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CoSMoR: Decoding decision-making process along continuous composition pathways
in machine learning models trained for material properties
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A key challenge in materials informatics is to decode the decision-making process of machine learning (ML)
models that have been trained to predict material properties. The existing methods usually rank alloy features
based on importance metrics and do not provide material-specific fundamental insights. Here, we present the
Compositional Stimulus and Model Response (CoSMoR) framework that can be applied to any composition-
based ML model (irrespective of the algorithm used) to calculate the exact contribution of each feature towards
the manifestation of target material property along a continuous compositional pathway. CoSMoR utilizes the
local partial dependencies of target property with respect to each feature and combines it with feature variations
associated with discretized compositional variations to measure exact feature contributions. We showcase the
importance of CoSMoR through implementation on phase-selection problem in multiprincipal element alloys
(MPEAs), wherein it leads to physical insights into phase transitions. A detailed overview of the framework,
along with the codes and step-by-step implementation of the algorithm, has been provided to enable extension
to new or preexistent models.

DOI: 10.1103/PhysRevMaterials.7.043802

I. INTRODUCTION

The application of machine learning (ML) in materials
science has seen tremendous growth in recent years [1–6].
Compositional ML models, which use a combination of com-
position and elemental properties as input features, have been
used extensively for the prediction of a wide variety of mate-
rials phenomena such as phase selection [7–11], mechanical
properties [12–14], oxidation behavior [15–19], structure sta-
bility [20,21], and alloy discovery [22–28]. Given the success
of these ML models even on unseen compositional space,
there is a strong possibility that these models are capturing
the underlying physical principles using the input material
descriptors, even though these decisions are often hidden due
to the complicated form assumed by ML models (especially
deep neural networks). This introduces exciting avenues for
uncovering physical insights from the trained ML models
through the decoding of their decision-making process. Here,
we have developed the Compositional Stimulus and Model
Response (CoSMoR) framework that discretizes the compo-
sitional space and calculates the exact feature contributions
along any given compositional pathway. This is done by com-
bining the partial-local dependence (PLD) of ML model (with
respect to each feature) with the sensitivity of that feature
(with respect to the composition) at each composition step.

With the growing applicability and reliability of ML for
materials science, the interpretability of these models has
appeared at the forefront in recent years [29–33]. As dis-
cussed eloquently by Lipton [34] and Oviedo et al. [31],
the term “interpretability,” and the expectations surrounding
it, can be quite subjective since it is associated with a great
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deal of technical jargon such as explainability, simulability,
decomposability, algorithmic transparency, understandability,
etc. Thus, it is imperative to define a priori the expectations
for any framework that aims at decoding the decision-making
process of ML models. In this regard, we describe here
the four attributes of interpretation obtained from CoSMoR
framework:

(i) Type of explanation: Suppose we have a base alloy, B. If
we start adding another component, A, to this base alloy, i.e.,
we move along AxB1−x composition pathway, then CoSMoR
provides the exact contribution of each feature towards the
changes in ML predicted property with respect to the base
alloy composition.

(ii) Correctness of model explanation: The feature contri-
butions calculated by CoSMoR along a composition pathway
are not relative or indicative metrics of feature importance,
but are instead quantitatively exact with respect to the model
decision-making process. For example, suppose we have a
hardness ML model that predicts an increase of 100 HV when
10 at.% Al is added to CrFeNi base alloy; then, implemen-
tation of CoSMoR will tell exactly how much each feature
contributed towards this overall increase of 100-HV hardness
as predicted by the ML model.

(iii) Causation for model understanding: The existing in-
terpretation methodologies such as partial-dependence plots,
accumulated local effects, Local interpretable model-agnostic
explanations, and SHapley Additive exPlanations (SHAP)
provide an understanding of how important each feature is to-
wards the overall model decision-making. But, from an alloy
design perspective, it is much more meaningful to understand
the model decision-making with respect to compositional
variations because: (1) the direct point of control in alloy
design is the elemental composition, not the feature values; (2)
the features cannot be varied independently since any alloying
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addition will affect all features; and (3) the features cannot
be changed by any arbitrary amount or to any arbitrary set
of values since the elements have a fixed set of properties
and we have direct control over only the alloy composition.
Since CoSMoR probes feature contributions as a function of
composition, the causality for model understanding obtained
from CoSMoR is rooted in compositional variations rather
than arbitrary feature variations.

(iv) Scope of explanation (local/global): In the context
of compositional ML models, the scope of explanation from
any interpretation framework may be defined as (1) local if
the understanding obtained is at a single composition value
for example, calculating the partial dependence of model
output on each feature for a given alloy (similar to SHAP
values), and (2) global if the understanding obtained reflects
in general how the feature manifests in the model decision-
making, for example, formulation of surrogate models with
simplified and interpretable mathematical forms. While local
explanations tend to be more accurate with respect to the
model decision-making process, they are valid only for a
fixed composition value. On the other hand, the global ex-
planations can span a much more expansive compositional
space, but the understanding becomes generalized, though
approximate. CoSMoR aims at combining the best of these
two approaches to provide material-specific insights. Funda-
mentally, the explanation obtained from CoSMoR is local in
nature as it calculates feature contributions for each compo-
sition step at a time. But, the scale of understanding is not
limited to a single composition point, and instead a complete
continuous composition pathway can be probed. Moreover,
composition pathways defined as AxB1−x can span a con-
siderable compositional space since components A and B
can be either elements or any stoichiometric combination of
elements.

II. METHODOLOGY FOR DEVELOPMENT OF CoSMoR

In CoSMoR framework, the compositional space is repre-
sented by atomic fraction (and not weight fraction). Further,
it is discretized using a composition step-size variable de-
noted by �c. This is a user input parameter; for e.g., in
Sec. IV (where CoSMoR has been applied to phase selection
in MPEAs), a composition step-size value of 0.01 has been
used that represents 0.01 at. fraction (i.e., 1 at.%). Consider a
hypothetical compositional ML model that takes F number of
input features (denoted as Xi, i ∈ [1, 2, 3, . . . F ]) to predict a
single target parameter Y . At any composition c, we have a set
of all feature values. CoSMoR is built on the hypothesis that
if the composition changes by a discrete amount �c, then the
resultant change in prediction Y can be represented exactly as
an accumulation of contributions from all features, i.e.,

[�Y ]c→c+�c =
F∑

i=1

[�Y (Xi )]c→c+�c. (1)

The partial dependence (PD) of ML model on any feature is
reflected by the sensitivity of the ML model to an independent
change in that feature. But, this PD value depends on the value
of all the other features also, i.e., at different compositions
the PD values will be different. Thus, the term partial-local

dependence is used to denote the fact that any PD calculation
is valid only locally (i.e., at a particular composition value
only). As shown schematically in Fig. 1(a), PLD of the model
with respect to feature Xi at any composition c is calculated
by changing the value of feature Xi by a small amount δXi,
while keeping all the other features the same, and measuring
the change in model output δY . Thus, the PLD (denoted as
mXi

c ) with respect to feature Xi at composition c is calculated
as mXi

c = ( δY
δXi

)
c
. Here, δXi is a user-input parameter whose

value will depend on the scale of each feature. If all features
were normalized to a uniform scale (as recommended for ML
model development), the same value of δXi may be used for
all features; for, e.g., in Sec. IV, we used a value of 0.02 for
δXi since all features were normalized to [0, 1] scale.

Once we know the PLD values with respect to each fea-
ture at composition c, we can calculate the contribution of
each feature for any discrete composition change. Suppose we
change the composition by one step size, i.e., we move from
c → c + �c. For this composition step, as shown in Fig. 1(b),
the contribution of any feature Xi (denoted as [�Y ]Xi

c→c+�c)
towards the overall change in target Y can be calculated as the
product of PLD and feature change, i.e.,

[�Y ]Xi
c→c+�c = mXi

c [�Xi]c→c+�c, (2)

where [�Xi]c→c+�c is the change in value of feature Xi as
composition changes from c → c + �c.

With this, now we can explore the exact contribution of
each feature along a continuous composition pathway, as
shown schematically in Fig. 1(c). Suppose we take an initial
baseline composition c0 and start increasing the concentration
in steps of �c. After N steps, the concentration is c0 + N�c,
and the cumulative contribution of any feature Xi towards the
overall change in Y prediction is calculated as

[�Y ]Xi
c0→c0+N�c =

N∑

n=1

[
mXi

c0+(n−1)�c [�Xi]c0+(n−1)�c→c0+n�c

]
.

(3)
CoSMoR returns both the stepwise as well as the cumu-

lative feature contributions along a composition pathway, as
shown in Fig. 1(c). While the user is afforded the flexibility
to use any or both of these, in most use cases, cumulative
contributions may be the preferred choice since plotting these
provides a clear and intuitive visualization of both the local
changes (represented by variations in slope) as well as cumu-
lative effect (with respect to baseline composition) for feature
contributions. Plotting these cumulative feature contributions
as a function of compositional variation provides two key
insights. Firstly, quantitively accurate relative contributions of
features can be ascertained, which can in turn be associated
with the underlying physical phenomena represented by the
features. Secondly, different composition pathways can be
compared and the similarities or differences in the underlying
physics can be understood by comparing these feature con-
tributions. While the CoSMoR methodology to extract exact
feature contributions will remain same for all ML models, the
interpretation of these contributions will be problem specific.
As an example, in Sec. IV, we have presented the application
of CoSMoR to phase-selection problem in MPEAs.
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FIG. 1. Methodology used in CoSMoR to extract exact feature contributions along a compositional pathway. (a) Calculation of local partial
dependence (δY/δXi ) of target property Y with respect to feature Xi at any composition c. (b) Calculation of individual feature contributions
towards change in phase probability for each one composition step, i.e., as composition changes from c → c + �c. (c) Calculation of
cumulative feature contributions along a continuous composition pathway wherein the initial concentration is treated as baseline.

III. IMPLEMENTATION OF CoSMoR

While it is possible to implement CoSMoR with any pro-
gramming language (as long as the concerned ML model
can be loaded into it), in our work, we have developed it
using PYTHON. The code, along with detailed instructions,
examples, and video guides, will be made available as open
source so that it can be easily integrated with diverse work-
flows (refer to the code availability statement preceding the
Acknowledgments for details).

The workflow starts with the creation of “cosmor” class
and Fig. 2 shows the flowchart depicting the implementation
of CoSMoR methodology. We first go over the user inputs
required for cosmor class. A composition pathway is repre-
sented as a pseudobinary system (AxB1−x ), where components
A and B can be either elements or stoichiometric combination
of elements, e.g., Al, AlTi, Al2Ti, and AlTi2Ni are all valid
component inputs. The concentration of component A (i.e., x)
is used as the independent variable and thus, the user must

specify that component as A whose concentration has to be
varied. For example, if effect of Al addition to “Cu2NiTi” has
to be studied, then component A will be Al and component
B will be Cu2NiTi. The composition step-size (�c) input is
specified in atomic fraction (typically 0.01) and is used to
discretize the composition space. The upper and lower bounds
for the composition pathway are also required in the form of
“start concentration of component A” and “end concentration
of component A.” These are specified in atomic fractions and
must lie between [0, 1] with the additional constraint that
start composition is less than end composition. Finally, feature
step-size (δXi) input is required for the calculation of PLD
values of model with respect to each feature. The current code
assumes the same value of δXi for all features and is thus
suitable for models where normalized features are used. This
functionality will be expanded in future updates to support the
use of non-normalized features.

The implementation requires six core functions, as
shown in Fig. 2. Two of these, viz., “create_features” and
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FIG. 2. Flowchart showing implementation of CoSMoR. Function blocks with purple outline and text (namely, create_features and
make_predictions) are the user-defined functions whereas rest of the functions are in-built in the cosmor code.

“make_predictions,” would be specific to each model and
thus have to be defined by the user, which the user would
have created during the development of ML model. The
create_features function takes the compositions (generated
by “create_alloys” function) as an input and returns feature
values for each composition. The make_predictions function
takes these feature values as input and generates the ML
prediction for each composition. More information into the
development of these functions, along with examples and unit
tests, has been provided in the code repository (refer to code
availability statement). The rest of the functions are model
agnostic and thus do not require any user modification.

IV. PHASE SELECTION
IN MULTIPRINCIPAL-ELEMENT ALLOYS

To demonstrate the application and importance of CoS-
MoR framework, we have applied it to probe the phase
selection in MPEAs.

A. Development of ML models

The ML models used here have been reported in our pre-
vious work [35]. The training dataset for these models was
compiled from the database reported by Borg et al. [36] that
contains 426 MPEAs with experimentally observed phase in-
formation in as-cast condition at room temperature. While the
dataset is small, we have shown in our previous works [7,35]
that the model learning aligns well with the experimental
results in a wide variety of alloy systems. Three separate ar-

tificial neural network models were trained for predicting the
probability of occurrence of phases. The first model predicts
only the probability of fcc phase, i.e., P(fcc), the second model
predicts only the probability of bcc phase, i.e., P(bcc), and the
third model predicts only the probability of IM-phase P(IM),
where IM stands for intermetallic. Since these probabilities
are independent of each other, they can individually vary
between [0, 1] and their summation does not have to be equal
to 1. While predicting the presence or absence of a phase, a
probability threshold of 0.5 has been used, i.e., the model pre-
dicts the presence of a phase if the predicted P(phase) � 0.5.
To elaborate, P(IM) = 0.6 means that the probability for IM
phase to occur is 0.6 and we would conclude that it is present
based on the threshold of 0.5. But, it gives no information on
whether fcc and bcc phases are present or absent. For that,
we would need to look separately at P(fcc) and P(bcc) values.
These models were driven by physics-based features that have
been shown to be correlated with phase stabilities in MPEAs
[7] and a cross-validation accuracy of 91, 95, and 76% was
obtained for bcc, fcc, and IM phase, respectively. The
feature set comprised seven features:{Metallic radius asym-
metry (δmet), Valence electron count (VEC), Covalent radius
asymmetry (δcov), Elastic modulus asymmetry (δE), Aver-
age cohesive energy (E coh ), Chemical enthalpy of mixing
(�H chem ), Elastic enthalpy of mixing (�H el )}. Since the fo-
cus here is on the implementation of CoSMoR to gain physical
insights, more details related to the training, validation, and
performance of these models can be obtained from previous
work [35].
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FIG. 3. Probability of occurrence of fcc, bcc and IM phases as
predicted by machine learning models in Mx-(CoCrFeNi)1−x alloy
systems. Phase probabilities as a function of (a) Al, (b) Cu, (c) Mn,
(d) Mo, and (e) Ta addition in CoCrFeNi alloy. A phase probability
(P) threshold of 0.5 has been used to indicate the presence of a
particular phase, and correspondingly each plot has been divided into
green and red regions representing P � 0.5 (i.e., phase presence)
and P � 0.5 (i.e., phase absence), respectively. Predicted phase-
transition boundaries have also been highlighted above the top axis
of each plot, along with the experimentally observed phases at some
discrete compositions. The green dotted line (x = 0.2) in each plot
represents the equiatomic quinary composition.

B. Phase variations in Mx-(CoCrFeNi)1−x

Since CoSMoR brings forth the decision-making process
of the ML model along continuous composition pathways, it
is pertinent to ascertain whether the ML model is even capa-
ble of capturing the continuous variations in the first place.
For this purpose, we probed the effect of various element
additions (Al, Cu, Mn, Mo, and Ta) on phase evolution in
CoCrFeNi. Equiatomic quaternary CoCrFeNi is a medium-
entropy reduced Cantor alloy that exhibits fcc solid-solution
phase in as-cast condition [37,38]. We selected CoCrFeNi as
the base alloy since the effect of different alloying elements
has been studied experimentally for this system [38–51]; thus,
these compositions can be used as validation checkpoint for
the phase mappings predicted through ML model. Figure 3
shows the predicted occurrence probabilities of fcc, bcc, and
IM phases as a function of different alloying additions in
CoCrFeNi quaternary along with the experimentally observed
phases at some discrete compositions. With the addition of Cu
and Mn, only fcc phase is predicted throughout the composi-
tion range of 0–0.4 at. fraction, as seen in Figs. 3(b) and 3(c).
This matches the experimental observations for Cu [44,47,50]
and Mn [39,46] variations.

Addition of Al to CoCrFeNi increases the occurrence prob-
ability of bcc phase, as seen in Fig. 3(a), and the model
predicts formation of stable bcc phase beyond 9 at.% Al; this
aligns closely with the experimental observations made by
Chou et al. [51] wherein the alloy structure transitioned from

single-phase fcc to dual-phase (fcc+bcc) as Al concentration
was increased from 8.57 to 11.1 at.%. The model predicts a
decrease in occurrence probability of fcc phase as Al increases
and the structure transitions completely to bcc phase above
16 at.% Al; this complete transition from fcc → bcc phase
has also been observed experimentally by Cieslak et al. [45]
and Chou et al. [51] above 15.7 and 20 at.% Al respectively.
The model also predicts existence of IM phases above 20 at.%
Al, which aligns with the formation of B2 phase above 20 at.%
Al, as observed experimentally [45]. Thus, the effect of con-
tinuous Al variation has been captured accurately by the ML
model as the learned transition boundaries align very closely
with experimental observations.

Addition of Mo or Ta to (CoCrFeNi) induces a strong IM
formation tendency, as seen in Figs. 3(d) and 3(e), and the
model predicts a transition from fcc phase to a dual-phase
(fcc+IM) structure above 7 at.% Mo and 3 at.% Ta. This
aligns with the experimental studies for varying Mo [42] and
Ta [41,43] concentration, which showed the formation of IM
phase at 9 at.% Mo and 2.5 at.% Ta. Also, the predicted oc-
currence probability of bcc phase remains comfortably below
the 0.5 threshold and thus no bcc phase formation is predicted
with Mo or Ta addition in (CoCrFeNi).

C. Decoding the decision-making process in Mx-(CoCrFeNi)1−x

To understand the decision-making process used by the
ML model for predicting phase probabilities, we imple-
mented CoSMoR to calculate exact contribution of individual
features towards fcc, bcc, and IM phase probabilities in
Mx-(CoCrFeNi)1−x alloy systems probed in Sec. IV B. The
feature contributions in these alloy systems, along with nor-
malized feature values, have been plotted in Figs. 4 and
5, wherein x = 0 has been used as the baseline composi-
tion. A quick observation of these trends shows that (a)
the feature contributions vary nonlinearly, sometimes even
nonmonotonically, with respect to feature values; (b) same
features contribute differently towards occurrence probabil-
ity of different phases, viz., fcc, bcc, and IM; and (c) the
relative importance of features changes as we move from
one system to another. These observations indicate that the
decision-making process of the ML model is not purely sta-
tistical, and that it updates dynamically as the alloy system
changes, thereby highlighting the cognizance of the model to
underlying physics that drives the phase-selection process in
MPEAs. Here, we discuss the findings that stand out on closer
inspection.

VEC and δmet contributions dominate the occurrence prob-
ability of fcc and bcc phases, as seen with respect to addition
of Al, Mo, or Ta to (CoCrFeNi) in Figs. 4(a) and 4(b), 5(a) and
5(b), and 5(e) and 5(f), respectively. As Al, Mo, or Ta concen-
tration increases, VEC decreases whereas δmet increases, but
both VEC and δmet contribute strongly towards a decrease in
fcc and increase in bcc phase probability. Also, the magnitude
of feature contributions changes sharply in the fcc → bcc
transition domain (9–16 at.% Al) observed from experimental
studies [45,51]. This aligns with the previous observations
wherein VEC has been shown to be strongly associated with
the stability of fcc and bcc phases [35,52–54]. Contrary to
these systems, the addition of Cu or Mn to (CoCrFeNi)
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FIG. 4. Interpreting the decision-making process of phase-selection ML models using CoSMoR. Cumulative contribution of each feature
towards the overall phase probability P(phase) in (a)–(c) Alx-(CoCrFeNi)1−x , (e)–(g) Cux-(CoCrFeNi)1−x and (i)–(k) Mnx-(CoCrFeNi)1−x

alloy systems. Normalized feature values as a function of (d) Al, (h) Cu, and (l) Mn concentration. feature contributions here are cumulative
contributions along the composition pathway with respect to baseline composition of x = 0.

does not induce any significant change in the occurrence
probability of fcc or bcc phase, as seen in Figs. 4(e) and
4(f) and Figs. 4(i) and 4(j), respectively. Even though δmet

increases with addition of Mn (Fig. 4(l)), its contribution
towards fcc and bcc phase probability is negligible and
marginal, respectively. This aligns with previous observations
[35] that the VEC acts as a classifier wherein the importance

of not only VEC, but also that of the other features, towards
occurrence of fcc/bcc phases is dictated by the VEC value. As
seen with Al addition, the contributions of all features towards
P(fcc) and P(bcc) see sudden changes beyond a threshold
VEC value. Thus, it appears that the model has successfully
learned these physics-based relationships to establish the sta-
bility of fcc and bcc phases in MPEAs.
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FIG. 5. Interpreting the decision-making process of phase-selection ML models using CoSMoR. Cumulative contribution of each feature
towards the overall phase probability P(phase) in (a)–(c) Mox-(CoCrFeNi)1−x and (e)–(g) Tax-(CoCrFeNi)1−x alloy systems. Normalized
feature values as a function of (d) Mo and (h) Ta concentration. Feature contributions here are cumulative contributions along the composition
pathway with respect to baseline composition of x = 0.

While fcc and bcc phase occurrence is domi-
nated by VEC and δmet, the IM phase probability in
Mx-(CoCrFeNi)1−x[M = {Al, Mo, Ta}] is dominated by
three feature contributions: δcov, δE, and �H el. With the
addition of Al, both δE and �H el increase [Fig. 4(d)] and
consequently drive the formation of IM phase to a large
extent [Fig. 4(c)], but the contribution of δE to IM formation
is considerably more due to a much steeper increase in δE

feature value. On the other hand, with addition of Mo and
Ta, δcov and �H el contribute significantly toward the IM
phase formation, whereas the contribution of δE is almost
negligible, as seen in Figs. 5(c) and 5(g). This is because
δcov increases sharply with Mo and Ta addition whereas
δE saturates at low values, as seen in Figs. 5(d) and 4(h).
To read further into these observations, we need to discuss
how these features (δcov, δE, and �H el) could be correlated
to the formation of intermetallics. The bond formation in
metals and alloys always has some covalent character [55]
that is expected to be affected by δcov, which is a measure
of asymmetry in bond lengths when constituent elements
participate in covalent bond formation. The covalent nature is
especially dominant in the intermetallics wherein a large δcov

can dictate preferential formation of certain atomic pairs and
coordination symmetries corresponding to favorable atomic-

size ratios. Young’s modulus (E) is correlated to the strength
of interatomic bonds as it can be estimated from the
potential energy vs separation curve. Since multiple elemental
interactions are possible in MPEAs, δE is an indirect measure
of the asymmetry in bond strengths of different atomic-pairs.
A high δE would indicate the presence of certain atomic
pairs with considerably higher or lower bond strengths that
may promote ordering or clustering tendencies, and thus,
dictate formation of intermetallics. The elastic enthalpy
of mixing �H el, calculated using the classical elasticity
method by Eshelby and Friedel [56–58], is a measure of the
elastic energy generated due to the internal strains induced
by size asymmetry between constituent elements. Since the
calculation of �H el considers both local distortion (through
volume corrections) and bonding characteristics (indirectly
through shear and bulk modulus), a large �H el represents
instability induced in the solid-solution phase due to excessive
strain energy and is expected to result in the formation of
ordered structures that can relieve some of this strain energy.
Thus, all three features, viz., δcov, δE, and �H el, are closely
correlated to the IM phase formation in MPEAs, and the
fact that ML model gives significant and selective weightage
to these features strongly indicates that it has successfully
learned the underlying physics.
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FIG. 6. Interpreting the decision-making process of phase-selection ML models using CoSMoR. Cumulative contribution of each feature
towards the overall phase probability P(phase) in (a)–(c) Fex-(AlCoCr0.5Ni2.5)1−)x and (e)–(g) (TaNb)x-(MoW)1−x alloy systems. Normalized
feature values as a function of (d) Fe and (g) (TaNb) concentration. feature contributions here are cumulative contributions along the
composition pathway with respect to baseline composition of x = 0.

D. Exploring Fex-(AlCoCr0.5Ni2.5)1−x

and (TaNb)x-(MoW)1−x alloy systems

The implementation of CoSMoR in Mx-(CoCrFeNi)1−x
alloy systems shows a strong dependence of fcc and bcc phase
occurrence on VEC. This poses an interesting question as to
whether the ML model can capture phase stabilities in systems
where VEC remains constant. To address this, we looked
at Fex-(AlCoCr0.5Ni2.5)1−x alloy system that maintains a
constant VEC of 8 and has been studied experimentally by
Liu et al. [59]. One would expect this system to have fcc phase
throughout the compositional range, but Liu et al. observed a
transition from (fcc+bcc) dual-phase structure at x = 0 to an
almost single-phase fcc structure at x = 0.47. The ML model
captures this transition almost perfectly, as seen in Figs. 6(a)
and 6(b), and the interpretation framework reveals that the
extinction of bcc phase accompanying Fe addition is driven
primarily by the decrease in δmet and δE. δmet is a measure
of metallic radius asymmetry between the component ele-
ments, and increase in δmet contributes to an increase in bcc
and decrease in fcc phase probability, as seen in Figs. 4(a)
and 4(b), 5(a), 5(b), 5(e), and 5(f), and Fig. 6(b). This is
expected since bcc phase, due to its more open structure,

can accommodate the larger size asymmetry more easily as
compared to the close-packed fcc phase.

CoSMoR was further used to explore another interesting
alloy system that contradicts some of the earlier observations
related to IM formation. In Mx-(CoCrFeNi)1−x alloy systems,
δcov, δE, and �H el features contribute strongly towards the
occurrence of IM phases. Especially with Al addition, the
increase in δE contributed significantly to the formation of
IM phases at high Al concentration. But, on the contrary,
(TaNb)x-(MoW)1−x system shows a very steep increase in
δE value as (TaNb) concentration increases [Fig. 6(h)], but
experimentally no IM formation is observed in this system
[60]. This raises an interesting question as to whether the
ML model can predict this behavior and how this decision
would be made based on all feature values. The ML model
does not predict any IM formation in this system, as seen
in Fig. 6(g), which aligns with the experimental observa-
tions [60] wherein TaNbMoW forms a simple single-phase
bcc structure. This can be attributed to the fact that all the
other drivers for IM formation are virtually nonexistent in this
system since (a) there are no significant lattice strains as δmet

and �H el are almost zero, (b) no strong chemical interactions
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as −6.38 < �H chem ← −0.22 kJ/mol, and (c) δcov is almost
zero. This indicates that a high δE alone is not sufficient for
IM formation, and that the model understands these nuances
in the feature variations that are associated with occurrence of
IM phases.

V. USE-CASE SCENARIOS FOR CoSMoR

CoSMoR is a generalized framework that can be applied
to any ML model (irrespective of the type or complexity of
the models and features used) provided that the model has
been built using features that are a direct function of material
composition. Here we discuss the scenarios wherein CoSMoR
can be used to evaluate, interpret, and improve the composi-
tional ML models that have been built for predicting material
properties.

A. Evaluating the nature of fit

The development and optimization of ML models is driven
by the maximization of statistical performance that is quan-
tified using a variety of metrics such as mean absolute error,
R2 value, percentage error, precision, recall, etc. But, while
the statistical nature of fit is routinely evaluated, the physical
nature of the fit (which implies the consistency between the
ML model decision-making process and the known physical
rules) is often ignored, resulting in a big question mark as
to how well the model is expected to perform when extrap-
olated to novel compositions. It is an even bigger problem
when using ML models (such as neural networks) that have
multiple minima corresponding to similar statistical perfor-
mance but different learning states, since now one can end
up with different models with similar statistical performance.
CoSMoR addresses these concerns by enabling the evalua-
tion of physical nature of fit for compositional ML models
through the comparison of feature contributions with well-
established physical rules. For example, VEC is known to
have a strong impact on fcc and bcc phase stability in MPEAs
and thus when we probe the model decision-making process
in Mx-(CoCrFeNi)1−x alloys with CoSMoR, the fact that VEC
contributions closely follow the P(fcc) and P(bcc) variations
strongly indicates that the model has learned this rule. On the
other hand, if it had so happened that VEC contributions did
not align with the P(fcc) and P(bcc) variations, we could have
safely rejected the model even if it showed good statistical
accuracy. Thus, users can validate the physical consistency of
their compositional ML models by using CoSMoR.

B. Revealing the drivers of change

The black-box treatment of ML models obscures their
decision-making process, leaving open questions as to how
exactly the model outcomes are computed. Implementation of
CoSMoR provides the exact feature contributions along spe-
cific composition pathways and thus reveals material-specific
insights into what drives the changes in target property as
predicted by the ML model. This understanding can be both
at feature level and physical level, as elaborated here.

First, CoSMoR identifies features that drive the changes as
a function of composition which can lead to new fundamental
insights and design principles. For example, since the advent

of data-driven models for MPEAs, the intermetallic formation
has been frequently assumed to be driven by large metallic
radius asymmetry (δmet). But, the implementation of CoSMoR
in this work shows that it is actually the covalent radius
asymmetry that is considerably more critical for intermetallic
formation, and that δmet is more relevant for fcc and bcc phase
stability rather than intermetallic formation. Similarly, even
though δmet and elastic enthalpy of mixing (�H el) features
are highly correlated, the intermetallic formation is predomi-
nantly driven by �H el. Thus, CoSMoR can provide insights
into the relevance and significance of features used in the ML
model.

Secondly, when combined with experimental observations
and ab initio calculations, CoSMoR can lead to insights into
the physical origins of the target property predicted by the ML
model. Suppose we have a compositional ML model that uses
a set of input material descriptors (such as VEC, δmet, δcov,
�H el, etc.) to predict the strength of an alloy. Using CoSMoR,
we can identify the origin of strength at feature level while
the density-functional theory calculations and experimental
results can assist in identification of baselines as to what these
origins at feature level may represent at a physical level within
the material. For example, one of the expected observations
in this case would be that whenever fcc↔bcc transitions oc-
cur, the contribution of VEC towards the resultant changes
in strength becomes significant. Such baselines, once estab-
lished, will allow exploring the novel compositional spaces
using CoSMoR to predict not only the variations in predicted
property, but also the underlying physical phenomena that
may be responsible for these variations. In our previous work
[12], we have shown how this methodology can be used to
extract physical origins of hardness in MPEAs.

The model-agnostic implementation offered by CoSMoR
allows its use for both continuous as well as discrete decision-
based models such as decision trees and random forest (RF).
To illustrate this, we developed RF models for the same
problem presented in this work, i.e., presence/absence of fcc,
bcc, and IM phases in MPEAs and implemented CoSMoR
to probe the decision-making process of these RF models
along some of the compositional spaces. The performance of
these models is inferior to the neural network models and they
were developed only to illustrate the applicability of CoSMoR
to such models. The results in Supplemental Material [61]
show that CoSMoR successfully brings out the contribution
of different features towards the phase occurrence for these
RF models also. The instability of PLDs (which may occur
in such discrete models) at phase-transition boundaries does
not appear to be a problem for fcc and bcc models. But, for
the IM model, we do see instability in both the model output
as well as the feature contributions. In fact, the instability in
feature contributions could largely be due to the instability
in the model output itself because the IM RF model was
the least accurate model with F1 score of 0.74 as compared
to fcc and bcc models with F1 score of 0.92 and 0.94, re-
spectively. Thus, while the breakdown of continuous models
using CoSMoR will always be more accurate as compared
to that for decision-based models, we believe that certain
best practices can improve the performance for RF models:
(a) Reducing the complexity of the RF by controlling the
depth and splitting criteria, (b) preventing overfit of the model,
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and (c) improving generality of the model by using bootstrap-
ping or other techniques.

VI. CONCLUSION

We have presented here the model-agnostic Compositional
Stimulus and Model Response (CoSMoR) framework, which
is an interpretation framework capable of decoding the
decision-making process of machine learning models trained
for material properties along continuous compositional path-
ways. A compositional pathway is defined as a pseudobinary
AxB1−x where components A and B can be either elements
(e.g., Al or Ti) or any stoichiometric combination of elements
(e.g., CrFe, Cr2Fe, or Cr2FeNi2). As composition changes,
the ML model predictions also change, but the variations in
model predictions cannot be explained if the ML model is
treated as a black box. CoSMoR addresses this by calculating
the exact contribution of each feature along any composi-
tional pathway based on the partial-local dependence of ML
model (with respect to each feature) and the sensitivity of
that feature (with respect to the composition). CoSMoR offers
three unique advantages. First, it adopts a model agnostic
approach and thus can be applied to any compositional ML
model, irrespective of the algorithm used. Second, the causal-
ity of model understanding is shifted to variations in alloy
composition rather than some arbitrary feature variations.
This enables integration of the understanding derived from
CoSMoR with ab initio calculations and experimental results
to correlate the feature contributions with physical phenom-
ena. Third, the feature contributions extracted by CoSMoR
are quantitatively exact with respect to the model decision-

making process. This enables direct and reliable comparison
between multiple composition pathways to assess similarities
and differences between how ML model treats these different
alloy systems. We have showcased the importance of CoS-
MoR through implementation on phase-selection problem in
multiprincipal element alloys. Individual feature contributions
towards predicted phase probabilities in a variety of alloy sys-
tems, viz., Mx-(CoCrFeNi)1−x[M = {Al, Cu, Mn, Mo, Ta}],
Fex-(AlCoCr0.5Ni2.5)1−x, and (TaNb)x-(MoW)1−x were ob-
tained using CoSMoR. The interpretation results show that
the ML model has learned the underlying physics associated
with phase stability and point toward the features that are
essential for predicting relative stability of fcc/bcc phases and
formation of intermetallic phase. Thus, CoSMoR enables a
systematic and insightful exploration of compositional spaces
using ML models to not only validate the physical nature of
fit but to also extract material-specific insights as to how the
target property manifests in a material.

The CoSMoR code, along with the documentation, exam-
ples and video tutorials, is available at IDEAsLab-Materials-
Informatics organization page on GitHub [62].
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