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High-performance permanent magnets have a wide range of applications in various fields of the information
age. One distinct feature of permanent magnet materials is significant magnetic anisotropy, which is mainly
affected by spin-orbit coupling (SOC). Focusing on materials containing 3d transition elements with specific
Wyckoff positions, where certain partially occupied orbital multiplets can significantly enhance the effect of
SOC, we perform a highly efficient search for permanent magnet materials in the inorganic crystal structure
database. According to common standards of permanent magnets, we identify 19 potential permanent magnet
materials. Among these candidates, 14 materials have already been discussed in previous studies, and we finally
propose five new permanent magnet candidates. As examples, the detailed magnetic properties of two candidates
among these five new proposed materials are presented. We believe that these potential permanent magnet
materials deserve further experimental study.
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I. INTRODUCTION

Permanent magnets are widely used in many areas such as
transportation, energy, information and communication tech-
nology, which are required for the implementation of a large
number of technologies, such as electric vehicle motors and
generators, windmills, speakers, and relays [1,2]. The main
requirements of these materials are large saturation mag-
netization, high Curie temperature (TC), and large uniaxial
magnetic anisotropy [1,2]. In the past few decades, some
representative high-performance permanent magnets materi-
als were discovered and widely used (such as the Nd-Fe-B
alloy [3–6], SmCo5 [7,8]). Most of these materials contain
rare-earth elements [3,9]. However, there is a growing need
to reduce or eliminate the use of rare-earth magnets, which
are relatively expensive, by finding rare-earth-free alternatives
[1,2]. Therefore, various rare-earth-free permanent magnet
materials were proposed recently, including bulk materials
[10–13], nanostructure [14–19], and thin films [20–22], but it
is still desirable to explore new high-performance permanent
magnet materials containing cheaper and less critical elements
[1,2].

High-throughput density functional theory (DFT) methods,
which can efficiently screen large numbers of compounds,
were widely used in past work recently. For example, it
has been successfully performed for the discovery of non-
magnetic topological materials and thousands of topological
materials candidates were proposed [23–25]. However, the
ab initio calculation of magnetic topological compounds
would be difficult to characterize the ground state when
spin-orbit coupling (SOC), which plays an important role
in topological properties [26], typically leads to complex
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magnetic structures. Meanwhile, unlike in nonmagnetic sys-
tems, the Coulomb interaction is of substantial importance
in most magnetic systems and the Coulomb repulsion is
usually incorporated by the parameter U in first-principles
calculations [27]. The first-principles predictions for magnetic
materials usually depends on the value of U [28,29]. There-
fore, compared to the time-reversal-invariant nonmagnetic
topological materials, the predictions on magnetic topolog-
ical materials are relatively few [30]. The same as the
case of magnetic topological materials, both the SOC effect
and Coulomb interaction are also important for permanent
magnetic materials, which makes the efficient search of
permanent magnetic materials difficult. At present, people
usually perform comprehensive high-throughput DFT meth-
ods for rare-earth-free permanent magnetic materials based on
their respective screening criteria and range [31–35]. Kusne
et al. perfomed high-throughput computing and machine
learning to search for potential high-performance permanent
magnets in Fe-Co-X (X is the transition-metal element) alloys
system and suggested Fe78Co11Mo11 to be a rare-earth-free
permanent magnet [31]. Meanwhile, Vishina et al . presented
an application of high-throughput and data-mining approach
to predict new permanent magnets containing both 3d and
5d transition-metal elements based on the Inorganic Crystal
Structure Database (ICSD) [36], and the most promising can-
didates they identified were Pt2FeNi, Pt2FeCu, and W2FeB2

[32]. Futhermore, they made an extended search for materials
containing two different 3d elements in the chemical formula
and predicted one rare-earth-free permanent magnet candidate
Co3Mn2Ge finally [33].

Generally, the 3d transition metal materials would provide
high saturation magnetization and large Curie tempera-
ture [32,38], meeting two main requirements of permanent
magnets. However, it is commonly believed that SOC does
not play an essential role in 3d transition metal materials
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FIG. 1. Steps of high-throughput search and screening with the number of structures left after each step. In the first step of screening,
17 000 compounds containing 3d transition metal elements are selected from the ICSD database. Second, we extract these materials in the
corresponding space groups, where the 3d transition elements correspond to the specific Wyckoff position allowing large SOC [37]. A total of
3144 different materials are identified. Third, LSDA calculations with FM configuration are performed and 220 materials with the calculated

MS > 0.06 µB/Å
3

are preserved. At the fourth step, LSDA + SOC calculations are performed and 51 candidates meet the filter criteria MAE
>0.6 MJ/m3. Finally, we perform LSDA + SOC (+ U ) calculations by considering several different conventional magnetic configurations
with different typical magnetic directions to explore their magnetic ground state. Materials with AFM configuration are excluded and 19 FM
candidates are left, which are listed in Tables I and VI. Among them, five new candidate materials were not discussed before as candidates of
permanent magnets to our best knowledge.

[38,39], resulting in the relatively small magnetic anisotropy
energy (MAE). To overcome this shortcoming, the com-
pounds containing both 3d and 5d transition-metal elements
were explored in the previous work [32], which significantly
limited the search range of potential permanent magnets ma-
terials. It was proposed that, due to certain partially occupied
orbital multiplets, the cooperative effect of the electron corre-
lation can significantly enhance the effective SOC in light 3d
transition metal ions [37]. Therefore, one can screen 3d tran-
sition metal materials with potentially huge MAEs by simply
checking whether the materials belong to the corresponding
space groups and whether the 3d transition elements occupy
the specific Wyckoff positions [37].

In this work, we perform a high-throughput screening
for potential permanent magnet materials in ICSD [36]. We
focus on 3d transition metal materials allowing large SOC
according to the certain partially occupied orbital multi-
plets, and first-principles calculations are then performed to
estimate the saturation magnetization, MAE, and magnetic
ground state of the screened materials. According to rec-
ognized standards of permanent magnets [1,2], we suggest
19 materials to be potential candidates. While 14 materials
among them were already discussed in previous studies, we
finally obtain five new potential permanent magnets materials
FeB4, FeB2, Fe2Sc, Mn5PB2, and Fe2Ge, which are worthy
of further experimental investigations. In addition, we present
the detailed magnetic properties in two of the new permanent
magnet candidates FeB4 and FeB2 as representatives.

II. STEPS OF HIGH-THROUGHPUT SCREENING

As mentioned above, both the SOC effect and Coulomb
interaction U play important roles in permanent mag-

nets, which makes it difficult to perform a comprehensive
high-throughput first-principles search based on all 3d tran-
sition metal materials with various magnetic configurations,
spin orientations, and different values of the Coulomb pa-
rameter U . Here we present a highly efficient search for
permanent magnetic materials. This screening is mainly di-
vided into five steps (see Fig. 1) in the following.

(1) During the first step of the material collection stage, we
select 3d transition metal materials from the ICSD database
[36]. As mentioned above, compared to 4d and 5d elements,
3d elements usually provide high saturation magnetization
and large Curie temperature [32,38], and the materials con-
taining 4d and 5d transition elements usually providing
magnetism (4d: from Nb to Rh, 5d: from Re to Ir) are ex-
cluded. To avoid missing potential materials, we selected all
experimental and theoretical materials in the ICSD database.
Meanwhile, structures containing rare-earth elements which
are expensive were also excluded. There are a total of 17 000
materials after deduplication at the first step.

(2) Second, the 3d transition metal materials allowing
large MAE are selected. When there are certain partially
occupied orbital multiplets in 3d materials, the SOC effect
could be enhanced by Coulomb correlation [37]. For a d-shell
ion exposed to the crystal field, only four types of orbital
multiplets are allowed by the crystallographic symmetries,
including three doublets E1 {dxz, dyz}, E2 {dxy, dx2−y2 }, E3

{dz2 , dx2−y2 }, and one triplet T {dxz, dyz, dxy} [40]. Among
them, the first-order SOC effect is absent in E3, therefore
the magnetic anisotropy for the orbital multiplet E3 should
be small. Meanwhile, in the orbital triplet T {dxz, dyz, dxy},
though the first-order perturbation of the SOC splits the
degenerate orbitals, the perturbed energies are independent
of the orientation of the magnetization, indicating that the
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TABLE I. New proposed materials by screening with desirable properties for permanent magnets. Listed are the material’s ICSD, formula,
space group, the corresponding 3d translation elements and Wyckoff positions, the calculated MAE (MJ/m3), saturation magnetic moment Ms

(μB/Å
3
) and magnetic hardness parameter κ .

ICSD Material Space Transition Wyckoff MAE Ms

number formula group elements positon (MJ/m3) (µB/Å
3
) κ

633 415 Fe2Sc 194 Fe 2 a 0.925 0.0653 1.42
670 859 FeB4 194 Fe1 2 b 2.397 0.0693 2.15

Fe2 2 c
613 892 FeB2 191 Fe 1 a 5.714 0.0973 2.36
109 111 Mn5PB2 140 Mn 1 a 0.617 0.1119 0.68
53 460 Fe2Ge 194 Fe 2 a 0.669 0.1219 0.65

first-order SOC effect on the magnetic anisotropy for this
orbital triplet T is negligible. Therefore, we select compounds
with 3d transition elements corresponding to the specific
Wyckoff position allowing E1 or E2 orbital multiplets. At
this step, about 81.5% of thematerials are excluded and 3144
materials are left.

(3) Saturation magnetization (MS) is one of the most im-
portant criteria of the permanent magnet. In this step, we
perform local spin-density approximation (LSDA) calcula-
tions for the remaining 3144 materials with ferromagnetic
(FM) configuration to obtain their MS . Note that Coulomb
interaction usually enhances the magnetic moments in
3d magnetic systems [38,39], therefore, our filter criteria

MS > 0.06 µB/Å
3

[2] from LSDA calculations is strictly to
avoid missing potential materials. Meanwhile, SOC usually
have little effect on the magnetic moments of 3d magnetic
ions [39], thus in this step SOC is also not considered to re-
duce the computational cost. This screening step leaves about
220 candidates.

(4) In the fourth step, we perform LSDA + SOC calcula-
tions with FM configuration to obtain MAE of these potential
candidates. Usually one needs to estimate the MAE by per-
forming first-principles calculations with spin orientations
along a set of different typical directions. However, for certain
partially occupied orbital multiplets in 3d materials [37], the
prediction of the easy axis and hard axis of magnetization can
be obtained by symmetry analysis. Here we take the degen-
erate E1 {dxz, dyz} orbitals in the crystal field as an example,
where the SOC interaction could be written as λL · S. Since

spin splitting typically overwhelms the SOC effect in 3d sys-
tems, we treat SOC as a perturbation with the spin-conserved
part only and then the orbital degeneracy is split into states
|l = 2, m = ±1〉. When the orbital doublet is half-filled, the
occupied state takes the energy of − 1

2λh̄2| cos θ | [41], where
θ is the angle between the magnetic moment and the z-axis.
The energy of the occupied state is minimized when θ = 0 or
π , making out-of-plane magnetization favored. Similarly, the
MAE for magnetic materials with half-filled orbital doublet
E2 {dxy, dx2−y2 } is −λh̄2| cos θ |, which also favors the (001)
direction to be the easy axis [41]. It is worth mentioning that
Coulomb correlation increases the orbital polarization and the
effective SOC when the orbital multiplets are partially occu-
pied [37]. With the reinforcement of the orbital polarization
and SOC effect, the magnetocrystalline anisotropic energy can
significantly increase. Based on LSDA + SOC calculations,
the MAE is calculated by the total energy differences between
spin orientations along the easy axis and hard axis, and the re-
sults of MAE are double-checked by using the force theorem
[42,43]. The calculated results based on these two methods
are usually similar and we show the ones by energy differ-
ences approach if not specified in the following. Note that the
Coulomb correlation could further enhance the SOC effect,
resulting in a significant gain of the MAE [37]. Therefore, we
adopt the appropriate filter criteria to be MAE >0.6 MJ/m3

[2], and in this step 51 materials are left.
(5) Finally, the magnetic structures of these remaining

51 candidates are studied. We perform LSDA + SOC (+U )
calculations by considering several different conventional

TABLE II. Relative total energies (Etot in meV/f.u.) of different magnetic ordering states from LSDA (+ U ) and LSDA + SOC (+ U )
with (001) spin orientation. Here total energy of FM configuration is set to be 0.

U (eV) FM AFM-1 AFM-2 AFM-3 FIM-1

Etot(LSDA) 0.0 0.00 279.54 667.07 457.89 383.41
0.5 0.00 342.39 663.51 483.29 362.90
1.0 0.00 368.06 561.34 467.67 309.25
1.5 0.00 379.13 430.70 470.95 250.38
2.0 0.00 397.80 368.47 358.63 192.95

Etot(LSDA + SOC) 0.0 0.00 275.61 660.72 456.15 382.36
0.5 0.00 336.39 632.09 589.25 360.88
1.0 0.00 359.67 558.92 466.92 308.23
1.5 0.00 393.34 435.06 482.85 256.38
2.0 0.00 412.86 385.72 382.36 203.42
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TABLE III. Spin exchange parameters (in meV) of FeB4 evaluated from LSDA (+ U ) calculations. Meanwhile, the calculated Curie
temperature (in K) based on MFT and MC method with different values of U are also summarized in the table.

Distance LSDA LSDA LSDA LSDA LSDA
(Å) + U (= 0.5 eV) + U (= 1.0 eV) + U (= 1.5 eV) + U (= 2.0 eV)

J1 2.961 −55.59 −52.79 −46.78 −39.25 −29.89
J2 5.128 −9.31 −15.05 −19.80 −22.54 −21.94
J3 5.128 −6.23 −5.77 −3.57 −1.86 −1.70
J4 3.290 −69.88 −85.60 −92.02 −94.78 −99.45
TC (MFT) 1546 1758 1797 1755 1664
TC (MC) 945 1186 1217 1227 1126

magnetic configurations with spin orientations along the pre-
dicted easy axis to explore their magnetic ground state.
Meanwhile, the effect of Coulomb interaction parameter U
is also considered. All materials known or suggested to be
antiferromagnetic (AFM) are then excluded. Among them,
19 candidates whose magnetic ground states are suggested to
be FM remain as potential rare-earth-free permanent magnet
materials, which are listed in Tables I and VI and will be
discussed in the results section.

III. METHOD

The first-principles calculations were carried out by using
the full potential linearized augmented plane-wave method
as implemented in the WIEN2K package [44]. The k mesh
of the Brillouin zone is set by 60/a along each direction,
where a denotes the length of the lattice constant in Å. The
self-consistent calculations are considered to be converged
when the difference in the total energy of the crystal does not
exceed 0.01 mRy. We adopt the local spin-density approxi-
mation (LSDA) [45] as the exchange-correlation potential and
include the SOC using the second-order variational procedure
[46]. Meanwhile, the effect of Coulomb repulsion is taken into
account by utilizing the LSDA + U scheme [27].

Monte Carlo (MC) simulations are performed with the
METROPOLIS algorithm for the Heisenberg model [47–49].
The size of the cell in the MC simulation in both FeB4 and
FeB2 are 16 × 16 × 16-unit cells with periodic boundary con-
ditions. At each temperature we carry out 400 000 sweeps to
prepare the system and sample averages are accumulated over
800 000 sweeps.

IV. RESULTS

Through our high-throughput search above, we propose
19 candidate materials in the ICSD database that meet the
properties of permanent magnets as summarized in Tables I
and Appendix. Among these candidates, 14 materials were
already discussed in previous studies as potential permanent
magnet applications. Some of them were already confirmed
by experimental works, such as Fe-Pt alloys [50,51], Fe16N2

[52–55], and Co5Y [56–58]. We list these known permanent
magnet materials in Appendix, and it can be seen that our
calculated results are in good agreement with previous works,
which also confirms the high efficiency and reliability of our
screening method. Finally, to the best of our knowledge, five
new candidates are found by our high-throughput calculation
and listed in Table I.

As shown in Table I, these five candidates are in three
space groups I4/mcm (SG 140), P6/mmm (SG 191), and
P63/mmc (SG 194). Based on LSDA calculations, their

saturation magnetic moments are around 0.06–0.12 µB/Å
3
,

which are larger than one of most famous permanent magnets

Nd2Fe14B (0.04 µB/Å
3
) [5,6]. Meanwhile, their MAE based

on LSDA + SOC calculations are distributed from 0.6 to
5.7 MJ/m3, where FeB4 and FeB2 have the relatively larger
MAE (2.4 MJ/m3 for FeB4 and 5.7 MJ/m3 for FeB2), which
has the same order of magnitude as Nd2Fe14B (4.8 MJ/m3)
[5,6]. Moreover, the magnetic hardness parameter could be
evaluated from the expression κ = √

EMAE/μ0M2
s and κ > 1

is an empirical criterion for a material to have a chance of
resisting self-demagnetization when made into any possible
shape [2]. Their magnetic hardness parameters are distributed
from 0.6 to 2.3. According to the screening results, a pair of
iron-boron materials (FeB2 and FeB4) are included in the can-
didates. Considering the possible potential of Fe-B alloys as
permanent magnet materials, we also extended the calculation
of all Fe-B alloys existing in the ICSD database. Their space
groups, MAE, and Wyckoff positions occupied by Fe ions are
listed in Table VII of the Appendix. In the other Fe-B alloys
in the ICSD database, the anisotropy of Fe single ions in these
alloys is significantly lower than that of the two screened ma-
terials, which also demonstrate the reliability and efficiency of
our screening method. It is worth mentioning that FeB4 comes
from theoretical work [59] and warrants further experimental
investigations. Besides, there has been experimental work [60]
on the magnetic properties of Fe2Sc, which is suggested to
have a large MAE. We will present FeB4 and FeB2 in detail
and discuss their electronic structure and magnetic properties
in the following.

TABLE IV. Relative total energies (Etot in meV/f.u.) of different
magnetic ordering states from LSDA (+ U ) and LSDA + SOC (+
U ) with (001) spin orientation. Here total energy of FM configuration
is set to be 0.

U (eV) FM AFM-1 AFM-2 FIM-1

Etot(LSDA) 0.0 0.00 26.08 57.27 45.14
0.5 0.00 65.13 93.06 76.07
1.0 0.00 103.41 127.65 98.61

Etot(LSDA + SOC) 0.0 0.00 23.94 57.12 45.00
0.5 0.00 61.99 93.41 76.77
1.0 0.00 99.76 127.05 98.29
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FIG. 2. (a). Top view of FeB4. The yellow and green balls repre-
sent Fe and B, respectively. (b). The exchange interactions J1, J2, J3,
and J4 are shown. Within (001)-planes, J1 denote the nearest in-
teractions between Fe1 and Fe2, J2 denote the nearest interactions
between Fe1 ions, J3 denote the nearest interactions between Fe2
ions. J4 represent the couplings between two nearest (001)-planes.

A. FeB4

As shown in Fig. 2, FeB4 crystallizes in the hexagonal
structure (P63/mmc, SG 194) [59], where Fe atoms located at
two nonequivalent crystallographic sites: Fe1 atoms occupy
the 2b position: (0, 0, 1/4), and Fe2 atoms occupy the 2c
position: (1/3, 2/3, 1/4). The site-symmetry group of both
Fe ions are all (−62m), which permits the E1 and E2 orbital
multiplets and is expected to have large MAE.

From LSDA calculations for the FM configuration, FeB4

is suggested to be a metal. The band structure from LSDA

calculation is shown in Figs. 3(a) and 3(b), where the main
contribution around the Fermi level comes from the 3d or-
bitals of Fe ions. The calculated magnetic moments on the Fe1
and Fe2 sites are 2.66 μB and 2.42 μB, respectively, indicating

MS = 0.0693 µB/Å
3
. According to the site symmetry of Fe

ions, we perform the LSDA + SOC calculations for (001) and
(100) spin directions and estimate the MAE as 2.397 MJ/m3

with the easy-axis magnetization along the (001) direction
as predicted. The band structure from the LSDA + SOC
calculation with (001) spin direction is shown in Fig. 3(c). In
addition to the energy differences approach, we also calculate
the MAE by using the force theorem [42,43] to be about
2.409 MJ/m3, which is well consistent with the value from
energy differences, confirming the reliability of our symmetry
analysis and the accuracy of our first-principles calculations.
The value of Coulomb parameter U in iron borides was fixed
at 0.4 eV in the previous work [61], and we consider the effect
of Coulomb interaction with the appropriately wider range
of U from 0.0 to 2.0 eV. As shown in Fig. 3(d), the MAE
is significantly enhanced by the correlation effect in FeB4 as
expected [37].

Finally, to confirm its FM ground state, we consider several
different magnetic configurations of FeB4, as shown in Fig. 4.
In addition to the FM configuration, we also consider three
AFM states and one ferrimagnetic (FIM-1) state: AFM-1,
where the Fe atoms couple antiferromagnetically along the
c axis; AFM-2, where Fe1 and Fe2 have opposite spin ori-
entations; AFM-3, where both the Fe1 and Fe2 atoms couple
antiferromagnetically along the a and b axes; FIM-1 states,
where the Fe1 atoms couple ferromagnetically while the Fe2
atoms couple antiferromagnetically along the a and b axes.
As shown in Table II, whether SOC is considered, the FM
configuration has the lowest total energy with different val-
ues of U . Note that SOC has little effect on the calculated
energy differences as shown in Table II, and the calculated
magnetic moments for the different magnetic configurations
are similar (with a difference around than ±0.1 µB), allow-
ing us to estimate the Heisenberg exchange couplings by
the energy-mapping analysis [62,63] based on LSDA (+ U )
calculations in the following. As shown in Fig. 2, we consider
four magnetic interactions labeled as J1–J4 here. The total
energies per unit cell for these five spin configurations are

FIG. 3. (a,b) Electronic structure of FeB4 from LSDA calculation with FM configuration for the spin-up and spin-down channels,
respectively. (c) Electronic structure of FeB4 from LSDA + SOC calculation with spin orientations along the (001) direction. (d) The calculated
MAE value with increasing U .
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FIG. 4. The magnetic configurations of FeB4 which we consid-
ered in DFT calculations. For clarity only Fe atoms are shown,
while the blue and red ones represent Fe ions with up and down
spin, respectively. (a)–(e) FM, AFM-1, AFM-2, AFM-3, and FIM-1
configurations, respectively.

expressed as

EFM = E0 + 6J1 + 6J2 + 6J3 + 2J4,

EAFM−1 = E0 + 6J1 + 6J2 + 6J3 − 2J4,

EAFM−2 = E0 − 6J1 + 6J2 + 6J3 + 2J4,

EAFM−3 = E0 − 2J2 − 2J3 + 2J4,

EFIM−1 = E0 + 6J2 − 2J3 + 2J4. (1)

FIG. 5. (a) Top view of FeB2. The yellow and green balls
represent the Fe and B, respectively. (b).The nearest-neighbor,
nearest-neighbor exchange, and third-nearest neighbor interactions
for Fe magnetic moments are shown as J1, J2, and J3, respectively.

FIG. 6. The electronic structure of FeB2 based on LSDA + SOC
with (001) spin orientation.

Thus, the values of J1 to J4 can be evaluated by mapping the
relative total energies of the five spin states and the obtained
magnetic interactions are summarized inTable III. These four
magnetic interactions are all ferromagnetic, in which J1 and
J4 play a leading role. With the increase of U , the strength of
these exchange parameters have somewhat differences, but the
dominant terms do not change. Based on the spin exchange
parameters in Table III, we calculate Curie temperatures by
the mean-field theory (MFT) approximation [64] and MC
simulations [47–49], which are also summarized in Table III.
The calculated Curie temperature based on LSDA calculation
is very high (1546 K) for MFT approximation, while the
value from MC simulations is somewhat smaller (945 K).
Meanwhile, the calculated Curie temperatures are not greatly
affected by the value of U . In summary, FeB4 is suggested to
be a good candidate for potential high-temperature permanent
magnet materials.

FIG. 7. The magnetic configurations of FeB2 considered in DFT
calculations. For clarity only Fe atoms are shown, while the blue
and red ones represent Fe ions with up and down spin, respectively.
(a)–(d) FM, AFM-1, AFM-2, and FIM-1 configurations, respectively.
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TABLE V. Spin exchange parameters (in meV) of FeB2 evaluated from LSDA (+ U ) calculations. Meanwhile, the calculated Curie
temperature (in K) based on MFT and MC method with different values of U are also summarized in the table.

Distance LSDA LSDA LSDA LSDA LSDA
(Å) + U (= 0.5 eV) + U (= 1.0 eV) + U (= 1.5 eV) + U (= 2.0 eV)

J1 3.035 −2.16 −5.01 −11.49 −16.54 −26.52
J2 3.045 −11.42 −16.17 −19.46 −23.17 −25.08
J3 4.299 −1.81 −4.59 −6.70 −8.15 −8.21
TC (MFT) 366 627 852 1044 1168
TC (MC) 355 588 828 964 1054

B. FeB2

FeB2 crystallizes in the hexagonal structure (space group
P6/mmm) [65] as shown in Fig. 5. Fe atoms occupy the
1a position: (0, 0, 0), and the site-symmetry group of Fe is
(6/mmm), which also permits the E1 and E2 orbital multiplets
allowing large MAE.

As one of the most important criterias of the permanent
magnet, the magnetic moment on the Fe site is estimated to

be 2.21 μB (MS = 0.0937 µB/Å
3
) from LSDA calculations

for FM configuration. Meanwhile, the MAE is calculated to
be 5.394 MJ/m3 with the easy-axis magnetization along the
(001) direction by the energy differences approach, while
based on the force theorem [42,43] the MAE is 5.688 MJ/m3.
The band structure from LSDA + SOC calculation with
(001) spin direction is shown in Fig. 6. In a similar way to
the FeB4 case, we perform first-principles calculations for
several different magnetic configurations of FeB2, including

FM configuration, two AFM configurations, and one FIM
configuration as shown in Fig. 7. As shown in Table IV,
the FM configuration has the lowest total energy with differ-
ent Hubbard U . The magnetic moments are comparable for
different magnetic configurations with the same Hubbard U
value (with a difference around ±0.3 μB), suggesting that the
energy-mapping method is an effective approach to roughly
calculate interactions. As shown in Fig. 5, we consider four
magnetic interactions labeled as J1 to J3. The total energies
per unit cell for these four spin configurations are expressed
as

EFM = E0 + J1 + 3J2 + 6J3,

EAFM−1 = E0 − J1 + 3J2 − 6J3,

EAFM−2 = E0 − J1 − J2 + 2J3,

EFIM = E0 + J1. (2)

TABLE VI. Materials for permanent magnets by screening which have already been discussed in previous studies. Listed are the material’s
ICSD, formula, space group, the corresponding 3d translation elements and Wyckoff positions, the calculated MAE (MJ/m3) from LSDA +
SOC calculations and saturation magnetic moment Ms (µB/Å

3
) from LSDA calculations. The data in the previous theoretical and experimental

work are also shown for comparison.

ICSD Material Space Transition Wyckoff Previous work

number formula group elements positon This work Experimental work Theoretical work

MAE Ms MAE Ms MAE Ms
150 640 FePt 123 Fe 1 a 11.977 0.119 10.0 [51]
53 259 Pt2FeCu 123 Cu 1 a 5.291 0.073 5.83 [32] 0.075 [32]

Fe 1 c
42 564 Pt2FeNi 123 Fe 1 a 2.358 0.088 2.42 [32] 0.089 [32]

Ni 1 c
102 620 CoPt 123 Co 1a 5.098 0.085 4.0 [66], 6.9 [67] 9.0 [68]
634 628 MnGa 123 Mn 1 d 2.256 0.092 2.0 [69] 0.087 [70]
181 719 FePd 123 Fe1 1 a 1.833 0.118 1.28 [71] 0.114 [71]

Fe2 1 c 1.713 [72]
180 896 FePd 123 Fe 1 a 0.938 0.119 1.04 [72] 0.96 [72]
76 636 Fe16N2 139 Fe1 4 d 1.264 0.188 0.78 [52] 1.043 [54] 0.192[54]

Fe2 4 e 0.266 [53]
99 787 Fe3Pt 139 Fe 4 e 1.344 0.167 0.086 [73] 0.172 [73]

102 731 YCo5 191 Co 2 c 2.294 0.086 6.5 [74] 4.37 [56] 0.099[57], 0.096 [56]
52 972 Co3Mn2Ge 194 Mn 4 f 1.465 0.147 1.18 [33] 0.087 [33] 1.44 [33] 0.147 [33]

633 778 Fe2Ta 194 Fe 2 a 2.023 0.062 1.25 [75] 0.059 [75]
643 689 Mn3V2Si3 193 V 4 d 0.798 0.078 0.85 [33] 0.063 [33]
625 559 YCo3 194 Co1 2 a 1.051 0.060 1.03 [76] 0.029 [76]

Co2 2 b
Co3 2 c
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Thus, the values of J1 to J3 can be evaluated by mapping the
relative total energies of the four spin states and the obtained
magnetic interactions are summarized in Table V. Based on
the calculated spin exchange parameters from LSDA calcula-
tions, the Curie temperatures are estimated to be 366 K and
355 K using the MFT approximation [64] and MC method
[47–49], respectively. With the increasing value of U , the
Curie temperature by both the MFT approximation and MC
method become higher as shown in Table V. According to
its high saturation magnetization and large uniaxial MAE,
FeB2 is also suggested to be a good candidate for potential
permanent magnet material.

V. CONCLUSION

In conclusion, we present a highly efficient search for
permanent magnet candidates in the ICSD. Focusing on 3d
materials where certain partially occupied orbital multiplets
can significantly enhance the effect of SOC, we first screen
3d transition metal materials with potentially huge MAEs by
simply checking whether the materials belong to the corre-
sponding space groups and whether the 3d transition elements
occupy the specific Wyckoff positions. Then first-principles
high-throughput screening is performed based on the cal-
culated saturation magnetic moment, magnetic anisotropy
energy, and magnetic ground state. In addition to many
materials discussed in earlier studies, finally five new candi-
dates are proposed as potential permanent magnet materials.
As examples, we present an investigation of detailed mag-
netic properties in FeB4 and FeB2, and discuss the effect of
Coulomb interaction U on them. Our results show that 3d
transition elements compounds may also have large MAE
and we believe that these potential rare-earth-free permanent
magnet materials deserve further experimental study.
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Wyckoff positions occupied by Fe ions of Fe-B alloys existing
in the ICSD database in Table VII.
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