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To design materials for extreme applications, it is important to understand and predict phase transitions and
their influence on material properties under high pressures and temperatures. Atomistic modeling can be a useful
tool to assess these behaviors. However, this can be difficult due to the lack of fidelity of the interatomic potentials
in reproducing this high pressure and temperature extreme behavior. Here, a hybrid EAM-R—which is the
combination of embedded atom method (EAM) and rapid artificial neural network potential—for Tin (Sn) is
described which is capable of accurately modeling the complex sequence of phase transitions between different
metallic polymorphs as a function of pressure. This hybrid approach ensures that a basic empirical potential like
EAM is used as a lower energy bound. By using the final activation function, the neural network contribution
to energy must be positive, assuring stability over the whole configuration space. This implementation has the
capacity to reproduce density functional theory results at 6 orders of magnitude slower than a pair potential
for molecular dynamics simulation, including elastic and plastic characteristics and relative energies of each
phase. Using calculations of the Gibbs free energy, it is demonstrated that the potential precisely predicts
the experimentally observed phase changes at temperatures and pressures across the whole phase diagram.
At 10.2 GPa, the present potential predicts a first-order phase transition between body-centered tetragonal
(BCT) β-Sn and another polymorph of BCT-Sn. This structure transforms into body-centered cubic near the
experimentally reported value at 33 GPa. Thus, the Sn potential developed in this paper can be used to study
complex deformation mechanisms under extreme conditions of high pressure and strain rates unlike existing
potentials. Moreover, the framework developed in this paper can be extended for different material systems with
complex phase diagrams.
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I. INTRODUCTION

There is significant interest in the structural, electrical, and
thermodynamic properties of Sn [1–4] due to the prevalence
of Sn-containing materials such as Sn-Pb and Sn-Li alloys
in a wide variety of contemporary technological applications
[5–8]. To understand the deformation mechanisms in tin and
its alloys in detail, atomic-scale simulations are an efficient
way to complement experimental data that provide macro-
scopic insights into the overall mechanical behavior [9,10].
While atomistic simulations can provide atomic-scale infor-
mation, their accuracy depends on the precision of interatomic
potentials. Hence, it is of the utmost significance that de-
pendable interatomic potentials be readily available. In this
paper, we develop an interatomic potential form to represent
the complex structures of Sn especially under high pressures
and temperatures.

In the periodic table, Sn marks the transition zone be-
tween the semiconducting group-14 elements Si and Ge and
the heavier metallic member Pb. Like Sn, when subjected
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to high pressure, both silicon and germanium are known to
go through a complicated sequence of phase transitions that
can result in a wide variety of metallic polymorphs [11–13].
The diamond-structured (α-Sn, Fd 3̄m) phase of Sn can be
found at temperatures < 286 K. Above this temperature, Sn
crystallizes into a form known as body-centered tetragonal
(BCT, β-Sn, I41/amd), which is characterized by metallic
bonding [3,14]. An early high-pressure investigation revealed
that the polymorph that was generated at pressures > 10 GPa
had a tetragonally deformed structure BCT (I4/mmm) with an
axial ratio of c/a < 0.91 [15]. Above P ∼44 GPa, the axial
ratio increases, and the body-centered cubic (BCC) structure
was identified using the x-ray diffraction pattern [16]. These
observations were made in conjunction with the fact that,
under increasing pressure, the axial ratio increased from the
BCT to the BCC phase. Several investigations have found
different coexisting phases at high pressures between 40 and
55 GPa as BCT [16] and 50–152 GPa as BCC. Fairly re-
cent theoretical [17] and experimental [18] studies showed
that the BCC polymorph remained stable up to 157 GPa,
and above that pressure, it transformed into an hexagonal
close-packed (HCP)-Sn (P63/mmc) structure. The unit cells
of experimentally observed phases up to 157 GPa are depicted
in Fig. 1. The presence of these allotropic phases makes the
system complex, and it is a challenge to represent these phases
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FIG. 1. Unit cells of the crystal structures and space groups of the four different solid phases of Sn examined in this paper. The coloring of
the various phases will remain the same throughout the text.

accurately using interatomic potentials. Although the embed-
ded atom method (EAM) model [19] predicts the BCT and
BCC phases at high pressure, it fails to predict the β-Sn phase
as a stable phase under ambient conditions [20]. In contrast,
the many-body interatomic potentials [21–23] derived using
the modified EAM (MEAM) [24] were better at represent-
ing the β-Sn and liquid phases. An alternative interatomic
potential has been developed by Ko et al. [25] (MEAM-Ko)
based on the second nearest-neighbor (NN) MEAM [26]. In
comparison with previously reported MEAM potentials, the
MEAM-Ko potential significantly improves the reliability of
numerous physical metrics, especially β-Sn phase properties
at ambient pressure, but fails to predict high-pressure phases
(>5 GPa) under dynamic conditions. In general, the empirical
potentials developed previously cannot simultaneously pre-
dict stable Sn phases at ambient and high-pressure phases.
Due to the differences in the underlying physical and chem-
ical models relevant to Sn, traditional functional forms of
potentials are varied and, to a considerable degree, inconsis-
tent. Due to the constraint imposed by the functional form,
modeling multiphase systems with both covalent and metallic
bonding presents a substantial challenge.

To overcome some of these challenges, a direction has
emerged in this area in which interatomic potentials are being
generated using machine learning (ML) techniques [27–31].
ML potentials have exploded into an exciting research field in
computational materials science that has received widespread
attention. In materials research, the introduction and develop-
ment of ML skills may be viewed as part of a bigger journey
toward data-driven methodologies which can accelerate the
discovery of materials. In simpler terms, the fundamental con-
cept underlying ML is to minimize the importance of physical
or chemical intuition to determine the functional form of
interatomic potentials in favor of mathematical interpolation
using known reference data provided by quantum-mechanical
computations [32–37]. This strategy represents a significant
departure from conventional methods, with the objective of
reaching a comparable result by capturing the fundamental
physical science of interatomic bonding. To a high degree,
and for many different configurations and architectures, ML
approaches can reproduce first-principles data. Many different
material systems, such as alloys and oxides, have benefited
from their application [38–44].

One such ML potential is the rapid artificial neural net-
work (RANN), which is generated using the methodology

of the MEAM formalism, which includes exponential decay
of interaction strength with distance, angular dependent in-
teractions, and the use of known modulus and NN distance
to determine metaparameters and construct features [45,46].
This potential style permits network topologies of any size
and activation function, and the structural fingerprint com-
putation uses single looping summations over the neighbor
list of a target atom, improving processing speed. In addition,
angular screening has been included to enhance efficiency
by restricting the number of neighbors included and to in-
crease predictive power by combining fingerprint filtering
and smoothing when atoms cross the radial cutoff [47,48].
RANN has shown promise in modeling multiphase systems,
e.g., Ti and Zr, giving it an advantage for modeling even
more complex systems like Sn. In this paper, we demonstrate
how we combine EAM with the RANN potential (EAM-R)
to reproduce the structural and mechanical properties of four
experimentally observed phases in Sn under pressure.

II. METHODOLOGY

A. Density functional theory training database

Modeling the many atomic environments accurately re-
quires a large database covering a wide variety of structures.
The energies and forces of different structures are calcu-
lated using QUANTUM ESPRESSO (QE) [49], version 6.4.1, with
the generalized gradient approximation (GGA) exchange-
correlation functional and Perdew-Burke-Ernzerhof (PBE)
[50] pseudopotential. Rehn et al. [51] suggests that the
AM05 [52] exchange-correlation functionals, rather than PBE
[50], are in better agreement with experimental findings. It
is found here that the equilibrium volume using PBE is
∼1 Å3/atom (5%) smaller than that obtained using AM05.
It is not unusual for the density functional theory (DFT)
cohesive energy, equilibrium volume, and bulk modulus to
vary with the pseudopotential and disagree with experimental
data. Since AM05 is not included in the free DFT pack-
age QE, the PBE exchange-correlation functional is used
instead. The present ordering of phases at 0 K can be cal-
culated from PBE, and the energy difference between the
two functionals is ∼1 meV; thus, the minor mismatch may
be disregarded. The line density is the same in all geome-
tries on the �-centered Monkhorst-Pack [53] K-mesh utilized
for all DFT calculations. Each reciprocal lattice vector (

−→
bi )
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TABLE I. DFT database used for features in input layers of the RANN potential. The RANN, which is only as precise as the training data,
uses DFT approximations; therefore, convergence and consistency in DFT calculations are crucial for successful outcomes.

Atoms per Number of Total atomic
Sample description simulation simulation environment

Diamond cubic-Sn w/volumetric strains up to ±20% 8 99 792
β-Sn w/volumetric strains up to ±20% 4 98 392
BCT-Sn w/volumetric strains up to ±20% 2 98 196
BCC-Sn w/volumetric strains up to ±20% 2 99 198
SC-Sn w/volumetric strains up to ±20% 1 99 99
FCC-Sn w/volumetric strains up to ±20% 4 99 396
Diamond cubic-Sn w/shear strains up to ±5% 8 397 3176
β-Sn w/shear strains up to ±5% 4 600 2400
BCT-Sn w/shear strains up to ±5% 2 598 1196
BCC-Sn w/shear strains up to ±5% 2 598 1196
FCC-Sn w/shear strains up to ±5% 4 885 3540
α-Sn 2 × 2 × 2 orthogonal supercell w/strains up to ±5% 64 842 53 888
β-Sn 2 × 3 × 3 orthogonal supercell w/strains up to ±5% 72 854 61 488
BCT-Sn 3 × 3 × 3 orthogonal supercell w/strains up to ±5% 54 1000 54 000
BCC-Sn 3 × 3 × 3 orthogonal supercell w/strains up to ±5% 54 1000 54 000
FCC-Sn 3 × 2 × 2 orthogonal supercell w/strains up to ±5% 48 992 53 888
Diamond cubic-Sn decohesion energy 56 21 1176
β-[0 0 1]-Sn decohesion energy 20 21 420
β-[1 0 0] Sn decohesion energy 40 11 440
BCT-[0 0 1] Sn decohesion energy 20 21 420
BCT-[1 0 0] Sn decohesion energy 20 21 420
Diamond cubic-Sn [0 0 1] 1 × 1 × 6 free surface orthogonal supercell
w/strains up to ±5% 48 500 24 000
β-Sn [0 0 1] 1 × 2 × 8 free surface orthogonal supercell w/strains up to ±5% 64 500 32 000
BCT-Sn [0 0 1] 2 × 2 × 8 free surface orthogonal supercell w/strains up to ±5% 64 500 32 000
BCT-Sn [1 0 0] 8 × 2 × 2 free surface orthogonal supercell w/strains up to ±5% 64 500 32 000
BCC-Sn [0 0 1] 2 × 2 × 8 free surface orthogonal supercell w/strains up to ±5% 48 489 31 296
β-Sn [0 0 1] 4 × 4 × 1 monolayer orthogonal supercell w/strains up to ±5% 64 250 16 000
BCT-Sn [0 0 1] 5 × 5 × 1 monolayer orthogonal supercell w/strains up to ±5% 50 106 32 000
BCC-Sn [0 0 1] 5 × 5 × 1 monolayer orthogonal supercell w/strains up to ±5% 50 500 31 296
β-Sn 2 × 3 × 3 trivacancy w/strains up to ±5% 69 400 27 600
BCT-Sn 3 × 3 × 3 trivacancy w/strains up to ±5% 51 155 7905
Amorphous structure (66–95) 200 17 470
Isolate atom 1 1 1

Total 11 945 499 465

has a distance between its neighboring K-points of 2π ×
0.01 Å−1. The kinetic energy cutoff for all DFT calcula-
tions is set at 90 Ry, and 0.02 Ry is used as a Gaussian
spreading for Brillouin-zone integration. Smearing of the
Marzari-Vanderbilt [54] type is employed for every DFT
computation.

RANN is trained using a database designed to replicate
a wide range of distorted lattice structures, thermal pertur-
bations, defects, free surfaces, and liquid structures. Table I
summarizes the DFT training database. These include lattice
distortions of up to 15% relative to equilibrium for the four
allotropes studied here. To expand the possible applicability
of the subsequent multistate MEAM [55], the database also
includes nonobserved structures such as simple cubic (SC)
and face-centered cubic (FCC). Most distorted structural data
are contained inside the elastic domain, which allows for ac-
curate prediction of the elastic behavior exhibited by pristine
structures. The deformed data are produced as a result of hy-
drostatic volumetric compression and expansion of unit cells

while preserving constant axial ratios, in addition to uniaxial
deformation along the a, b, c axis with varying b/a and c/a
ratios. In both cases, the network is aided in identifying the
elastic response of the bulk structure by disrupting all degrees
of freedom of cell vectors around the equilibrium state. Super-
cells of various sizes are generated, with atoms displaced from
their relaxed ground-state position by a randomly generated
vector within a cutoff distance ranging from 0.1 to 0.5 Å.
This is done for the 72-atom β(2 × 3 × 3), 54-atom BCT and
BCC (3 × 3 × 3), and 64-atom diamond cubic (2 × 2 × 2)
supercells to account for the effects of thermal perturbations.
Also, each randomly perturbed structure was subjected to a
small structural distortion of ±5% to determine the thermal
expansion. Temperatures in the range ≈100–1200 K were
sampled using these perturbations. The temperature of a given
system was calculated by dividing the per-atom energy differ-
ence between the disturbed system and the ground state by
the Boltzmann constant (kB). Amorphous structures are added
to the training database to better forecast behavior around
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the melting point and to accurately address liquid structures.
Additionally, the training database consisted of free surfaces,
vacancy clusters, and monolayers of various phases. A large
database including a wide range of atomic configurations is
necessary to ensure that the potential can predict behavior
outside the training database. It will be shown below that the
network can accurately predict some structures even if they
were not included in the initial training set. The complete
DFT dataset consists of ∼12 K structures with a total of ∼5 M
atom environments.

B. RANN with EAM screening

The potential is generated using a multilayer perceptron ar-
tificial neural network, in accordance with the work of Dickel
et al. [45]. In RANN, the input layer is a structural fingerprint
describing the local atomic environment of a single atom, and
the output layer is a prediction of the energy of that atom. This
structure is like the neural network and descriptors of Behler
and Parinello [56], with descriptors maintaining translational,
rotational, and permutation invariance but with a different
form. How the atomic configurations or the input to the net-
work is presented has a significant impact on the accuracy and
dependability of potentials based on artificial neural networks.
To make the potential more physically motivated, a structural
fingerprint of the local atomic environment is developed using
the MEAM formalism. The final layer of the neural network
consists of N atoms, each of which has its own unique energy
that is determined by the surrounding environment. Following
the first layer, the values for each subsequent layer, denoted by
An, are determined by the combination of the preceding layer
as well as the weight and bias matrices denoted by Wn and Bn

as follows:

Zn
ln =

∑
ln−1

W n
lnln−1An−1

ln−1 + Bn
ln , (2.1)

An
ln = gn

(
Zn

ln

)
. (2.2)

In this equation, ln represents the total number of neurons in
layer n, and gn(x) represents a nonlinear activation function.
The fingerprint of the local atomic on its own structural fin-
gerprint provides the input layer A0. Therefore, WN is always
a row vector, and BN is always a single value, because there
will only ever be a single node (representing the energy) in
the output layer Z . The final bias BN in Eq. (2.2) represents
the target energy of the DFT database. The RANN finger-
print style is inspired by MEAM formalization, with angular
screening added. This approach considers two distinct types of
input fingerprints. First, simple pair interactions are analyzed
and aggregated across all neighbors of an atom . A set of pair
potential interactions of the form can be defined as follows for

a given atom designated i:

Fn =
∑
j �=i

(
ri j

re

)n

exp(−αn
ri j
re

)
(

rc − ri j

�r

)
Si j . (2.3)

Here, j and k label all the neighbor atoms of i within a
cutoff radius rc. For each pair of fingerprint contributions,
n is a unique number, re is the equilibrium closest neighbor
distance, Si j is an angular screening term, and αn are metapa-
rameters that can be adjusted to improve the efficiency of the
potential . In this paper, n is taken as ∈ −1 . . . 3 giving five
2-body terms. The MEAM potential parameter α is computed
as a function of the ground-state values of the bulk modulus
B0, cohesive energy Ec, and the equilibrium atomic volume
�0 using the formula:

α =
√

9B0�0

Ec
.

Using the first-principles data, α is calculated as 5.157041. All
other metaparameters are given in Table II. The second type of
fingerprint function considers three body terms with a shape
comparable with partial electron concentrations in MEAM:

Gm,p =
∑

j,k

cosm θ jik exp(−βp
ri j +rik

re
) fc

(
rc − ri j

�r

)

× fc

(
rc − rik

�r

)
Si jSik, (2.4)

where θ jik is the angle between ri j and rik , m is a positive
integer, and βp is a set of metaparameters that control the
length scale of the various terms. Each RANN potential has
a predetermined fingerprint based on the number and size of
its hidden layers, as well as the weight, bias matrices, and
activation functions of its individual layers. These activation
functions have been employed for the potentials considered
here:

gn(x) = x

10
+ 9

10
log (ex + 1) for n < N. (2.5)

An alternative approach that avoids the unphysical outcomes
is angular screening, in which the presence of an atom be-
tween two others reduces or eliminates the effective contact
between them. MEAM has used a similar technique, and it
has been used here for the screening process as well [57].
In a nutshell, the screening between two atoms is calculated
as the sum of all the screening interactions involving atoms
close by:

Si j =
∏

k �=i, j

Sik j, (2.6)

where Sik j is found by constructing a geometric ellipse with
the three atoms, using ri, j as one of the axes. As a result,

TABLE II. Meta parameters.

Variable parameters m n re(Å) α βp rc(Å) �r

Values ∈ {0 . . . 6} ∈ {−1 . . . 3} 3.064190 5.157041 1,2,6,9 8.0 rc − re
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the formula for the screening parameter Cik j can be written
as follows:

Cik j = 1 + 2
r2

i j r
2
ik + r2

i j r
2
jk − r4

i j

r4
i j − (

r2
ik − r2

jk

)2 ,

and screening value

Sik j = fc

(
Cik j − Cmin

Cmax − Cmin

)
. (2.7)

where Cmax and Cmin are metaparameters that can be ad-
justed to determine which neighbors can be omitted from
calculations. The effect of including angular screening can
be demonstrated by observing the modification of a single
fingerprint as the length scale is continuously altered. In
the absence of angular screening, the fingerprint value will
fluctuate rapidly as new neighbors enter the radial screening
distance at specific values of the lattice constant. If angular
screening is incorporated with metaparameters such that, for
instance, only the third NNs are ever included regardless of
lattice parameter, the value variation is more gradual. The
metaparameters used in potential construction are as follows.

With 33 features utilized to create the structural finger-
print, the whole network architecture can be represented as
33 × 21 × 1. One of the most significant issues for machine
learned interatomic potentials is extrapolation outside of the
training database. Because of the large potential configuration
space, it is difficult, if not impossible, for the database to
span all of it. Pun et al. [58] proposed physically informed
neural networks whose structure was motivated by existing
empirical formalisms to improve transferability and stability
outside of the training data. Here, we employ a simple em-
pirical potential as a lower bound on the energy. Through
the use of the final activation function, the neural network
contribution to the energy is required to be positive, thus im-
proving stability over the entire configurational space. While
predicted energies can still be arbitrarily large far from the
training data, these regions will be automatically avoided in
normal energy-conserving or temperature-controlled dynamic
simulation assuming a low-energy initial configuration. For
this potential, a bounding equation of state based on the EAM
was employed. The energy predicted for a particular atom i
can thus be written as

Ei = EEAM + ERANN, (2.8)

where EEAM is the energy determined by the empirical EAM
potential, and ERANN is the neural network prediction. The
same empirical energy contribution is subtracted from the
database targets so the neural network seeks to fit the differ-
ence between the EAM prediction and the DFT energy. The
EAM style potential used is exactly equivalent to a MEAM
potential with the angular partial electron densities set identi-
cally to zero (t1 = t2 = t3 = 0). A complete description of the
MEAM formalism can be found, for example, in Lee et al.
[26]. The parameters describing the EAM state equation are
given in Table III. These parameters are chosen using the
following procedure. First, DFT results for the energy vs
volume curve for a chosen reference state (in this case, a BCC
structure) are reproduced using the parameters re, Ec, and α.
Then the energy vs volume curve for a second structure with

TABLE III. EAM potential parameters.

Variable Variable
parameters Values parameters Values

re 3.41 rc 8.0
�r 1.0 α 4.4
Ec 3.548 Reference structure FCC
β0 3.0 Asub 1.4
Cmax 2.8 Cmin 0.4

different coordination is reproduced by changing β0, Asub,
and the screening parameters Cmin and Cmax. Because the NN
contribution is positive definite, the EAM baseline is then
shifted down by increasing Ec and decreasing α until all of the
training data are at least 0.5 eV above the baseline potential.
This allows the baseline to bound all of the existing DFT data
from below, so that the RANN potential can still correctly
predict all of their energies. A smoothed ReLU function is
used in the final RANN layer to ensure the neural network
contribution to the energy is positive:

gN (x) = log(ex + 1). (2.9)

The addition of these equations of state has been found to
greatly increase the stability of the developed potentials for
structures and temperatures well outside of the training data.
At worst, the predicted energy will be the same as that of the
EAM potential, a formalism which is known to show excellent
transferability.When the network is being trained, 10% of the
data is removed from each training batch at random and used
afterwards for validation. The projected value of the output
layer is compared with the measured energy obtained through
DFT. Weights are updated to minimize the error function, also
known as the loss function. The network is trained using the
Levenberg -Marquardt (LM) algorithm [59,60]. When com-
pared with gradient descent approaches, this one has been
demonstrated to be more efficient at reducing the loss func-
tion. By incorporating a regularizer into the loss function,
overfitting can be mitigated and boost model efficiency:

J (W [1], B[1], . . . W [L],W [L] ) = 1

m

m∑
i=1

L[Ŷ (i),Y (i)]

+ λ

2m

L∑
i=1

‖W L‖2
F . (2.10)

The loss function is denoted by L, while the regularization
parameter is denoted by λ. The mean squared error difference
between the predictions from the output layer (Ŷ ) and the
known outputs (Y ) from the database is the value that is used
in the loss function L. In this case, the letter F indicates the
addition of a Frobenius norm to the matrix, which is identical
to adding the squared norm to the matrix. With the aid of the
regularizer, it can be ensured that the magnitude of the weights
remains low. The regularizer parameter λ is set to the value
10−4. The regularization impact is diminished for smaller
values of λ, while it is amplified for bigger weights. Here,
root mean square error (RMSE) values for the training set are
1.713 meV/atom, while the validation set is 2.490 meV/atom.
The RMSE value characterizes the last-epoch mean square
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TABLE IV. RMSE and computational speed test for various RANN models, in comparison with the MEAM(Ko) potential. Note, all
physics-based models include angular screening.

Relative RANN
Model RMSE computational energy

Physics-based RANN Energy (meV/atom) Force Stable speed using contribution

Model type Screening Included M Screening Data base Validation (ev/Å) potential LAMMPS (eV/atom)

None — Yes 7 Radial 6.1 6.5 2.51 No 22 2.7
Angular 5.2 5.3 2.08 29

Pair potential Angular No — Angular — 28.9 0.78 Yes 0.05 —
Yes 7 4 4.2 0.67 8 0.9

EAM No — — 9.1 0.87 0.14 —
Yes 3 2.8 4.1 0.06 14

7 2.1 2.6 0.06 20 0.6
MEAM (Ko) No — — 6.6 0.17 1 —

error of convergence in training and validation. This suggests
that the potential is not overfit since the validation set is so
accurate, and the degree of precision is expected to hold true
across all of the structures represented in the dataset. Since
DFT is in significant disagreement with experiment, this en-
ergy is adjusted here to reproduce the experimental cohesive
energy of α-Sn.

III. RESULTS

A. RANN potential selection

It was found that adding an underlying physics model to
RANN improved the accuracy, stability, and transferability of
the resultant potential. Table IV shows that the RANN energy
database validation using only RANN is about on par with
MEAM. However, the MEAM potential predicts the database
forces much better than RANN. By using angular screening
rather than radial screening, the fit produced by RANN is
slightly improved at a small increase in computational time.
Even though MEAM is over a factor of 20 times faster than
RANN, it cannot represent the high-pressure phases as well
as RANN. Specifically, the MEAM potential was found to be
stable for a large number of our test simulations; however,
it is shown below that it is unstable under dynamic shock
loading. These results also show that including an underlying
physical-based model leads to a lower overall energy input
to the model from RANN, in addition to producing a better
fit and validation. EAM and pair potential are considerably
faster than MEAM or RANN with EAM, but they are not
nearly as accurate or predictive as MEAM or RANN with
EAM. RANN plus EAM requires more time to run, but the
results are more accurate and reliable. Most importantly, the
RANN potentials plus a pair potential or EAM physical model
produce a potential that is stable for all phases. In this paper,
the RANN plus an EAM physical model has been selected.
We vary the size of the input fingerprint by varying the highest
degree of the exponent m on the angular term in Gm,p, such
that m ∈ (0, 1, 2, . . . , M − 1), and the number of different
βp such that p ∈ (1, 2, 3, . . . , P), so that the total number of
three-body fingerprints is M × P. The value of M has been set
to 7, as the reduction in the amount of computer time by using
M = 3 was deemed not significant enough to justify the loss

of accuracy. Other users may discover that the choice between
the computational time and the degree of accuracy leads them
to prefer a RANN potential that is less precise but faster. In
the RANN GitHub repository, one can find both the RANN
potential (M = 3, M = 7) as well as the DFT database and
the LAMMPS version.

B. Fundamental material properties

Figure 2 shows an energy vs volume plot for diamond
cubic, β, BCT, BCC, and FCC Sn determined by MEAM(Ko),
EAM-R, and DFT. For a reasonable range of volume contrac-
tion and expansion, the curve remains smooth. As compared
with MEAM potentials, the present potential provides closer
agreement to DFT results. It is worth noting that, by including
the screening function, the potential can be reliably extrapo-
lated to arbitrarily large strains. A training point consisting of
a single isolated atom is added to the database, as was men-
tioned earlier. For the EAM-R potential to obtain the correct
cohesive energy and interpolate correctly to the isolated state,
this piece of information is crucial.

Table V shows several 0 K mechanical properties for
the four experimentally observed phases of Sn, including

FIG. 2. Equation of state for various phases of Sn. The dashed
and solid lines are from MEAM(Ko) and EAM-R potentials respec-
tively. All DFT calculations (points) are from the current database.
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TABLE V. Fundamental material properties for different phases
(diamond cubic, β, BCT, and BCC) of Sn: Equilibrium vol-
ume � (Å3/atom), cohesive energy Ec (eV), lattice parameter
a, c (Å), c/a ratio, bulk modulus B0 (GPa), elastic modu-
lus C11,C12,C13,C33,C44 (GPa), structural energy differences �E
(eV/atom), surface energy (mJ/m2), and vacancy formation energy
(eV) as computed by present DFT, MEAM(Ko), and EAM-R poten-
tials as well as available experimental data.

Properties Experiment DFT MEAM(Ko) EAM-R

Diamond cubic

� 34.059 [62] 36.893 35.628 36.846
Ec 3.140 [63] 3.548 3.135 3.140
a (Å) 6.483 [62] 6.658 6.581 6.655
B 42.6 [64] 35.175 40.578 35.327
C11 69.1 [64] 52.725 50.413 53.967
C12 21.3 [64] 29.819 35.660 26.006
C44 42.6 [64] 22.541 10.531 20.974
�Eα→β 0.046 0.033 0.046
�Eα→γ 0.0623 0.053 0.062
�Eα→δ 0.068 0.053 0.068
�Eα→fcc 0.0617 0.052 0.0613
�Eα→fcc 0.061 0.050 0.060

E (0 0 1)
surf 688.144 567.099 614.956

E vac
f 0.917 1.055 0.944

β

� 27.064 [62] 28.361 27.512 28.466
Ec 3.10 [4] 3.502 3.102 3.094
a 5.831 [62] 5.909 5.859 5.924
c 3.184 [62] 3.249 3.206 3.245
c/a 0.546 [62] 0.549 0.547 0.548
B 57.0 [62] 46.713 57.137 46.733
C11 73.2 [62] 68.544 89.737 59.089
C12 59.8 [62] 57.846 46.683 53.246
C13 39.1 [62] 32.865 36.915 30.705
C33 90.6 [62] 89.121 93.729 73.102
C44 21.9 [62] 21.928 7.901 15.598

E (0 0 1)
surf 401.341 393.127 409.622

E (1 0 0)
surf 322.329 345.358 294.673

E vac
f 0.738 0.848 0.741

BCT

� 23.068 [15] 27.772 25.921 27.855
Ec 3.486 3.082 3.078
a (Å) 3.70 [15] 4.030 3.906 4.040
c (Å) 3.37 [15] 3.419 3.397 3.413
c/a 0.911 [15] 0.848 0.869 0.845
B 63 [65] 48.312 64.509 48.530
C11 56.431 89.805 46.175
C12 34.385 64.774 42.540
C13 49.146 49.459 47.509
C33 74.685 73.587 69.307
C44 11.324 42.517 14.748

E (0 0 1)
surf 371.696 443.472 357.188

E (1 0 0)
surf 347.132 467.849 332.066

E vac
f 0.434 0.352 0.426

BCC

� 24.5 [65] 27.588 26.415 27.619

TABLE V. (Continued.)

Properties Experiment DFT MEAM(Ko) EAM-R

Ec 3.480 3.082 3.072
a (Å) 3.659 [65] 3.807 3.752 3.808
B 92 [65] 49.145 63.264 51.441
C11 343.357 73.187 45.154
C12 51.319 58.303 54.585
C44 28.626 26.269 28.652

E (1 0 0)
surf 424.572 480.410 434.476

E vac
f 0.556 0.425 0.519

cohesive energy, lattice parameter, and elastic constants, sur-
face, and vacancy formation energies as predicted by the
EAM-R potential in comparison with DFT and MEAM(Ko)
potential. It should be noted that the DFT prediction for the
lattice constant is 1.3% higher than that observed experimen-
tally. Consequently, the predicted values from EAM-R are
comparable with those measured experimentally. MEAM(Ko)
potential is optimized for the β-Sn phase, which reproduces
the properties for that phase only, whereas EAM-R agrees
well with the DFT reference values for all four phases. All
DFT results are obtained from the current calculations, which
demonstrates a high degree of agreement with other DFT
computations [61] utilizing the GGA pseudopotential.

In addition to the properties that are derived directly from
structures and energy in the training set, Table V shows some
properties such as free surface and vacancy formation energy.
Examining such structures provides some insights into the
extent that a potential is transferable to unidentified atomic
surroundings. It is important to note that the potential is not
trained to relaxed free surfaces or monovacancies in numerous
phases, both of which are accurately predicted by EAM-R.
Due to the excellent agreement of this potential with DFT,
it is possible to explore atomic-scale physical and chemical
processes such as fracture and crystal formation. Figure 3
displays the relative error to DFT of a variety of material prop-
erties, including those in Table V, computed from EAM-R, as
well as the properties obtained from the MEAM(Ko) poten-
tial. Here, the relative deviation vs DFT-computed properties
is displayed rather than the actual properties themselves. The
EAM-R predictions are, for all phases, in better agreement
with DFT than the MEAM(Ko) predictions. Typically, the
deviation in properties for all four phases in EAM-R potential
is ±8% or less. Further, EAM-R deviates from DFT by no
more than 11% for all material properties.

C. Force validation

In EAM-R, forces are computed by direct differentiation of
the EAM-R equation, and ab initio calculations are used to de-
termine the forces acting on individual atoms (fi = −∂E/∂ri).
Indeed, forces calculated from DFT are extremely useful
training data for a ML model, allowing one to train on both
energy and force data at a cost similar to training on the energy
data alone. Here, EAM-R is trained solely using energies from
DFT, leading to RMSE values of 0.070, 0.051, 0.026, and
0.029 eV/Å for the diamond cubic, β, BCT, and BCC-Sn
forces, respectively. The x, y, and z force components for
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FIG. 3. Relative errors in material properties for MEAM(Ko) and EAM-R potentials compared with DFT shown in Table V.

randomly perturbed diamond cubic, β, BCT, and BCC are
shown in Fig. 4. The excellent match between the predicted vs
calculated forces demonstrates that EAM-R is likely to be suc-
cessful in dynamic predictions of the kinetics of Sn structures.
Forces have been reported to have an RMSE of 0.097 eV/Å
when using the MEAM(Ko) potential [25] fitting to their DFT
database. While the empirical potential is adequate for fitting
forces, the ML potential here provides a more accurate match
to DFT forces. For comparison, for BCC transition materials,
the RMSE for the Gaussian approximation potential was 0.04
eV/Å [66], and the spectral neighbor analysis potential value
was 0.14 eV/Å [67].

D. Decohesion energy

To determine that EAM-R is appropriate to study frac-
ture, the energy vs separation distance for rigid separation

between two blocks of materials has been explored. During
loading, the crack-tip shape is determined by this decohesion
curve [68]. Figure 5 shows the decohesion energy vs nor-
mal separation distance for (001) planes for various crystal
structures using DFT, EAM-R, and MEAM(Ko) potentials.
The DFT data were part of the training set. The energy at
maximum separation is double that of the unrelaxed sur-
face energy compared with completely relaxed surfaces in
Table V. Prior to complete dissociation, EAM-R shows a
small peak in energy which has a negligible impact and
therefore is of little practical importance. Additionally, the
results from EAM-R agree with DFT for all four phases
of Sn. In contrast, the MEAM(Ko) potential only predicts
the decohesion energy accurately for β-Sn. From this com-
parison, it may be concluded that EAM-R, in contrast with
current state-of-the-art interatomic potentials, is capable of

FIG. 4. Force vector comparison between DFT and the EAM-R potential for Sn for randomly perturbed supercells.
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FIG. 5. Decohesion curves for (001) planes for different phases of Sn; a comparison of DFT, EAM-R, and MEAM(Ko) potentials. DFT
data points are included in the training set.

accurately predicting fracture in the experimentally observed
Sn allotropes.

E. Generalized stacking fault energy

Solder joint reliability, as shown by Yang and Li [69],
is dependent on an adequate understanding of anisotropic
mechanical behavior in β-Sn. Previous studies [70,71] have
shown that the generalized stacking fault energy (GSFE) is
critical in explaining dislocation properties and hence plastic-
ity. Here, an evaluation of the ability of the EAM-R potential
to predict the GSFE in β-Sn allows for determining the like-
lihood of successful prediction of plastic deformation in Sn.
As shown by experimental studies by Telang and Bieler [72]
and first-principles computations by Bhatia et al. [73], the
{1 0 0} 〈0 0 1〉 slip system is the easiest to activate. GSFEs are

calculated for a few of the distinct slip systems to show how
the current potential represents the deformation behavior of
Sn and are shown in Fig. 6. A comparison of the unstable
fault energy (USFE) using EAM-R (0.0178, 0.018, 0.017)
eV/Å2 and MEAM(Ko) (0.0393, 0.0236, 0.045) eV/Å2 with
the results from prior ab initio calculations by Bhatia et al.
[73] reveals that the USFE calculated from EAM-R for the
(1 0 0)[0 0 1], (1 0 0)[0 1 0], and (1 1 0)[0 0 1] slip systems are
in good match with the DFT data (0.0124, 0.0146, and 0.0134
eV/Å2). It is important to note that the training database did
not include any information about stacking faults. In contrast
to the most accurate Sn potential in the literature, EAM-
R will most probably lead to the discovery of dislocation
dissociation reactions, such as those that simulate individual
dislocation cores or noncollinear dissociations at the atomic
scale.

FIG. 6. Stacking fault energies for β-Sn for different slip systems. The DFT results are from Bhatia et al. [73] as well as this paper. These
DFT results are not included in the training set; hence, the stacking fault energies are predictions of the EAM-R potential.
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FIG. 7. High-pressure phases of Sn at room temperature: a comparison between experiments [65] and EAM-R for pressure-volume and
lattice constant ratios over a wide pressure range. The c/a ratio is denoted by circles (expt.) and solid lines (EAM-R). Here, 300 K MD
simulation results are compared with room temperature experimental data.

F. Multiphase prediction of Sn

Structural transformations at high pressure

Here, β-Sn undergoes a pressure-induced phase transition
from the BCT to the BCC structure. Liu and Liu [16] found
coexistence of both crystalline forms between 9.7 ± 1 GPa
and 11.1 ± 8 GPa, and later research found this coexistence
to be true over a wider pressure range [65]. Salamat et al. [65]
observed a metastable two-phase structure up to 15.7 GPa.
Comparing the β-Sn and BCT phases at 10.8 GPa, the volume
decrease is ∼2%. In earlier investigations, it was thought
that the BCT-Sn phase would eventually transform into a
BCC structure [11,16]. A recent study by Salamat et al. [65]
found evidence for a first-order phase transition between the
body-centered orthorhombic (BCO; b/a = 0.996) and BCC
polymorphs. For our purposes, the BCO and BCC structures
are degenerate in energy and may be considered the same
structure. The BCT phase transforms into the BCO phase at
32 GPa. Starting at 40 GPa, a change to the BCC structure
was found, though the BCO phase was detected at pressures
as high as 70 GPa. This indicates that the BCC phase can
transform into BCT or BCO by a straightforward and contin-
uous lattice deformation in response to small deviations from
hydrostatic pressure. The studies demonstrate unequivocally
that the BCO and BCC diffraction signals can coexist across
a large pressure range [74]. The author performed extensive

research into the BCO phase using ab initio calculations and
discovered that the global minimum remained centered at
b/a = 1 for both tetragonal and cubic solutions across all
pressures at 0 K.

A series of molecular dynamics (MD) simulations have
been performed using LAMMPS [75] at 300 K utilizing the
EAM-R potential to explore the structural evolution of the
high-pressure phases of Sn. Using the pressure components
of the stress tensor as the driving forces, bulk β-Sn is equili-
brated in an anisotropic manner at different pressure regions
(0.2–16 GPa) such that the x, y, and z dimensions can be
separately controlled. Two diagonal components (x and y)
of the pressure tensor are allowed to be coupled together,
forcing tetragonal symmetry, in BCT-Sn from 10 to 32 GPa.
All three dimensions of the BCT structure are allowed to relax
after being equilibrated in an anisotropic fashion between
32 and 40 GPa. Beyond 40 GPa, the structure is forced to
have cubic symmetry. Figure 7 demonstrates that the EAM-R
pressure-volume curve is consistent with experimental data.
The DFT volume for β-Sn is 3.4% higher at 0 K than exper-
iments, and this disparity is the cause of the minor structural
differences between EAM-R and experiment. Above 40 GPa,
EAM-R predicts a stable BCC phase and fails to locate the
observed BCO structure. EAM-R does this since it is trained
directly through first-principles calculations, independent of
experimental database. Not surprisingly, EAM-R also failed
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TABLE VI. Thermal properties calculated using the EAM-R potential in comparison with experimental data and MEAM(Ko). The
quantities represent the thermal expansion coefficient ε(1/K), the heat capacity Cp(J/mol K) at constant pressure, the melting temperature
Tm(K), the melting enthalpy �Hm(kJ/mol), and change in volume upon melting �Vm/Vsolid(%).

Phase Property Pressure Experiment MEAM (Ko) EAM-R

Diamond cubic ε (300 K) 0 GPa 1.208 × 10−5 3.47 × 10−5

Cp (300 K) 25 25
Tm 328 455
�Hm 7 8
�Vm/Vsolid 2 6

β ε 0 GPa 2.35 × 10−5 [76] 1.86 × 10−5 2.84 × 10−5

Cp 26.5 [77] 26 26
Tm 505 [78] 368 525
�Hm 7 [78] 3 8
�Vm/Vsolid 2.3 [78] 4 3
ε 5 GPa 1.30 × 10−4 1.53 × 10−5

Cp 33 26
Tm 465 587
�Hm 3 5
�Vm/Vsolid 1 1

BCT ε 12 GPa Not stable 4.27 × 10−5

Cp 24
Tm 1198
�Hm 11
�Vm/Vsolid 1

BCC ε 40 GPa Not stable 1.45 × 10−5

Cp 25
Tm 1817
�Hm 16
�Vm/Vsolid 2

to show a first-order phase transition between the two poly-
morphs (BCT and BCO) in the pressure range of 32–40 GPa,
where both previous [65] and current DFT failed to detect
any variation in the b/a ratio. Lattice constant ratios at room
temperature vary across a wide pressure range, as depicted in
Fig. 7. Although EAM-R predicts a 0.9 < c/a < 1 ratio in the
BCT phase from 11 to 32 GPa, the energy difference between
the BCT and BCC phases is < 2 meV at 300 K, which is in
agreement with prior DFT studies at 0 K. At room tempera-
ture, the predicted c/a ratio of the BCT structure shows a more
rapid increase with pressure than experiments, yet a stable
BCT phase is predicted, which is an improvement over any
interatomic potential ever reported. Using the 0 K DFT as a
guide, it appears that these small differences in lattice constant
ratios are due to the inaccuracies in the DFT calculations,
rather than the EAM-R fitting. However, DFT calculations
at 300 K have not been performed, so this supposition must
remain an assumption at this point.

By comparing several properties at finite temperatures, the
transferability of EAM-R is further explored. Table VI shows
how the thermal properties of various phases compare with
experimental data and the MEAM(Ko) potential. MD simula-
tions have been performed using an isobaric-isothermal (NPT)
ensemble at the desired temperatures and pressures allowing
for the determination of these properties. When comparing
EAM-R with MEAM(Ko) for all properties of β-Sn, EAM-R
provides better agreement with experiment. The results of cal-
culations from EAM-R are presented for extreme pressures. In

this paper, we also highlight the pressure-induced instability
of the MEAM(Ko) potential. Increases in pressure render
the BCT and BCC phases unstable using the MEAM(Ko)
potential.

Figure 8 illustrates a typical snapshot of the equilibrated
solid phases at 300 K using the EAM-R potential. A stable
phase is maintained by equilibrating distinct phases at varying
pressures. Diamond cubic crystal is shown in cyan, β structure
that is SC is shown in purple, and BCT and BCC structures are
shown in blue using the polyhedral template matching [79] in
the OVITO software [80].

G. Phase diagram prediction using Gibbs
free energy calculations

A homogenous transformation between any two solid
phases is not favorable on the MD time scale due to the
high-energy barrier between phases. The relative Gibbs free
energy between phases determines the transition temperature
between two phases. In accordance with the work of Dickel
and Barrett [81], the Gibbs-Helmholtz equation may be used
to calculate the relative free energy of any two phases given
their enthalpy difference, the relative enthalpy, and free energy
of a reference phase (in this case, liquid). To conduct this
computation, the melting point of each phase was determined
using a solid-liquid interface method [81], as depicted in
Fig. 9. A supercell (233 600 atoms for α-Sn, 116 800 atoms
for β-Sn, and 64 000 atoms for BCT and BCC) was built with
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FIG. 8. Stable phases of Sn using the EAM-R potential at different pressures at 300 K.

half of the box having either the solid or liquid phase and the
other half heated to above the melting point to form a liquid
phase. The solid-liquid phase boundary is better defined with
the aid of this supercell. Once the overall energy has been
adjusted such that the system does not completely melt or
solidify, it can evolve under constant enthalpy and pressure. It
is possible for one phase to expand while the other contracts at
the interface, but once the phases have equilibrated, the tem-
perature will settle to its melting point. After the interface has
stabilized, the average temperature and pressure are recorded
by averaging over 1.2 ns of simulation time. The computed
melting temperature of β-Sn at zero pressure is 525 K, which
is in good agreement with experiments (505 K). To compute
the melting point at different pressures, a similar approach
is used with a smaller lattice constants to simulate greater
pressures ranging from 0.5 to 137 GPa in increments of 5 GPa.

Once the melting temperatures of any pair of phases are
known, their relative free energy may be computed by inte-
grating the Gibbs-Helmholtz equation using the enthalpy as a
function of temperature for both phases and the liquid phase:

1

T
�G = G(Tmelt )

Tmelt
+

∫ Tmelt

T

H (T ′)
T ′2 dT ′. (3.1)

The enthalpy H (T ) for a temperature range up to the melt-
ing point of that particular phase is computed by heating a
periodic supercell of 10 × 10 × 10 atoms to the necessary
temperature and averaging the energy for 0.5 ns using an NPT
ensemble. This method allows for precise calculation of the
projected equilibrium phase transition temperatures but at a
higher computing cost. The temperature at transition is deter-
mined by the sign shift in the relative free energy. Table VII
provides an in-depth description of how the Gibbs free energy
of a diamond cubic-β pair was calculated at atmospheric
pressure.

Table VIII depicts the polynomial coefficient from the free
energy calculation for each of the four solid and liquid phases.
At the temperature range where the solid phase is observed
at constant pressure ranging from 0 to 137 GPa (0.1 GPa
pressure increment from 0 to 1, 2 GPa increment from 1 to 30,
and 5 GPa pressure increment from 30 to 137 GPa), the free
energy is estimated. The polynomial coefficients for various
pressures are then fitted as a function of pressure. Figure 10
shows the calculated Sn phase diagram using EAM-R com-
pared with experimental data. In the low-pressure region (left
panel), it is demonstrated that the predicted diamond cubic-
to-β monovariant line agrees well with the experimental data
[82]. Experiments measure a transition temperature of 286 K,

FIG. 9. Solid-liquid phase region for different phases using the EAM-R potential following the method by Dickel and Barrett [81]. For
visualization purposes, only a few atomic layers are shown. The color of atoms corresponds to the color depicted in Fig. 1.
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TABLE VII. Relative Gibbs free energy calculation for a sample phase pair.

whereas EAM-R predicts a transition temperature of 303 K
[1]. The melting point decreases with increasing pressure in
agreement with the limited experimental data. The 0 K transi-

tion pressure is 0.96 GPa which agrees with our DFT database
transition pressure of 0.73 GPa, which is also consistent with
previous DFT calculation [83,84].

TABLE VIII. Fitting coefficients of free energy calculation as a function of pressure [H (eV/atom), P (GPa), T (K)].

H = aG(P)T 2 + bG(P)T + cG(P)T
aG(P) = aG′(P)2 + bG′(P) + cG′
bG(P) = aG′(P)2 + bG′(P) + cG′
cG(P) = aG′(P)2 + bG′(P) + cG′

Phase aG′ bG′ cG′
Diamond cubic aG 7.27384 × 10−10 5.81100 × 10−10 5.26229 × 10−9

bG 5.56637 × 10−7 4.61939 × 10−6 2.63091 × 10−4

cG −6.25738 × 10−4 2.28164 × 10−1 −3.13996

β aG −3.44776 × 10−11 6.74505 × 10−10 1.82585 × 10−8

bG −1.35706 × 10−8 2.96024 × 10−7 3.27690 × 10−4

cG −1.43342 × 10−3 1.80486 × 10−1 −3.11088

Liquid aG −6.78697 × 10−13 −3.25029 × 10−12 4.20308 × 10−8

bG 1.88913 × 10−9 1.37557 × 10−8 3.94103 × 10−4

cG −1.04849 × 10−3 2.25179 × 10−1 −3.31286

BCT aG 7.08012 × 10−11 2.36660 × 10−9 5.37182 × 10−8

bG −1.55407 × 10−8 −1.27407 × 10−7 2.74013 × 10−4

cG −6.42055 × 10−4 1.62640 × 10−1 −3.05045

BCC aG −2.14347 × 10−12 5.76210 × 10−11 2.27222 × 10−8

bG 8.45428 × 10−10 1.74316 × 10−9 2.47438 × 10−4

cG −1.37657 × 10−4 1.27785 × 10−1 −2.36166
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FIG. 10. The Sn phase diagram. The solid line is derived directly from the equation for relative free energy. The gray, green, blue, red, and
orange colors correspondingly depict the diamond cubic, β, BCT, and liquid phases. The same color scheme was used for the markers. The
triangles indicate the stable phase for the given temperature and pressure. The liquid coexistence points were derived from the calculations
needed to get the Gibbs free energy reference melting point. A wide range of experiment provides the bicolor circle indicators of the phase
boundary diamond cubic-β [82,92], β-liquid [93–96], β-BCT [11,16,86,94,97–100], solid-BCT (blue triangle) [11,65,86,101,102], BCT-liquid
[94,97,98,100], solid-BCC (red triangle) [91], and BCC-liquid [87–89].

As pressure increases (center panel), EAM-R predicted the
β-BCT-liquid triple point to be 576.2 K and 3 GPa, whereas
the experimental observation is 588 K and 2.8 GPa. The dif-
ferences between EAM-R and the experimental observation
are 12 K and 0.2 GPa, respectively. The predicted pressure
for the β-to-BCT phase transition at 300 K is 8.9 GPa,
which is in excellent agreement with previous investigations
indicating a transition pressure ranging from 8.3 to 9.3 GPa
[16,74,85,86]. The predicted β-BCT monovariant line agrees
well with experiments near the triple point. At 0 K, the tran-
sition pressure is 10.5 GPa, which is in excellent agreement
with the DFT database value of 12 GPa [83]. The predicted
melting point of BCT increases with increasing pressure in
excellent agreement with experiment. The predicted liquidus
of β agrees nicely with experiment, reflecting the ∼12 K
difference seen in the triple point and ∼20 K at zero pressure
melting point of β. A minor disagreement emerges between
EAM-R and the experimental results close to the BCT-BCC-
liquid triple point (right panel), which is calculated to be
1287 K and 11.2 GPa but experimentally observed to be
1515–1587 K and 18–21 GPa [74,87–89]. Both the BCT and
BCC liquidus predictions are in good agreement with ex-
periment. EAM-R underestimates the BCT-to-BCC transition
pressure. Since Sn is highly metastable in this regime, the
results are carefully studied in relation to the BCT-BCC phase
transition. At room temperature, the transition pressure from
BCT to BCC is calculated to be 31.5 GPa compared with
the pressure of 41.2 ± 8.4 GPa determined from experimental
measurements. At 0 K, EAM-R predicts a transition pressure
of 26.7 GPa, while the DFT calculations yield 27.6 GPa [74],
and experiments extrapolate to ∼45 GPa [90]. It appears that
the error in EAM-R stems from the error in DFT and not in
the EAM-R fit. In addition to the pressure-temperature points
at the boundary, a couple of experimental points (marked with
a triangle) that are stable in this particular region [16,65,91]
are depicted in Fig. 10.

IV. DEFORMATION BEHAVIOR OF Sn UNDER HIGH
STRAIN RATE LOADING

To understand the mechanical stability of the various
phases of Sn under high strain rate loading, MD simu-

lations using LAMMPS were performed. A pure Sn single
crystal with dimensions lx = 17.73 nm, ly = 17.73 nm, lz =
17.87 nm for the β-Sn phase (198 000 atoms) and lx =
20.15 nm, ly = 20.15 nm, lz = 20.15 nm (250 000 atoms)
for the BCC phase was created. Next, a spherical nanovoid
with a 2.4-nm diameter is created in the simulation box
by removing ∼0.1% of the atoms. The system is then re-
laxed by minimization of energy, followed by equilibration
at constant pressure (4 GPa for β and 60 GPa for BCC) and
temperature (NPT) at T = 300 K. This condition was cho-
sen because, according to experimental studies, these phases
are stable under these conditions. A 1-fs timestep is uti-
lized in these simulations. All three directions have periodic
boundary conditions applied. Finally, a uniaxial compression
deformation at a constant strain rate of 109/s is performed.
The spherical void is added in the cell to facilitate dislo-
cation nucleation and to determine whether the potential is
optimal for studying the high strain rate deformation be-
havior of Sn. Figure 11 demonstrates that, at peak stress,
the β-Sn structure was stable with dislocations nucleating
from the free surface of the void. The purple color shows
the diamond cubic structure as determined by the polyhedral
template matching. In the case of the MEAM(Ko) potential,
the structure is not found to be stable, as the β-Sn struc-
ture could not be maintained; instead, polyhedral template
matching indicates that a low-energy HCP structure is formed.
When BCC is compressed to a pressure of 60 GPa, EAM-
R retains the BCC structure (shown by blue atoms from
polyhedral template matching), whereas MEAM(Ko) again
transforms into an HCP structure. This finding clearly in-
dicates that the EAM-R potential can properly predict the
propagation, slip, and general dynamical behavior of dis-
locations in pure Sn at high pressure. Shock compression
of pure Sn at high pressure is a subject of an upcoming
publication.

V. CONCLUSIONS

In this paper, we have developed a hybrid potential that
combines the conventional EAM with a ML approach. Essen-
tially, the ML component of the potential is an additional term
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FIG. 11. β and BCC-Sn is subjected to uniaxial compression loading at strain rate, ε̇ = 109/s.

to the EAM formalism. A neural-network-based approach,
termed RANN, was used to train the ML potential using DFT
calculations for Sn to predict the phase diagram of Sn as a
function of pressure. While only energies were used in the
training dataset, the hybrid EAM-R potential also accurately
predicted the forces obtained from DFT. This potential was in
excellent agreement with the experimental results pertaining
to various properties of Sn but especially the high-pressure
behavior. This potential demonstrates that it is necessary to
add an underlying physics model to the ML potentials to
create a stable interatomic potential. Currently, this potential
represents the only interatomic potential that can quantita-
tively replicate phase transitions in Sn under high pressure.

This method is generally applicable to other elements and
multicomponent systems that require a high level of accuracy.
While this potential is ∼20 times slower than MEAM, it is
fast enough to run MD on million-atom systems. Additionally,
upon the creation of a database, this potential can now be
rapidly fit within 5–10 mins. In general, this potential defines
a paradigm for ML potentials and can be confidently used
to obtain insights into deformation mechanisms of complex
materials.

The DFT training database, calibration software, LAMMPS

version with EAM-R package, and sample input script
to run the potential are available in the RANN GitHub
repository [103].
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