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Epitaxial inorganic metal-halide perovskite films with controlled surface terminations
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Metal-halide perovskite (MHP) thin films for next-generation solar cells are typically fabricated by wet-
chemical synthesis in which surface properties such as the orientation of surface facets and their termination
cannot be controlled. MHP device efficiencies depend critically on those surface properties. We demonstrate
the epitaxial growth of several nanometer thick purely (001)-orientated films of CsPbBr3 and CsSnBr3 MHPs
on Au(001) by molecular beam epitaxy. The epitaxial films are in a cubic phase aligned with the substrate.
Their surfaces are singly terminated and can be modified for the first time. While the CsBr and PbBr2 surface
terminations differ in terms of their atomic structure and defect content, the films are intrinsic semiconductors
irrespective of the termination. The work function of the PbBr2-terminated surface is increased by 0.7 eV, which
has drastic implications for the level alignment at MHP interfaces.
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I. INTRODUCTION

The rapid progress in the development of thin-film solar
cells based on metal-halide perovskites (MHPs) has motivated
intense research [1]. The optimization of devices was achieved
by improving the MHP film morphology, mitigating defects
in the bulk and at interfaces. For a high device efficiency, the
interface level alignment is crucial and depends on a detailed
understanding of the involved internal surfaces [2,3]. In par-
ticular, the surface orientation and defects play major roles
[4,5]. Surface properties such as work function and ioniza-
tion energy are frequently used to presume the interface level
alignment [6]. These presumptions are only valid if the surface
structure is well known and can be prepared reproducibly.
For optimal solar-cell efficiencies, well-defined MHP surfaces
with (001) orientation may be beneficial [4,7]. A desirable
but hitherto not demonstrated way to fulfill all requirements
would be the epitaxial layer-by-layer growth of MHPs with
only one domain in (001) orientation [2].

The exceptional device performance of MHPs relies on
ultralong lifetimes of charge carriers which are unexpected
in a direct band-gap semiconductor [8–10]. The electronic
band structure and the corresponding charge carrier dynam-
ics are accessed by time- and angle-resolved photoelectron
spectroscopy (ARPES) [8,9,11–23]. However, results from
ARPES studies are partially conflicting [24,25]. One reason
could be the lack of preparation methods to generate well-
defined surfaces. ARPES is a surface-sensitive method so that
surface properties influence results heavily. For example, if
MHPs exhibit different surface terminations, those may alter
the electronic surface structure drastically [26,27].

To improve the situation and reliability of MHP prepa-
ration and control of surfaces and interfaces, we present
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a refined preparation recipe for MHPs based on molecular
beam epitaxy in ultrahigh vacuum. The inorganic perovskites
CsPbBr3 and CsSnBr3 have a nearly cubic structure with
lattice parameters of a = 0.585 and 0.579 nm, respectively.
These are roughly twice as large as the lattice parameter
of a Au(001) surface (aAu = 0.287 nm). The lattice mis-
matches for a (2×2) superstructure on the Au(001) surface
are only 1.9 % and 0.9 %, respectively. This facilitates the
epitaxial growth of inorganic MHPs. Our approach generates
well-defined MHP surfaces with (001) surface orientation, a
tunable surface termination, and a very low defect density.
The prepared CsPbBr3 thin films are intrinsic semiconduc-
tors. We present a multimethod analysis of the surfaces,
including scanning tunneling microscopy (STM), low-energy
electron diffraction (LEED), and ultraviolet photoelectron
spectroscopy (UPS) to determine the atomic and electronic
surface structure of the epitaxial thin films.

II. EXPERIMENT

The experiments were performed in three different ultra-
high vacuum chambers, one of which was equipped with
an STM operating at 80 K, the other with an STM operat-
ing at 295 K, and the third with a setup for UPS. Before
each preparation, clean Au(001) surfaces were prepared by
repeated Ne+ bombardment with 1–2 keV energy and anneal-
ing to a maximum temperature of 970 K. Epitaxially grown
CsPb(Sn)Br3 films were prepared by thermal coevaporation
of CsBr (Tevap ≈ 770 K) and PbBr2 (Tevap ≈ 600 K) or SnBr2

(Tevap ≈ 470 K) (all three Sigma-Aldrich, 99% purity) from
graphite crucibles of home-built dual-source Knudsen-cell
type evaporators. Evaporation rates were calibrated individ-
ually with a quartz microbalance setting the growth rate at
approximately 0.75 monolayers (ML) per minute. A mono-
layer is defined here as the amount of CsBr and Pb(Sn)Br2

needed for one ML CsPb(Sn)Br3, corresponding to a (2×2)
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FIG. 1. Atomic and electronic structure of epitaxial CsBr-terminated CsPbBr3(001) on Au(001). (a) Schematic illustration of the crystal
lattice alignment. (b) LEED pattern. (c) Large-scale STM image (300 nm×300 nm) at 295 K. The inset shows a line scan along the red line
indicated in the main panel. Panels (d) and (e) present a corresponding LEED pattern and an STM image (45 nm×45 nm) measured at 90 K
and 80 K, respectively. (f) Atomically resolved (5 nm×2.5 nm) STM images at 80 K. The blue squares in panels (d) and (f) mark the (1×1) unit
cell of CsPbBr3, whereas the light and dark green rectangles in panel (f) indicate (2×2) and (2

√
2×√

2)R45◦ supercells, respectively. STM
parameters (tunneling voltage/current): (c) 3.5 V/0.22 nA, (e) 3.3 V/0.03 nA, and (f) 2.5 V/0.02 nA (top), 2.3 V/0.02 nA (bottom). (g) UPS
results from the vacuum edge at large and the valence bands at low binding energies EB, respectively. All investigated films had thicknesses
between 8 and 14 ML.

superstructure on the Au(001) substrate. Films were prepared
with a 1 : 1 stoichiometry of both components if not stated
differently. The Au(001) substrate was kept at 420 K during
the deposition of CsBr and PbBr2 resulting in well-ordered
CsPbBr3 films. Optimal ordering of CsSnBr3 is achieved by
codeposition at 90 K and subsequent annealing to 410 K for
10 min. We prepared a fresh surface prior to any experiment
and checked the sample quality by comparing the relative
intensities of the LEED spots at selected beam energies, which
gave consistent results upon preparation in any of the three
chambers. LEED experiments were conducted using home-
built three-grid LEED optics. STM at 80 K was carried out
with a home-built setup and at 295 K with a beetle-type STM.
The bias voltages given in this paper are the sample potential
with respect to the tip. All UPS measurements were performed
with unpolarized light with a photon energy of 21.2 eV (He
I). The He I satellite lines were subtracted for the shown
spectra. An ellipsoidal display-type analyzer with an energetic
resolution of 100 meV was utilized to measure photoemission
spectra [28]. All photoelectrons from an emission cone with
an opening angle of 25◦ with respect to the surface normal
were integrated for the presented UPS spectra.

III. RESULTS AND DISCUSSION

A. CsBr-terminated surface

The resulting atomic and electronic surface structures of
epitaxially grown CsPbBr3 films on Au(001) are shown in
Fig. 1. Corresponding results from CsSnBr3 are presented
in the Supplemental Material [Fig. A1(a)] [29]. All epitaxial

CsPbBr3 films with a film thickness larger than 6 ML show
well-ordered surfaces as illustrated schematically in Fig. 1(a).
Corresponding LEED patterns recorded at 295 K are shown
in Fig. 1(b). The LEED spots in the blue circles correspond to
the square (001) surface unit cell of the nearly cubic build-
ing block of the MHP (a ≈ 0.577 nm) [30]. Yellow circles
mark the nominal positions of the square unit cell of the
bare Au(001) substrate. The LEED pattern proves the (2×2)
epitaxial relation of the MHP with only one well-defined (001)
surface orientation in which the [110] direction of the MHP
crystal lattice is strictly aligned to the [110] direction of Au
[compare Fig. 1(a)]. This agrees with calculations predicting a
preferential (001) orientation of MHP surfaces [7,31–33]. The
LEED pattern indicates a cubic (1×1) perovskite structure at
295 K, even though CsPbBr3 should be in the orthorhombic
phase below 380 K with characteristic superstructures when
bulk-terminated [30]. We speculate that this anomaly is the
result of an altered phase transition temperature in thin films
compared to the bulk [34]. Anchoring to the substrate may
shift the phase transition temperature as well [35].

Large-scale STM images [Fig. 1(c)] show flat films with
grain sizes >100 nm. The line scan reveals step heights
around 0.550 and 0.204 nm. The latter corresponds to the
height difference between two terraces (0.203 nm) of the
Au(001) substrate and is also observed in Figs. 1(e) and 1(d).
The larger step height is close to the height of the CsPbBr3

unit cell (0.585 nm). The discrepancy between the measured
and geometric step height of CsPbBr3 may be rationalized
by different tunneling probabilities and consequently different
tip sample distances due to the changed number of insulating
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a=0.585 nm

FIG. 2. Atomic and electronic surface structure of PbBr2-terminated CsPbBr3(001) on Au(001). (a) Schematic illustration of the
crystal lattice alignment. [(b), (c)] LEED patterns of 8 ML CsPbBr3(001) at 90 K and 295 K, respectively. [(d)–(f)] Corresponding large-
scale (150 ×150 nm) and atomically resolved (15 ×15 nm and 12.5 ×6.25 nm) STM images. STM parameters (tunneling voltage/current):
(d) 1.7 V/0.02 nA, (e) 1.6 V/0.02 nA, and (f) −1.3 V/0.02 nA (top), −1.5 V/0.02 nA (bottom). (g) UPS results of 14 ML CsPbBr3(001) from
the vacuum edge at large and the valence bands at low binding energies EB, respectively. The presented surfaces were prepared by adding
0.3–1 ML PbBr2 onto a well-ordered MHP surface until the LEED pattern revealed a pure (2×2) reconstruction.

layers on the upper and lower terraces. Surface profiles show
many more step heights related to Au(001) than to the MHP,
indicating a homogeneous film thickness across the whole
crystal surface. The surface exhibits shallow, stripe-shaped
depressions [purple arrow in Fig. 1(c)] with an apparent depth
of ≈0.1 nm. These stripes are only observed on films with
thicknesses exceeding ≈6 ML. There is no dependency of
stripe density on measurement temperature (compare Fig. 1
with Fig. A1(b) in the Supplemental Material [29]). There-
fore, the stripes may be dislocations caused by relaxations in
the bulk of thicker CsPbBr3 films which reduce the epitaxial
strain in CsPbBr3 on Au(001).

Additional spots appear in the LEED pattern and the dif-
fuse background is lowered if the temperature is decreased
[see Fig. 1(d)]. Temperature-dependent LEED patterns are
discussed in the Supplemental Material [Fig. A1(c)] [29].
By increasing the electron energy above 150 eV, the LEED
spots disappear in the diffuse background. This process is re-
versible. STM images acquired with and without exposure of
the sample to the electron beam did not show differences in the
number and quality of defects. The vanishing of the diffraction
spots accompanied by an increase of the background with
temperature and electron energy is attributed to large vibration
amplitudes of the soft MHP lattice. The LEED pattern in
Fig. 1(d) at 90 K exhibits an overall c(4×4) superstructure
with respect to the (001) unit cell of the MHP. Its origin
can be elucidated by STM at 80 K. Figure 1(e) presents a
(45 nm×45 nm) STM image in which two surface structures
can be identified. One has a square shape (light green rect-
angle), while the other one shows an arrangement in stripes
(dark green rectangle). They are caused by two distinct surface

reconstructions which can be identified in atomically resolved
STM [see Fig. 1(f)]. Corresponding unit cells are indicated in
light and dark green, exhibiting (2×2) and (2

√
2×√

2)R45◦

periodicities, respectively. The (2×2) reconstruction covers
about 60% of the surface. These surface reconstructions were
already observed on small CsBr-terminated CsPbBr3 islands
without long-range order [36]. They are caused by slight in-
plane modulations of the positions of the imaged Br atoms
[36–41]. A comparison to a second imaging mode with a
functionalized STM tip is presented in Fig. A1(b) in the Sup-
plemental Material [29], which proves the CsBr termination of
the surface unambiguously. Our observation of a preferential
CsBr termination is also consistent with previous measure-
ments on other MHPs and various calculations for a 1 : 1
stoichiometry [33,36,38–40,42–47].

The electronic structure of the epitaxial thin films was
investigated using UPS [Fig. 1(g)]. A work function of 4.6 ±
0.1 eV was determined from the cutoff (vacuum edge) at large
binding energy EB. This value is in line with theoretical ex-
pectations for a CsBr-terminated surface [36,43]. The valence
band structure is detected between EB = 0 eV and 6.5 eV [see
Fig. 1(g)]. Three intense features can be found at EB = 4.2 eV,
EB = 5.0 eV, and EB = 5.7 eV, respectively. Those features
are characteristic for the valence bands of MHPs and are
typically observed in well-ordered samples like single crystals
[13,14,18,19,24]. They are followed by the topmost valence
bands at EB < 3 eV. A half-parabola was fitted to the spec-
trum following a previous study [9] to determine the valence
band maximum (VBM) at EB = 1.2 ± 0.1 eV. A comparison
with the optical band gap of Egap = 2.25 eV shows that our
epitaxial thin films are almost intrinsic.
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B. PbBr2-terminated surface

The epitaxial growth of CsPbBr3 with a 1 : 1 ratio of
supplied CsBr and PbBr2 generates CsBr-terminated surfaces
as shown in the previous section. This raises the question of
whether the surface termination can be modified on purpose.
Calculations predicted the possibility of PbBr2-terminated
surfaces if MHPs are prepared with an excess of PbBr2

[33,46]. Our approach allows us to control the preferential sur-
face structure in two ways. One way is to prepare samples with
an excess of PbBr2 (≈10 % for 10 ML). The other is to evap-
orate additional PbBr2 onto a well-ordered CsBr-terminated
surface. Both approaches result in a surface structure as il-
lustrated in Fig. 2(a) deviating from the surface with CsBr
termination in Fig. 1(a). While interatomic distances d be-
tween Cs and Pb atoms are identical to the lattice parameter
a for both terminations the interatomic distance dBr−Br of the
Br atoms is smaller by a factor of 1/

√
2 for the Br-terminated

surface.
The LEED data in Figs. 2(b) and 2(c) were taken at the

same electron energy as for Figs. 1(b) and 1(d) but the overall
appearance deviates markedly. This proves that the atomic
surface structure of the two films is not the same. The LEED
pattern of the PbBr2-treated film at 295 K shows the (1×1)
cell of the MHP as before [marked in blue, Figs. 2(b) and
2(c)]. In addition, an overall weak (2×2) superstructure (pink
arrow) can be identified. It is the only superstructure for
temperatures down to 90 K [Fig. 2(c)], unlike on the CsBr-
terminated surface [Fig. 1(d)].

The large-scale STM image in Fig. 2(d) shows a long-range
periodic structure with point defects (dark spots) at a den-
sity of 0.065 nm−2, whose appearance depends strongly on
the bias voltage. No grain boundaries can be detected on the
100-nm scale. The surface exhibits stripes with a comparable
density and appearance as for the CsBr-terminated surface
[see Fig. 1(c)].

We carried out atomically resolved STM to further an-
alyze this surface structure. STM with a positive voltage
between tip and sample finds a square surface unit cell with a
(2×2) reconstruction (pink) in line with the LEED results [see
Fig. 2(e)]. This configuration probes the unoccupied states
of the sample (mainly from Pb-6p orbitals at the conduc-
tion band minimum) [18] by tunneling electrons from the tip
into the sample. The average distance between the imaged
protrusions is 0.57 ± 0.02 nm as expected for Pb atoms in
a PbBr2-terminated surface. Point defects on the surface are
imaged as cross-like depressions (indicated by a black arrow).

The occupied states of the sample (mainly from Br-4p and
Pb-6s orbitals at the VBM of CsPbBr3 [18]) can be probed
applying a negative voltage to the sample. The STM tip tends
to interact with the sample in this configuration so that it
gets functionalized spontaneously. Results from two different
imaging modes recorded with comparable negative voltages
are presented in Fig. 2(f). The first imaging mode detects
an average distance of 0.57 ± 0.02 nm between the imaged

protrusions and a (2×2) surface reconstruction consistent with
previous results [top image in Fig. 2(f)]. However, the second
mode images twice as many protrusions [bottom image in
Fig. 2(f)]. The spacing between these species is reduced by
a factor of

√
2. The corresponding surface unit cell is rotated

by 45◦ in comparison to the unit cell observed before (indi-
cated by a light blue square). This proves unambiguously a
PbBr2-terminated surface since such behavior is only possible
for the Pb and Br atoms in a PbBr2 termination, respectively
[compare Fig. 2(a)]. The observed point defects on the PbBr2-
terminated surface stem from Br vacancies consistent with
earlier observations [40].

Finally, we discuss the electronic surface structure of the
PbBr2-terminated surface [see Fig. 2(g)]. The VBM is located
at EB = 1.2 eV as for the CsBr-terminated surface. Thus,
the PbBr2 excess does not dope the sample indicating neg-
ligible changes in the CsPbBr3 bulk. The only observable
difference between both terminations is the significantly in-
creased work function of the PbBr2-terminated surface with
� = 5.3 ± 0.1 eV. Such an increase of ≈0.7 eV is expected
for a PbBr2-terminated surface [31,43,48]. It is also in line
with the increasing work function of polycrystalline thin films
with increasing PbBr2 content [49].

IV. SUMMARY AND CONCLUSIONS

In summary, we demonstrated the epitaxial growth of
(001)-oriented CsPbBr3 and CsSnBr3 thin films on Au(001)
with domain sizes exceeding (100 nm)2. The CsPbBr3 thin
films are intrinsic semiconductors, in contrast to poly-
crystalline MHP thin films and single crystals [18,19,50].
Stochiometric films are CsBr terminated and exhibit charac-
teristic (2×2) and (2

√
2×√

2)R45◦ surface reconstructions.
Their work function is � = 4.6 ± 0.1 eV. A surplus of PbBr2

during growth or postdeposition of PbBr2 creates PbBr2-
terminated (001) surfaces with a (2×2) surface reconstruction
and a higher work function of � = 5.3 ± 0.1 eV. Our work
opens a route to create well-ordered MHPs with the option
to control the film thickness and surface termination layer
by layer. This enables a detailed investigation and tuning of
the surface electronic structure at interfaces which is a pre-
requisite for understanding band alignment schemes, surface
carrier dynamics, and diffusion in MHP devices [51]. The
change in work function with surface termination has drastic
consequences for band alignments at interfaces that remain
obscured if different terminations are present in samples or
devices [2].
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