized and will
drive the distribution away from materials of interest, but they
will also tend to exhibit atypical features that could confuse
training. We thus choose to filter these materials out of the
data set based on their energy above hull computed by DFT.
The energy above hull gives the energy of decomposition of
a material into a set of stable materials containing all the
chemical elements of the original material and whose total
formation energy is smaller. As shown in Fig. 2, the distri-
bution of energies above hull is highly skewed towards small
values for entries that also appear in ICSD (i.e., materials that
have been synthesized). We choose heuristically the value of
E = 0.1 eV/atom as a threshold for stability. This results in
keeping 69% of the materials in the data set (Fig. 3). The total
curated data set leaves us with 78 462 materials.

The Materials Project data set is not specifically focused
on magnetic materials and includes nonmagnetic (which

FIG. 3. Distribution of the energy above hull attribute in the
Materials Project data set.

FIG. 4. Distribution of magnetic orders in the Materials Project
data set. NM stands for nonmagnetic, FM for ferromagnetic, FiM for
ferrimagnetic, and AFM for antiferromagnetic.

includes paramagnetic since only spontaneous magnetization
is reported), ferromagnetic, and antiferromagnetic materials.
For our goal of predicting magnetization, having both non-
magnetic and magnetic materials is a desirable property: We
want the model to identify the factors promoting strong mag-
netization as well as those inhibiting it. Figure 3 shows that
the proportion of magnetic materials increases with the energy
above hull, so eliminating large energy above hull material
helps fill this criterion of having a more balanced proportion
of magnetic and nonmagnetic materials.

The number of materials for each magnetic order is indi-
cated in Fig. 4 for all materials and for those that are stable
according to our criterion. We note that the procedure of filter-
ing out unstable structures helps to alleviate the ferromagnetic
bias of DFT. Figure 4 further shows that the eliminated materi-
als are more ferromagnetic and ferrimagnetic; the proportion
of antiferromagnetic materials slightly increases after filter-
ing.

Further details on the Materials Project are provided in
Appendix A of the Supplemental Material [28].

B. ICSD

Having trained models on the Materials Project, our second
objective is to identify high magnetization candidates that can
readily be synthesized. We use data from the Inorganic Crystal
Structures Database (ICSD) to perform this task. It is currently
the largest database of experimentally identified crystalline
materials.

ISCD data are obtained directly from scientific publica-
tions. It includes chemical composition as well as crystal
structure data for all of its entries.

Unlike the Materials Project, ICSD includes nonstoichio-
metric materials. Since our training distribution did not
include such materials, we expect that our models will have
difficulty generalizing to these materials and we have thus
removed these entries from the inference data set. In addition,
it is crucial to take into account that the Materials Project and
ICSD data sets are not independent. The crystal structures
of the entries in the Materials Project are computed starting
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FIG. 5. Methods used for property prediction. Top panel: Illustration of a decision tree. First, descriptors are computed from the chemical
formula and the structural properties. A series of decisions are then taken using the descriptors. After a number of decisions, the final prediction
is made. Bottom panel: Illustration of a GNN. A graph is built from the crystal unit cell. Each atom is mapped to a node and an edge is drawn
between two nodes if they share a Voronoi face. Both nodes and edges have associated embedding vectors. The graph then goes through a
series of graph convolution operations (defined differently for each method) parametrized by the neural network fθ . Finally, the features of all
the nodes are averaged and the resulting vector goes through a multilayer perceptron gθ that outputs the prediction.

from ICSD entries. Though some of the structures change
significantly through the relaxation process, many of them
remain sufficiently similar to the ICSD starting point to be
considered as common entries between the two data sets. We
have identified the common entries in both data sets and found
that out of the 110 870 entries in ICSD that are stoichiometric
and compatible with the methods, 23 311 materials did not
have matching identifiers or formulas. Inference of magneti-
zation was therefore performed on this subset.

III. METHODS

Once trained, machine learning algorithms have the crucial
advantage of producing predictions orders of magnitude faster
than simulation methods such as DFT. We can thus use them
to efficiently screen candidate materials in a large database.
The setup is that of a supervised learning task: Given a train-
ing set of materials with features X and known ground-truth
targets Y, the algorithm is tasked to learn a prediction function
Ŷ = fθ (X). Training parameters θ are optimized to minimize
a loss function L(Y, Ŷ).

In the following, we describe the learning algorithms we
have used. Hyperparameters are given in Appendix B of the
Supplemental Material [28]. Aside from the more complex
machine learning methods discussed in this paper, we also
used the linear model [29]. The linear model is trained using
the same descriptor space as the random forest. Since the lin-
ear model assumes a simple relation between each descriptor
and the target, it is not expected to be accurate. Therefore,
it establishes a performance baseline against which more
elaborate methods will be compared. Figure 5 summarizes
schematically the methods that we use. We explain each of
them in more detail below.

A. Random forests

The random forest [30] is a tree-based machine learning
algorithm that has been widely used for materials property
prediction [4–6]. Random forests have yielded encouraging
results for similar material design tasks, for example finding
superconductors [1,31]. At the root of any tree-based method
lies in the decision tree, which carries out consecutive binary
splits in the descriptor space of the data (see Fig. 5). Single de-
cision trees, however, have the major drawback of frequently
overfitting the training data. Random forests go around this
problem by averaging the predictions of multiple decision
trees. Each tree is built differently to ensure that there is some
variance in the generated forest. Randomness is implemented
by choosing a subset of the descriptors to be available to
the usual tree algorithm every time the algorithm makes a
split. The subset is different for every split. The number of
descriptors in the subset is a hyperparameter called “Available
features per split.” The use of random forests is motivated in
our case by their relative simplicity and efficiency [32]. We
use SCIKIT-LEARN’s [29] implementation of the random forest
methods.

The model takes descriptors handcrafted for each sam-
ple material as input. The algorithm achieves much better
performance if descriptors are well adapted to the task. The
properties found in both Materials Project and ICSD, such
as density and crystal structure, can be employed in our
case. Inspired by other works [1,31], most of the descriptors
are obtained from the chemical formula of the materials:
Starting from atomic properties, such as the ground-state mag-
netic moment, the electronegativity, the atomic mass, or the
ground-state d-shell electrons, we compute the mean value,
the maximum value, or the standard deviation of each of
these properties to form descriptors. A number of descriptors
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are also obtained from the crystal structure, for example the
number of sites in the unit cell or bond lengths. We design
more than 400 descriptors in this way for each material en-
countered. Appendix D of the Supplemental Material [28]
gives details on descriptor design and provides an exhaustive
list of all descriptors available to our random forest model.

Using this large descriptor space would lead to overfitting.
Hence we identify a subset of descriptors that, in addition to
yielding better predictions, comes with the added benefit of
giving more interpretability to the model. Because of the large
number of descriptors and material entries, forward and back-
ward descriptor selection methods one would typically use for
this task require an unreasonable amount of computational
resources and time. We therefore design a descriptor selec-
tion scheme that mixes both forward and backward descriptor
selection in order to efficiently find which descriptors are rel-
evant for the task (details in Appendix E of the Supplemental
Material [28]).

B. Graph neural networks

Graph neural networks (GNNs) are deep learning architec-
tures that are widely used for molecular-property prediction
and generation [33,34]. Their use in the context of materials is
however recent. The main advantage of using GNNs for mate-
rials property prediction compared to other machine learning
methods is that they only take as input a graph encoding
of the material that naturally encodes structure information.
The need for using handcrafted features is eliminated, as
the deep model acts as a feature extractor. This ability to
learn a representation adapted to the task at hand from the
raw data has been key to the success of deep learning in
a variety of domains. However, it is essential to note that
this additional expressivity (the complexity and diversity of
prediction functions that can be learned) comes at the cost of
interpretability. It is notoriously difficult to know how a neural
network selects specific features for predictions [35]. For this
reason, we deem more appropriate to use neural networks in
conjunction with random forests, a method that allows explicit
descriptor construction and selection.

Here, we use two architectures, CGCNN [12] and MEGNet
[13], that have been chosen for their performance on other
properties of the Materials Project data set as well as their
good training speed. For each material, the crystal unit cell
is mapped to a sparse graph. This is done by associating
each atom to a node and linking two nodes if they share a
Voronoi face and are within a cutoff distance of 5 Å. Edges
are also added if a face is shared with an atom outside the unit
cell to enforce periodic boundary conditions. Around 5% of
structures resulted in disconnected graphs and were discarded.
When building the graphs, node features are added by taking
one-hot encodings of the corresponding atomic type. This
allows to capture all the information on atoms composing the
unit cell. An encoding based on the distance for edges is used
as well. Taking inspiration from SchNet [14], this distance
is expanded on a Gaussian basis of functions, with details
specified in Appendix B of the Supplemental Material [28].

Each architecture takes these labeled graphs as input and
applies successive graph convolution layers to them (see
Fig. 5). These convolution operations consist of each node

aggregating the features of its neighbors using a learned func-
tion. The main difference between the two models revolves
around the design of these layers, which is detailed in the orig-
inal papers. After a number of passes in convolution layers,
node and edge representations are pooled and sent to a regres-
sor multilayer perceptron that outputs the final prediction. For
each architecture, we use the original hyperparameters with a
few modifications detailed in Appendix B in the Supplemental
Material [28]. Training is performed using a stochastic gradi-
ent descent with the ADAM optimizer [36] as well as a learning
rate scheduler.

C. Training and inference

We first train a model for each method on the Materials
Project data set. Training is performed by minimizing the
mean squared error (MSE) of the predicted magnetization per
atom with the Materials Project target,

LMSE = 1

N
‖Y − Ŷ‖2

2, (1)

where N is the size of the data set. We also report the mean
absolute error (MAE) between predicted magnetization and
ground-truth values,

LMAE = 1

N
‖Y − Ŷ‖1. (2)

The Materials Project data set is split into a training set
comprising 80% of the data, a validation set of 10%, and
a test set of 10%. We compare the performance on the test
of each method in Table II. We also train models to predict
the formation energy given in Materials Project. Since results
on this task are obtained in the original implementations of
CGCNN and MEGNet, this allows us to verify that our imple-
mentations of the models perform as well as expected.

Inference is performed using the trained model on
the ICSD database. As explained above, nonstoichiometric
(doped) materials are eliminated since they are absent from
the training set. In addition, a small fraction of the entries
had incomplete crystal structure information and had to be
discarded when using GNNs.

IV. RESULTS

We start by comparing the behavior of the various methods
for the prediction of the magnetization. Then, we give the
predictions for magnetic moments of compounds in the ICSD
data set. We also discuss the importance of the random forest
descriptors in Appendix F of the Supplemental Material [28].

A. Evaluation of methods

We first look at the task of predicting formation energy
used as a benchmark for GNN methods. We find that our
models perform on par or better than the original imple-
mentations. The difference can be attributed to the fact that
we use a different version of the Materials Project data set
as well as different training, validation and test set splits.
Our hyperparameters are also slightly different, as detailed
in Appendix B of the Supplemental Material [28]. We see
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TABLE I. Performance on the test set of the various models
on prediction of the formation energy per atom using the Materials
Project data set.

Model MAE (eV/atom) MSE (eV/atom)

CGCNN (original) 0.039
MEGNet (original) 0.028
Linear model 0.302 0.169
Random forest 0.100 0.038
CGCNN (Ours) 0.023 0.003
MEGNet (Ours) 0.031 0.004

that neural networks outperform random forests (Table I) by a
significant margin.

Then, we evaluate the different models on the magnetic
moment prediction task on the Materials Project data set.
Results are shown in Table II. As expected, all models out-
perform the baseline linear model. We find that both neural
network architectures perform worse on this task than random
forests. This is in strong contrast with the evaluation of the
prediction accuracy of formation energy. Thus, the common
assumption that deep models should perform better than mod-
els based on handcrafted descriptors does not hold for the task
of predicting the magnetic moment.

The difference between magnetization and formation en-
ergy results may be understood by the fact that random forests
may handle imbalance in prediction labels better than neural
networks. In our case, the imbalance is caused by the bi-
modal distribution of magnetization values, with one mode
associated with nonmagnetic and antiferromagnetic materials
and the other with ferromagnetic and ferrimagnetic materi-
als. These modes have significantly different weights in the
distribution as shown in Fig. 4. It is well known that neural
networks are difficult to train on imbalanced data [37]. Deep
models also show a stronger tendency to overfit training data
which can explain that they compare worse on MSE than
MAE. This is also confirmed by the MSE on the training set in
Table VII of Appendix C of the Supplemental Material [28],
which is one order of magnitude smaller for neural networks
than for random forests.

Finally, all methods show only a smaller improvement in
performance with respect to the linear model compared to the
improvement on formation energy prediction. The reasons for
this difficulty of predicting magnetization with more elaborate
machine learning are unclear. One could argue that this could
be due to the biased distribution of magnetization data in the
Materials Project. This is however not an entirely satisfying

TABLE II. Performance on the test set of the various models
on prediction of the magnetic moment per atom using the Materials
Project data set.

Model MAE (μB/atom) MSE (μB/atom)

Linear 0.100 0.030
Random Forest 0.043 0.015
CGCNN 0.052 0.026
MEGNet 0.052 0.026

FIG. 6. Distribution of the predicted magnetic moment for the
three models: random forests (RF), CGCNN, and MEGNet. The top
panel shows the results in units of the Bohr magneton per atom
(bin size is one Bohr magneton), and the bottom panel in units of
magnetization per kg.

explanation because the test distribution is just as biased as
the training distribution is. Our results instead suggest that
magnetization is an intrinsically more challenging property to
predict than formation energy. Better predictions could then
be obtained either by incorporating more physics-based biases
into the models or by accumulating more data.

B. Predictions on ICSD

We now apply the trained random forest, CGCNN and
MEGNet models on the ICSD data set. We first start with the
disclaimer that the predictions shown below are limited in two
ways: (1) by the ferromagnetic bias of the Materials Project
data set and (2) by the difficulty of predicting the magnetic
moment, as shown in the previous section. We use the median
and standard deviation of the results from the three models
to estimate the magnetization and the error. In Fig. 6, we
illustrate the distribution of the predicted magnetic moments
obtained from our three machine learning models. Despite
the ferromagnetic bias present in the Materials Project data
set, we note all three models predict a majority of materials
with little to no magnetization. More precisely, CGCNN, the

044407-6



PREDICTION OF LARGE MAGNETIC MOMENT MATERIALS … PHYSICAL REVIEW MATERIALS 7, 044407 (2023)

TABLE III. Distribution of the magnetic orders reported experimentally for 64 materials present in our predictions on ICSD. The middle
(right) column lists the results for the 32 materials with the highest (lowest) median magnetic moment per kilogram predicted by our models
for which we could find experimental data.

Magnetic order reported from experiments Number of materials Number of materials
(highest magnetic moments) (lowest magnetic moments)

FM/FiM 17 (53%) [19,38–53] 3 (9%) [54–56]
AFM 12 (38%) [51,57–67] 7 (22%) [68–74]
NM/PM 2 (6%) [75,76] 11 (34%) [77–85]
DM 0 (0%) 10 (31%) [77,86–89]
Other 1 (3%) [90] 1 (3%) [91]

random forests, and MEGNet predict that 45%, 47%, and
48% of the materials have a magnetic moment smaller than
0.5μB/atom, respectively. In Appendix G of the Supplemental
Material [28], we show an extended analysis of the predictions
on ICSD.

To better understand the accuracy of our predictions, we
sort the results in decreasing order of the predicted magne-
tization per kilogram. Then, we focus on the first and last
150 materials with the highest and lowest predicted magnetic
moment per mass unit from this list. We were left with a total
of about 120 materials after removing duplicate entries (about
60 materials with a high magnetic moment and 60 with a
zero magnetic moment). To gain an insight on the accuracy
of our model, we compare the predicted magnetic properties
of these materials to available experimental measurements
and report our findings in Table III. Notably, we were un-
able to find experimental reports on the magnetic properties
of about 30 of the materials that were predicted as having
a high magnetic moment, indicating that our models could
indeed be used for the discovery of new magnetic materials.
We report our predictions for the magnetic moment of 15 of
these materials in Table IV. We note that all of these materials
include magnetic rare earths or magnetic transition metals. It

TABLE IV. Predictions of the largest magnetic moments per
mass on the ICSD database for which no magnetic order reported
from experiments could be found. Median values and standard devi-
ations of the predictions of random forests, CGCNN, and MEGNet
are shown.

Chemical formula Moment per mass [J/(T kg)] Rare earths

Fe9O 240 ± 40 No
(Mn2O3)3MnSiO3 230 ± 50 No
EuFe2 220 ± 60 Yes
EuOF 220 ± 20 Yes
Eu2Cu 220 ± 40 Yes
Mn6O(VO4)3(OH) 220 ± 80 No
EuH 220 ± 90 Yes
Fe8C2 210 ± 20 No
Fe8N2 200 ± 30 No
GdAl 200 ± 20 Yes
Eu(CN2) 200 ± 60 Yes
Mn8Si6O24ClH9 200 ± 60 No
Gd6Co2Al 200 ± 50 Yes
Mn8O10Cl3 200 ± 40 No
EuBeGd2O5 200 ± 80 Yes

is hence plausible that they are indeed ferromagnets with a
large magnetic moment.

Coming back to Table III, we first comment on the re-
sults for the materials with high predicted magnetic moments.
We find that 17 (53%) materials from this list are actu-
ally reported as ferromagnetic, or ferrimagnetic with a high
magnetic moment per mass unit. The remaining materials,
accounting for 47% of this sample, are found to be mostly
antiferromagnetic. This analysis of a subset of our predic-
tions highlights the challenge in predicting the magnetization
from models trained of the Materials Project data set. The
ferromagnetic bias in the training set may explain the dis-
crepancy between the predicted ferromagnetic orders and the
actual nonferromagnetic orders observed experimentally. This
emphasizes that the discrepancies between high-throughput
DFT calculations and experiments can mean that the high
performance of a model trained on a DFT data set does not
necessarily translate to accurate predictions when it is applied
to an experimental database. We note that this conclusion
applies to other predictions, and not only to the prediction
of the magnetic properties because the magnetic order im-
pacts all the ground-state properties obtained through a DFT
calculations.

The comparison of our predictions for small magnetic
moments to available experimental data enables a better un-
derstanding of the predictive power of our models. Indeed, for
these materials, we find that only three materials (9%) from
this sample are experimentally found to be ferromagnetic or
ferrimagnetic, with the remaining 29 being antiferromagnetic,
nonmagnetic, paramagnetic, or diamagnetic, all of which are
orders with zero (or negligible) net magnetic moment. Hence,
as noted before from Fig. 6, the ferromagnetic bias present
in the training data set does not preclude the models from
accurately predict small magnetic moments.

With regards to magnetic refrigeration, the rotating mag-
netocaloric effect is a promising recent research direction
[92–96]. While the traditional magnetocaloric effect is due to
the change in magnetization of a material under the successive
application and removal of an external magnetic field, the
rotating magnetocaloric effect is due to a strong magnetic
anisotropy. In such anisotropic materials, the magnetization
is locked in a particular crystal direction (the so-called “easy
axis”). In that case, a magnetocaloric effect is seen when the
material is rotated in a fixed external magnetic field. Ma-
terials that exhibit this rotating magnetocaloric effect must
have a strong spin-orbit coupling, which is usually associated
to elements with a large atomic number. The materials we
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show in Table IV that include Eu, Gd, and In elements could
potentially satisfy this requirement.

V. CONCLUSION

To identify materials with a large magnetic moment
per kilogram, we have trained random forests and two
state-of-the-art deep-learning graph convolutional algorithms,
CGCNN and MEGNet, on the Materials Project data set.
Since the discovery of large magnetic moments materials
could lead to breakthroughs in magnetocaloric refrigeration,
we choose this application as a use case. Magnetic properties
in the training set are computed using DFT methods. The three
machine-learning methods show comparable accuracy on the
test sets. Differences in estimates for the mean average error
and mean squared error suggest that the predicted magnetic
moment per atom is accurate to better than 0.05 Bohr magne-
ton per atom.

We used the trained models to search for candidate mate-
rials with large magnetic moments per kilogram in the ICSD
database. That database contains materials that have been syn-
thesized. Table IV lists the most promising materials. These
deserve experimental attention. Our analysis also highlights
some of the limitations of working with magnetic properties
in the Materials Project. In particular, the ferromagnetic bias
affects the screening capability of models trained on this data
set. In the few cases where we could compare our predictions
for ferromagnetic materials with experiment, we found that
materials were indeed ferromagnetic 50% of the time. Since
the rate of false negatives is low, we believe our model does
not leave out many materials that are ferromagnetic. Finally,
we have shown that magnetization may be intrinsically more

difficult to predict than other properties. These findings pro-
vide strong arguments to motivate building a large database
dedicated to the magnetic properties of materials.

Data from the Materials Project data set are freely avail-
able using their API. Documentation for this API is available
online [97]. ICSD is under a proprietary license. Code for the
machine learning models is available from the corresponding
author upon reasonable request.
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