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Model reduction for molecular diffusion in nanoporous media
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Porous materials are widely used for applications in gas storage and separation. The diffusive properties
of a variety of gases in porous media can be modeled using molecular dynamics simulations that can be
computationally demanding depending on the pore geometry, complexity, and amount of gas adsorbed. We
explore a dimensionality reduction approach for estimating the self-diffusion coefficient of gases in simple
pores using Langevin dynamics, such that the three-dimensional (3D) atomistic interactions that determine
the diffusion properties of realistic systems can be reduced to an effective one-dimensional (1D) diffusion
problem along the pore axis. We demonstrate the approach by modeling the transport of nitrogen molecules
in single-walled carbon nanotubes of different radii, showing that 1D Langevin models can be parametrized with
a few single-particle 3D atomistic simulations. The reduced 1D model predicts accurate diffusion coefficients
over a broad range of temperatures and gas densities. Our work paves the way for studying the diffusion process
of more general porous materials such as zeolites or metal-organics frameworks with effective models of reduced
complexity.
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I. INTRODUCTION

The simulation of gas diffusion in nanoporous solid-state
materials is important for applications such as gas filtering,
separation, and storage [1–5]. The self-diffusion coefficient
of a gas in a porous medium is an essential physical quantity
that characterizes mass transfer and is a relevant parameter for
designing industrial separation processes [6], diffusion of gas
mixtures [4], and the selectivity of gas separation techniques
[3,7–10]. The diffusive properties of gases in porous media
are ultimately related to the short- and long-range interaction
potentials between gas particles and between gas molecules
and the condensed-phase environment [11].

The growing interest in estimating the diffusive properties
of target gases in porous materials reported in public databases
[5] has stimulated the search for methods to accelerate large
scale screening efforts based on fully atomistic simulations,
which in general are computationally demanding [8,12,13].
Acceleration strategies based on machine learning are promis-
ing because training sets with acceptable predictive power can
be constructed with a smaller number of calculations than an
exhaustive database search [14,15]. An alternative accelera-
tion strategy would be to develop generalizable physics-based
models that are sufficiently accurate for ranking materials
based on their transport properties, but at a much lower cost
than atomistic simulations.

In this context, we study the dimensionality reduction ca-
pabilities of one-dimensional (1D) Langevin dynamics for
modeling gas diffusion inside carbon nanotubes at differ-
ent temperatures. The predictions of the reduced model are
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compared to the three-dimensional (3D) molecular dynam-
ics (MD) simulations. For concreteness, we consider the
transport of molecular nitrogen in single-walled carbon nan-
otubes (CNTs) and obtain self-diffusion coefficients with 1D
Langevin dynamics for different nanotube radii, temperatures,
and gas densities. We show that it is possible to construct
effective 1D pore potentials and model parameters that can
reproduce the diffusive 3D transport behavior over a broad
range of conditions. The proposed parametrization scheme
could be extended to other porous materials such as zeolites
and metal-organic frameworks.

The rest of the article is organized as follows: Section II
describes the theoretical methodology and the settings for the
atomistic molecular dynamics simulations. In Sec. III we dis-
cuss the results obtained for the diffusion constant of nitrogen
in carbon nanotubes, comparing the predictions of the reduced
1D Langevin model, 3D molecular dynamics simulations, and
the Lifson-Jackson formula from Brownian motion theory. In
Sec. IV, we suggest possible applications and generalization
strategies.

II. METHODOLOGY

A. Stochastic Langevin dynamics

The stochastic motion of Brownian particles can be de-
scribed by a Langevin equation [16], which for a 1D system
of N particles with trajectories z(α)(t ) can be written as

ṗ(α)(t ) = −∂V (zN (t ))
∂z(α)

− γ (α) p(α)(t ) + ξ (α)(t )

∣∣∣∣∣
α=1,2,...,N

,

(1)
where α is the particle index, p is momentum, V is the to-
tal potential, and z(α) the position of the αth particle. The
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interaction of particle α with a large ensemble of bath par-
ticles is effectively taken into account by introducing the
momentum loss (dissipation) term proportional to the damp-
ing parameter γ and a random momentum kick given by the
random process ξ (t ), which induces energy fluctuation. These
terms together take into account the multiples collisions of
the system (Brownian) particle with the reservoir [1,16]. The
random momentum kick has zero bias, i.e., 〈ξ (α)〉 = 0 and its
autocorrelation function is given by

〈ξ (α)(0)ξ (β )(τ )〉 = 2δ(τ )δαβ m(α)γ (α) kBT, (2)

where m is the particle mass, kB is the Boltzmann constant,
T is temperature, δ(t ) is the Dirac delta function and δαβ is
a Kronecker delta. In other words, momentum fluctuations
are Markovian in time and proportional to the thermal energy
kBT .

We solve Eq. (1) numerically for a system of N particles
using the impulsive Langevin leapfrog algorithm [1], which is
a modification of the classical Verlet algorithm that involves
an intermediate velocity correction at each time step of the
form

	v(α) = v̇(α)h − γ (α)v(α)(t )h +
√

2kBT γ h/m(α)ξ, (3)

where v(α) and v̇(α) are the velocity and acceleration of the
αth particle, and h is the time step of the simulation. For a
free Brownian particle at thermal equilibrium, the damping
coefficient γ can be obtained from the Einstein relation [1]

D0 = kBT

mγ
, (4)

where D0 is the free-particle diffusion coefficient. In this
work, the damping parameter γ encodes the interaction of gas
molecules with the carbon nanotube walls.

B. Diffusion from mean squared displacements

We calculate the self-diffusion coefficient Ds using the
mean squared displacement (MSD) method from the sim-
ulated particle trajectories. For a trajectory composed of
cartesian vectors �ri = (xi, yi, zi ) at times ti, the MSD can be
calculated as [17]

MSD(τ = nh) = 1

M − n

M−n∑
i=1

(�ri+n − �ri )
2, (5)

which uses all available offsets τ of a given duration nh with
n the offset step. The advantage of this definition is that the
number of such displacements is M − n and therefore it is
large for small n, resulting in well-averaged MSD values.
MSD is related to the self-diffusion coefficient by the expres-
sion [18]

MSD = 2aDsτ, (6)

where a is the system dimensionality (a = 1 for 1D, a = 3 for
3D). By solving Eq. (1) for all the particles in the system at
fixed temperature and density, we calculate MSD from Eq. (5)
and obtain Ds from the slope of a linear fit plot of Eq. (6) using
the least-squares method.

For short simulation times, particle transport is dominated
by the initial condition and the absence of intermolecular

interactions (ballistic regime). After equilibration is reached
though multiple collisions, the linear scaling of MSD with
time is established (diffusive regime). Several methods have
been proposed to analyze trajectories with coexisting transport
regimes [19]. In our work, the diffusive regime is established
when a log-log plot of MSD vs τ , averaged over particles and
simulation replicas, has unit slope.

C. Lifson-Jackson model for 1D diffusion

The Lifson-Jackson formula is an analytical expression,
first derived in Ref. [20], for the diffusion coefficient of a
periodic 1D potential in terms of the potential depth. The
periodic nature of a pristine carbon nanotube potential along
its axis allows us to use this theory directly at different tem-
peratures. For a periodic potential V (z) with period L, the
Lifson-Jackson diffusion coefficient can be written as [20–22]

D′
0(T ) = D0(T )L2[∫ L/2

−L/2 e− V (z)
kBT dz

][∫ L/2
−L/2 e

V (z)
kBT dz

] , (7)

where D0 is the free-particle diffusion coefficient from Eq. (4).
For a sinusoidal potential V (z) = A sin(az) with depth A and
period a/2π , the integrals in the denominator can be solved
analytically to give

D′
0(T ) = D0(T )

I2
0 (z)

, (8)

where In(z) is a modified Bessel function of the first kind and
z = A/kBT . Equation (8) shows that, for sinusoidal potentials,
self-diffusion is determined by the ratio between the depth
of the potential and the thermal energy, independent of the
lattice period. D′

0 reduces to the free-particle limit at high
temperatures, and asymptotically vanishes at low tempera-
tures, as inferred from the asymptotic forms I0(z → 0) ∼ 1
and I0(z → ∞) ∼ ∞.

D. Molecular nitrogen in carbon nanotubes

Single-walled carbon nanotubes (SWNTs) are cylinders
composed of a single wrapped graphene sheet. They are
completely described, except for their length, by the notation
(n, m) which refers to the direction in which the graphene
sheet was rolled [23]. The index n is directly related with
the nanotube radius. The self-diffusion of molecular nitro-
gen inside a carbon nanotube was computed over a broad
range of temperatures in the range 1–103 K, and a range
of gas densities spanning from the single-molecule limit to
pore saturation. We perform calculations using zig-zag carbon
nanotubes (11,0) and (15,0), with radii 4.309 and 5.876 Å,
respectively. The nanotube coordinates were obtained with a
modeler software [24], for a tube length of 426.3 Å. Figure 1
shows representative radial and axial views of the nanotubes
used in this work. For MD and Langevin dynamics simula-
tions, the thermal motions of carbon atoms in the nanotubes
were ignored, which does not introduce significant errors in
the evaluation of gas diffusion constants. We set periodic
boundary conditions, random initial locations of the gas parti-
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FIG. 1. (a) Radial viewpoint of the nanotube (11,0) with molec-
ular nitrogen molecule (N2) in its pore volume. (b) Axial viewpoint
of the nanotube (11,0).

cles, and a thermalization time of 0.5 ns in all simulations.
We model the interaction between nitrogen molecules and

between nitrogen and carbon atoms in the nanotube with a
Lennard-Jones potential

V (R) = 4ε

[(
σ

R

)12

−
(

σ

R

)6]
, (9)

where R is the interparticle distance. The potential parameters
for each particle pair in the problem are listed in Table I.

MD simulations are implemented in LAMMPS [25]. To
compute 3D MSD trajectories, we adopt a non-vibrating di-
atomic molecule model for nitrogen, with three-dimensional
rotational and translational motion inside the CNT. We use a
time step h = 1 fs in the canonical ensemble. Each replica
corresponds to a total simulation time of 5 ns. Depending
on the depth of the effective axial potential experienced by
a molecule in the nanotube, at very low gas densities (single
particle) there is a temperature in which nitrogen molecules
behave as quasifree Brownian particles, as seen from the lin-
ear scaling of the diffusion coefficient with temperature. In
this regime, we assume that the Einstein relation in Eq. (4)
holds and extract the effective damping parameter γ from
a linear fit. For higher gas densities, nitrogen molecules are
added inside the CNT with random locations and orienta-
tions. For MD simulations we define the filling ratio η =
ρ/ρ0 to quantify nitrogen density ρ relative to the tabu-
lated density of bulk liquid nitrogen ρ0 at the simulation
temperature.

TABLE I. Lennard-Jones parameters: N-N and C-N used in
LAMMPS [18]; N2-N2 and C-N2 used in 1D Langevin.

N-N C-N N2-N2 C-N2

σ (Å) 3.32 3.36 3.63 3.52
ε/kB(K ) 36.4 33.4 104.5 56.2

FIG. 2. (a) Axial potentials at different radii from the center
of the nanotube (11,0). (b) Axial potentials for (15,0). Curves are
labeled by the values of the radial coordinates. The potential is in
units of kelvin.

The stochastic 1D simulations were implemented in Mat-
lab with the impulsive Langevin leapfrog algorithm [1], as
mentioned previously. As input for the simulation we con-
structed axial potentials V (z) that capture the interaction of
nitrogen molecules with the CNT walls along the transport
direction. In Fig. 2 we show effective axial potentials con-
structed for nanotubes (11,0) and (15,0) at different radial
distances from the nanotube center. The potentials are periodic
with a lattice constant of about 2.1 Å, which correlates with
the equilibrium carbon-carbon distance in the nanotubes. At
the center of the nanotubes, the depth of the axial potential
becomes negligible, and is higher near the walls.

In Fig. 3 we show representative radial potentials for the
nanotubes (11,0) and (15,0). The potentials feature a repulsive
wall near the nanotube radius and radial barrier at the center
that separates two potential minima with azimuthal symmetry.
The central barrier is about 10 K high for (11,0), and 700 K for
(15,0). In Figs. 3(c) and 3(d) we show the histograms of the
radial positions that nitrogen molecules explore at 100 K, as
obtained from 3D MD trajectories. While for (11,0) the nitro-
gen molecules tend to move near the center of the nanotube,
for (15,0) the nitrogen molecules tend to move around the
minimum of the radial potential, which has ring shape along
the azimuthal coordinates. Practically no trajectories explore
the nanotube center in this case.

For projecting the nitrogen molecule degrees of freedom
to 1D axial motion, we replace the rotating diatomic nitrogen
by a spherical mass at the position of the molecular center of
mass, as illustrated in Fig. 1(a). However, the Lennard-Jones
parameters in Table I do take into account the orientational
dependence of the interaction potential between two nitro-
gen molecules and between nitrogen diatomic and carbon
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FIG. 3. (a) Effective radial potential of SWCNT(11,0) with a
potential barrier in the center of approximately 10 K. (b) Effective
radial potential of SWCNT(15,0) with a potential barrier in the center
of approximately 700 K. (c) 2D Histogram of the nitrogen positions
inside nanotube (11,0). (d) 2D Histogram of the nitrogen positions
inside nanotube (15,0), at 100 K; the bar shows normalized number
of counts. Blank regions correspond to spaces of the simulation box
that are not explored by nitrogen molecules

atoms through a thermal averaging procedure described in the
Appendix. The stochastic MSD trajectories were obtained
with a damping parameter γ calibrated from a dilute nanotube
MD simulation, as previously described. The 1D simulation
time step is h = 30 fs. The total simulation time is 6.5 ns. To
define a 1D filling ratio, we assume the nanotube is saturated
(η ≈ 1) when the number of nitrogen molecules in the simu-
lation is equal to the ratio between the van der Waals diameter
of molecular nitrogen and the length of the simulation box.

III. RESULTS AND DISCUSSION

In Fig. 4 we show the self-diffusion coefficient for a single
nitrogen molecule in carbon nanotubes (11,0) and (15,0), as
a function of temperature. We compare the results obtained
from 3D MD simulations, 1D Langevin simulations, and the
Lifson-Jackson formula. The effective axial potentials V (z)
for Langevin and Lifson-Jackson diffusion calculations were
evaluated at a minimum of the radial potential. The Langevin
damping parameter was obtained via linear fit from the MD
diffusion coefficient at 100 K to give γ = 7.5 × 1010 s−1 for
(11,0), and γ = 6.0 × 1010 s−1 for (15,0).

Below ∼3 K there is essentially no diffusion in the
nanotubes, because the thermal energy is lower than the cor-
responding axial potential depths (see Fig. 2), so particles

FIG. 4. (a) Single-particle diffusion vs temperature of CNT (11,0). (b) Single-particle diffusion vs temperature of CNT and (15,0). Blue:
LAMMPS diffusion. Red: Langevin diffusion. Yellow: Lifson-Jackson formula. Black: free Brownian particle with γ = 7.488 × 1010 and γ =
6.0 × 1010 respectively. (c) Normalized histogram of the center of mass of each nitrogen molecule inside nanotube (11,0). (d) Normalized
histogram of the center of mass of each nitrogen molecule inside nanotube (15,0). Curves are labeled by the value of the temperature.
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FIG. 5. (a) Diffusion vs density (11,0) at 100 K. Blue: MD. Red, green, and purple: Langevin diffusion with different depths of axial
potentials as a function of the radial distance from the center of the nanotube. Black: free particle limit according to Eq. (4) with γ =
7.488 × 1010. (b) Histogram of the radial positions of nitrogen molecules at different densities in MD of CNT (11,0). (c) Graphical modeling
of the nitrogen molecules inside the (11,0) nanotube at the relative saturation density ρ/ρ0 = 1.08, made with VMD [26] (d) Diffusion vs
density (15,0) at 100 K. Blue: MD. Red, green, and purple: Langevin diffusion with different depths of axial potentials as a function of the
radial distance from the center of the nanotube. Black: free particle limit according to Eq. (4) with γ = 6.0 × 1010. (e) Histogram of the radial
positions of nitrogen molecules at different densities in MD of CNT (15,0). (f) Graphical modeling of the nitrogen molecules inside the (15,0)
nanotube at at the relative saturation density ρ/ρ0 = 0.93, made with VMD [26]

become trapped in the axial potential. At higher temperatures,
the MSD trajectory analysis gives a diffusive regime with a
log-log slope of 1 ± 0.15 [18], from which we obtain con-
verged diffusion coefficients.

As the temperature increases, all methods capture a
crossover between particle trapping and diffusion around
10 K, beyond which the diffusion constant scales linearly with
temperature, as expected from Eq. (4) for quasifree Brown-
ian motion. The self-diffusion coefficients for 1D Langevin
and Lifson-Jackson formulas coincide in the entire range of
temperatures studied. However, while the orders of magni-
tude are the same, the 3D diffusion coefficients obtained with
MD are consistently greater. The similarity in self-diffusion
coefficients of the 1D Langevin and Lifson-Jackson formulas
can be explained by the fact that both methods use the same
one-dimensional axial potential as input data. In addition, at
high temperatures they must converge to the value of D0. The
discrepancy between 3D and 1D results grows with tempera-
ture, as Fig. 4(b) illustrates more clearly for the wider (15,0)
nanotube.

To understand this discrepancy at high temperature, in
Figs. 4(c) and 4(d) we show the histograms of the radial po-
sitions of the centers of mass explored by nitrogen molecules

at different temperatures for the nanotubes (11,0) and (15,0),
obtained from 3D MD trajectories. At low temperatures
(T ∼ 10 K), molecules are mostly trapped at the minima of
their corresponding radial potentials. At higher temperatures
(T ∼ 100 K), particles have more energy to explore a larger
fraction of the nanotube pore volume, broadening the radial
distribution and displacing the most-probable radius towards
the nanotube walls. This effective increase in the configuration
space involved in axial transport cannot be captured by the
effective 1D Langevin model, without redefining γ . However,
the agreement is excellent between the dilute 1D Langevin
with a single value of γ and the 3D MD simulations, over a
broad range of temperatures.

In Figs. 5(a) and 5(b) we plot the nitrogen diffusion coeffi-
cient as a function of the gas filling ratio η = ρ/ρ0 for (11,0)
and (15,0) nanotubes, respectively. We compare the results
obtained from 3D MD and 1D Langevin simulations at 100 K.
For the 1D calculations, we approximately capture the density
dependence of the effective axial molecule-nanotube axial
potential by evaluating the nitrogen-nanotube axial potential
at the peak of the radial distribution of MD trajectories shown
in Fig. 5(b) for (11,0) and Fig. 5(e) for (15,0). For increasing
molecular densities, close to saturation (η > 0.90), the radial
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density of trajectories peaks closer to the pore walls. In gen-
eral, both 3D and 1D simulations give diffusion coefficients
that decrease monotonically with the pore occupation for the
two nanotube radii considered.

Depending on the radial position used to estimate the depth
of the effective axial potential V (z), the Langevin calculations
can approximate the atomistic 3D results reasonably well
over the entire range of densities up to the saturation regime
(η ∼ 1). For axial potential depths below 30 K (r < 0.8 Å),
Fig. 5(a) shows that the agreement between the 1D and 3D
curves is excellent up to η ≈ 0.4 for (11,0) nanotubes. At
these low gas concentrations, nitrogen molecules move prefer-
ably near the center of the nanotube [see the peak at r = 0.5
Å in Fig. 5(b)].

At higher densities (η ∼ 0.8–1.0), there is a sudden shift in
radial density towards the walls of the (11,0) nanotube. This
shift is due to emergence of stacked configurations between
nitrogen molecules, as shown in Fig. 5(c) where the nitrogen
molecules are pushed towards the walls of the nanotube find-
ing different axial potentials. At higher densities, the Langevin
simulations consistently overestimate the diffusion coefficient
relative to atomistic MD, although both 1D and 3D continue
to have similar qualitative behavior, reaching asymptotic satu-
ration for η ∼ 1. By evaluating the axial potential closer to the
peak of the radial trajectory distribution at the corresponding
density [see Fig. 5(b)], the Langevin results can be made to
agree with the MD simulations over a wider range of densities
with the same low-density value of γ .

For the wider (15,0) nanotube, we find similar trends when
comparing 1D and 3D diffusion coefficients in Fig. 5(d).
Again the agreement between MD and Langevin simulations
can be improved by sampling the axial potential closer to
the peak of the radial trajectory distribution at a given gas
density [Fig. 5(e)]. The main qualitative difference between
(11,0) and (15,0) nanotubes occurs near saturation, as the
larger pore volume of (15,0) allows for more intricate stack-
ing configurations of the nitrogen molecules, which are more
difficult to capture with 1D effective models than the small-
pore saturation behavior of (11,0), At different densities of
nitrogen molecules, different stacking configurations are cre-
ated, affecting the axial interaction potential. For example.
Fig. 5(f) shows a representative quadruple “helix” config-
uration that nitrogen molecules adopt at high filling ratios
in the (15,0) nanotube (η = 0.9). These helical structures
have been reported in carbon nanotubes for nitrogen [18] and
water [27].

To assess the gain in computational resources that a re-
duced Langevin model can potentially introduce for studying
the transport properties of porous materials, we note that the
density dependence of the diffusion constants in Figs. 5(a) and
5(d) can be reproduced with the 1D Langevin model from the
dilute regime up to the nanotube saturation limit using, in prin-
ciple, only 3 MD simulations: two low-density simulations
to calibrate γ , and one additional simulation for a selected
saturation level ρ/ρ0 to calibrate the choice of the radius r (a
free parameter) at which the effective axial potential V (z, r)
should be evaluated. These MD calculations fully parametrize
the Langevin model and allow for predictions of the diffusion
coefficient over a broader range of temperatures and densities
than the original simulation conditions.

FIG. 6. (a) Interaction potentials of for a pair of nitrogen
molecules considering all possible orientations. (b) Scheme of spatial
coordinates for a pair of nitrogen molecules

IV. CONCLUSIONS

In this work we developed an effective one-dimensional
Langevin equation model for the diffusive transport for di-
lute and dense molecular gases inside carbon nanotubes, as
a function of tube radius and temperature. By parametrizing
the Langevin model using atomistic molecular dynamics sim-
ulations over a limited range of densities and temperatures,
we find that the reduced stochastic approach can accurately
extrapolate the behavior of the diffusion coefficient over a
broader range of temperatures and nanotube filling ratios.
For higher densities closer to saturation, we show that the
effective potential that drives the Langevin dynamics along
the nanotube axis can be adjusted to account for the in-
teraction between gas particles over transverse degrees of
freedom, and propose criteria to obtain effective Langevin
potentials and damping parameters using nitrogen transport
in carbon nanotubes as an example. We envision future exten-
sions of the proposed dimensionality reduction methodology
to study diffusive transport of gases and liquids in complex
nanoporous media such as metal-organic frameworks, zeo-
lites, and structured electrodes, which could facilitate the
large-scale screening of materials for applications in energy,
catalysis, and gas separation.
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APPENDIX: EFFECTIVE INTERACTION POTENTIAL

We want to find the effective potential between the di-
atomic molecules of N2 and C-N2. If we simulate a large set
of potentials of N2-N2 considering all possible configurations
or orientations with equal probability, we obtain a wide range
of potential values, as shown in Fig. 6(a). Linearly adding the
interactions between each pair of molecules (r13, r14, r23, r24)
for random orientations of each molecule [Fig. 6(b)] and then
averaging with a Boltzman weight, it is possible to find an
effective total potential at a certain temperature:

V (T, d ) =
∑

i e
−min(Vi (d ))

kBT × Vi(d )∑
i e

−min(Vi (d ))
kBT

. (A1)

This effect is easily explained if we consider the effect of
the spatial orientations of the N2 molecules. At low tempera-
tures, the possible spatial orientations experienced by the N2

molecule are “limited.” They are arranged in such a way as to
minimize energy. The opposite is the case at high temperatures
that experiences almost equally all possible spatial orienta-
tions, including (for example) a system of two interacting
N2 molecules arranged collinearly in space (system where
energy is maximized). Replicating the previous calculation,
the interaction potential between C-N2 can be determined, we
can calculate the potential as a function of the radius of the
interior of the nanotube. Finally, by finding the minima of the
potentials and their intersection with zero, we can determine
their potential analog of Lennard-Jones; the parameters ob-
tained are found in Table. I.
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