
PHYSICAL REVIEW MATERIALS 7, 035001 (2023)

Signatures of orbital selective Mott state in doped Sr3Ru2O7
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Bilayer Strontium Ruthenate Sr3Ru2O7 is a strongly correlated electronic system that shows diverse electronic
and structural phases. Upon doping with Mn, an orbital selective Mott phase is observed before the material
transitions to a Mott insulating state. Additionally, Mn doping leads to the emergence of an antiferromagnetic
state with qAFM = (π/2, π/2) ordering wave vector. Quasiparticle interference (QPI) experiments find a sharp
but highly dispersive peak at the AFM wave vector. Another set of QPI peaks is observed at q∗ = (π, 0), possibly
due to a charge order effect. In this work we utilize a tight binding model relevant to Mn doped Sr3Ru2O7, and
show that the origin of observed orbital selective Mott phase is inherently dependent upon the presence of a
strong onsite exchange interaction and oxygen octahedral rotation suppression induced by the Mn doping. We
further find that the experimentally observed QPI spectra, including the peaks at qAFM , and q∗ wave vectors can
be concomitantly explained within this formalism.
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I. INTRODUCTION

Strongly correlated metals often show a bad metal behavior
where the renormalized Landau quasiparticles are associ-
ated with electronic transport properties. For materials with
multiple low energy bands, the orbital resolved quasiparticle
renormalizations can selectively make certain orbitals inco-
herent leading to an orbital selective Mott phase (OSMP)
[1–6]. However, the formation of an OSMP is not ubiquitous
and depends intricately upon the strength of Hund’s rule cou-
pling [7,8] and crystal field effects [9] that lead to a broken
orbital degeneracy. A strong interorbital interaction further
helps stabilize an orbital selective state by suppressing orbital
fluctuations [7]. A number of recent studies show that orbital
selectivity can play an important role in the formation of
novel low temperature phases of quantum materials including
magnetism [10–12], charge ordering [13], nematic ordering
[14], and superconductivity [15,16].

The bilayer compound Sr3Ru2O7 has generated significant
interest due to the complex interplay between its various or-
dered phases [17–21]. It is a strongly correlated 4d orbital
material [22] that undergoes a metamagnetic transition in
the presence of an external magnetic field [18]. When doped
with Mn, Sr3(Ru1−xMnx )2O7 undergoes a transition to a long
range antiferromagnetic order [23–25] and a metal insulator
transition [3,26] for x > 0.05. Although the origin for the
metal insulator transition has been debated [27], a number
of studies [8,26,27] suggest that the insulator is likely to be
an electronic correlation driven Mott insulator. An important
property present in the bilayer compound Sr3Ru2O7 is the
presence of an effective rotation of around ∼6◦ in the oxygen
octahedra surrounding the Ru ions leading to a doubling of
the unit cell [24,28]. It has been observed that the rotation
angle is continuously suppressed with Mn doping [24], and
the corresponding effect on the electronic structure supports

the formation of antiferromagnetic order [24,25,29] and a low
temperature Mott insulating phase [3,26].

Recent angle resolved photo emission spectroscopy
(ARPES) experiments on Sr3Ru2O7 find that the doping in-
duced Mott insulating phase is preceded by a metallic phase
where the dxy orbital dominated γ Fermi pocket vanishes at
around 5% Mn doping at low temperatures [3]. This behav-
ior has been ascribed to an orbital selective Mott transition
where the dxy orbital quasiparticle weight (Zxy < Zyz/xz) is
strongly suppressed. The origin of the orbital selectivity in
Mn doped Sr3Ru2O7 currently remains unexplored. Although
strong correlation studies in Mn doped Sr3Ru2O7 are lacking,
previous theoretical studies of correlation effects in undoped
Sr3Ru2O7 [30] utilize a density functional theory (DFT) +
rotationally invariant slave boson mean field theory find the
quasiparticle weights to be weakly orbital selective, with an
opposite behavior to experimental observation in doped com-
pound (Zyz/xz < Zxy). In this work we explore the origin of
orbital dependent quasiparticle renormalization induced by a
suppression of oxygen octahedral rotation that is relevant to
the physics of strong correlations in Mn doped Sr3Ru2O7 .

Following the suppression of oxygen octahedral rotation
with Mn doping and formation of a correlation induced metal-
insulator transition, the temperature-doping phase diagram of
Sr3Ru2O7 shows the emergence of a stripe AFM state at the
ordering wave vector of qAFM = (π/2, π/2) in a tetragonal
unit cell [25]. Recent STM experiments measuring quasipar-
ticle interference (QPI) on the surface of Mn doped Sr3Ru2O7

find that in addition to the structural peaks, a set of four fold
symmetric peaks form at the magnetic ordering wave vectors
q = (±π/2,±π/2). These peaks are found to be highly dis-
persive both as a function of energy and Mn doping [31].
Interestingly, the origin of these AFM peaks is unexpected
in QPI experiments since the measurement is insensitive
to a magnetic contrast. Additionally, the observed fourfold
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symmetric structure of the QPI peaks would not agree with
the stripe type AFM order since a charge coupling to the local
magnetic order parameter can be expected to break the lattice
symmetry. In addition to the dispersive magnetic peak whose
origin is not understood, the experiment also identified a sharp
peak at the q∗ = (π, 0) and equivalent wave vectors that are
only weakly dispersive. This peak has been proposed to be a
possible signature of a charge ordered state [31].

In the following we utilize a tight binding Hamiltonian
for Sr3Ru2O7 that incorporates the effect of Mn doping as
a suppression in the hopping matrix element that character-
izes the presence of an oxygen octahedral rotation [28,29].
Calculation of dynamic paramagnetic susceptibility with this
model showed good agreement with spin fluctuations ob-
served in neutron scattering experiments for both undoped and
Mn doped Sr3Ru2O7 compound [29]. To explore the role of
electron correlations we use a self-consistent U(1) slave-spin
calculation. We show that the quasiparticle weight in Mn
doped Sr3Ru2O7 indeed undergoes a stronger suppression for
dxy orbital with increasing electron correlations. Simultane-
ously, the incoherence of the dxy dominated bands leads to an
increasing quasi-1D nature of the spectral function. We also
compute the quasiparticle interference spectra in the lightly
doped compound and find good agreement with scanning
tunneling microscopy (STM) experiments.

II. MODEL

The Mn doped Sr3Ru2O7 can be modeled by a 12 or-
bital tight binding Hamiltonian that includes the t2g orbitals,
(dyz

a,l , dxz
a,l , dxy

a,l ) where a and l represent the sub-lattice index
and layer index, respectively. The effect of Mn doping is
incorporated as an effective suppression of the hopping matrix
element trot that acts as a parameter in our calculations. The
model has been extracted from a combination of symme-
try based approaches and fitting to the ARPES experiments
[22,32] for the undoped compound [28]. The tight binding
Hamiltonian has been utilized to study physical properties of
Sr3Ru2O7 like nematicity near the metamagnetic transition
[33], and modeling of neutron scattering experiments [29].
The oxygen octahedral rotation causes a doubling of the unit
cell where the two sublattices are connected by the wave
vector Q = (π, π ). The bilayer interaction further doubles the
unit cell and yields a 12 orbital low energy Hamiltonian. As
discussed in Ref. [28], the 12 orbital tight binding Hamilto-
nian can be reduced to a block diagonal form with bonding
and antibonding parts by a combination of gauge transfor-
mation (dyz/xz

a,l → −dyz/xz
a,l ) and Fourier transform on the layer

index by introducing the momentum index kz = (0, π ). This
allows us to express the Hamiltonian as

H0 = h0(kz = 0) + h0(kz = π ). (1)

The detailed Hamiltonian is presented in Appendix A. The
formalism thus allows us to work with a reduced 6 × 6 tight-
binding Hamiltonian block separately for each kz index.

The oxygen octahedral rotation induced by the Mn dopants
is controlled by a dominant intersublattice term of the form
2trot (cos(kx ) + cos(ky))dyz†

k+Q,a,kz
dxz

k,a′,kz
as also evidenced in

Hamiltonians generated from DFT calculations [34]. Increas-
ing Mn doping is modeled as a corresponding suppression

FIG. 1. Band structure (a) and Fermi-surface (b) for trot = 0.4.
Red, green, and blue colors correspond to dyz, dxz, and dxy bands,
respectively.

in trot. The electronic structure based on this tight-binding
Hamiltonian and the Fermi-surface for the undoped com-
pound (trot = 0.4) are shown in Fig. 1. As can be seen from
Fig. 1(a), apart from the dyz/xz orbital dominated bands shown
in red/blue, the electronic structure of the undoped material
has a dxy orbital contribution (blue) that leads to a high density
of states near the X point of the Brillouin zone. The energy
scale is expressed in units of 0.6 eV.

To study the effect of electron correlations, we utilize a
self-consistent U(1) slave-spin formalism [35]. The slave par-
ticle methods can account for many details of the quasiparticle
physics close to the Fermi energy for strongly interacting
multi-orbital systems with modest effort compared to more
numerically expensive methods, like quantum Monte Carlo,
within the dynamical mean field theory framework. The slave-
spin formalism can obtain the Mott phase in agreement with
DMFT methods [36] and the U(1) formalism at the mean field
levels can capture the noninteracting limit accurately [37].
Below we summarize the calculation method using the U(1)
slave-spin formalism employed in our work.

For the charge degrees of freedom represented by a quan-
tum spin 1/2, the electron operator can be written as

d†
iασ = S+

iασ f †
iασ , (2)

where i, α, and σ stand for the site index, orbital index, and
the spin index, respectively. The creation of charge on the
site i, with orbital α and spin σ, is described by the spin raising
operator for the slave-spin S+

iασ . f †
iασ represents the fermionic

spinon corresponding to the physical spin. The mean field
equations are then solved subject to removing the unphysical
states from the Hilbert space using the constraint equation:

Sz
iασ = f †

iασ fiασ − 1
2 (3)

where Sz
iασ is the z component of the spin operator (see

Appendix B for further details). The orbital dependant quasi-
particle weights are obtained as

zασ = 〈S+
iασ 〉. (4)

The correlated metallic phase is given by zασ 	= 0 whereas the
orbital-selective Mott transition (OSMT) phase is described
by zασ = 0 for some orbitals. The calculations have been per-
formed at T = 0 and describe the nonmagnetic states where
Zασ = Zα . From the above one may note that the OSMT is not
a complete Mott insulating phase but describes a correlated
metal where certain orbital resolved QP weights are still finite.
This makes the model ideal for studying the OSMT state in
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FIG. 2. Orbital resolved quasiparticle weight vs coulomb energy
U for trot = 0.1 at (a) J = 0 and (b) J = 0.2U .

Sr3Ru2O7 near x ∼ 0.05 doping since the material is still in
the paramagnetic phase.

III. RESULTS

In order to model the reduced octahedral rotation with Mn
doping we take trot = 0.1 [29]. Although trot is a parameter
in our study, trot = 0.1 corresponds to the regime where the
Fermi surface shows quasi-1D behavior observed in ARPES
experiments [3], and a paramagnetic susceptibility that peaks
at the correct wave vector for the AFM order observed in
doped Sr3Ru2O7 [29]. We also find that at these small values
of trot, our results remain robust with small changes of trot

magnitude.
The self-consistent solution obtained from the U(1) slave-

spin formalism with increasing Hubbard-interaction U for
exchange coupling strengths J = 0, and J = 0.2U are shown
in Figs. 2(a) and 2(b), respectively. We observe a transition
to an orbital selective phase where the dxy orbital weight
Zxy is suppressed compared to the dyz/xz orbital quasiparticle
weights Zyz/xz. This scenario is contrary to the case of undoped
Sr3Ru2O7 where the orbital selectivity is much weaker, and
Zyz/xz < Zxy [30]. These results are in agreement with recent
ARPES experiments that find an emergence of orbital selec-
tive Mott transition in Mn doped Sr3Ru2O7, where the dxy

orbital dominated band is observed to become incoherent at
low temperatures [3]. As shown in Fig. 2, with the increases
in J the critical U for the Mott transition is reduced due to
increasing electron correlations. We also find that the orbital
selective splitting between the dyz/xz and dxy orbitals is en-
hanced in the presence of larger exchange interaction J .

FIG. 3. Calculation of spectral function and QPI at ω = 0 for
trot = 0.1. Top row: spectral function (a) and QPI (b) at Zyz/xz = 0.4,
Zxy = 0.1. Bottom row: spectral function (c) and QPI (d) at Zyz/xz =
0.4, Zxy = 0. Here, a is the lattice constant in tetragonal unit cell. The
variables k and q are presented in r.l.u.

In order to understand the evolution of the Fermi-surface
with increasing incoherence of the dxy orbital, we evaluate the
spectral function by calculating the retarded Green’s function
in the Lehman representation [37,38],

Gret
α,σ,λ(k, ω) = 1

N

∑
n,m

|〈n|S+
ασ |m〉|2(U αλ

kσ

)∗
U αλ

kσ

×
[
e−βEm

(
1 − n f

λ (k)
) + e−βEn n f

λ (k)
]

ω + iη − (En − Em) − ελ(k)
. (5)

Here, ελ(k) and Em are the eigenvalues, whereas U αλ
kσ

and |m〉
are the eigenstates of the spinon mean field Hamiltonian H f

and slave-spin Hamiltonian Hs, respectively. The term n f
λ (k)

is the Fermi distribution function that corresponds to band λ

with momentum k. The spectral function is then given by the
coherent part of the retarded Green’s function (corresponding
to n = m):

Aασ (k, ω) = −2
∑

λ

ImGret
α,σ,λ(k, ω). (6)

The computed spectral function at ω = 0 and Zyz/xz = 0.4,
Zxy = 0.1 shown in Fig. 3(a) is compared to the orbital se-
lective Mott phase corresponding to Zyz/xz = 0.4, Zxy = 0 in
Fig. 3(c). In agreement with ARPES experiments we find
that the spectral function of the interacting system becomes
more quasi-1D as the octahedral rotation is suppressed and
the dxy orbital becomes incoherent. This is expected to occur
because of the quasi-1D nature of the dyz/xz orbitals. However,
note that there is presence of a hybridization between the dxz

and dyz orbitals through a next nearest neighbor intrasublatice
hopping matrix element and via the spin orbit coupling (see
Appendix A). This hybridization, combined with weak but
finite intraorbital nearest neighbor hybridization within the
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dyz/xz orbitals along the (x/y) directions, respectively, provide
for a small but finite warping of the quasi-1D bands even in
the absence of the dxy band.

To gain further insight into the role of electron correlations
in this Mn doped Sr3Ru2O7 we model the QPI experiments.
Recent QPI experiments [31] in the region of OSMT find three
distinctive peaks at the (π, π ), (π, 0), and (π/2, π/2) wave
vectors. Whereas the (π, π ) peak could be associated with the
structural symmetry, the (π, 0) peak has been ascribed to the
presence of a possible charge ordered state, and the observed
(±π/2,±π/2) QPI peak coincides with the magnetic wave
vector of the stripe magnetic order in the presence of Mn
doping [25,31]. The QPI spectrum can be extracted from the
calculation of joint density of states (JDOS),

JDOS(q, ω) = 1

N

∑
kασ

Aασ (k + q, ω)Aασ (k, ω) (7)

where, N is a normalization factor. From Eq. (5) and
Eq. (6), we find that the single particle Green’s function and
correspondingly the QPI spectra is expected to be influenced
by the presence of orbital dependant renormalization of the
Landau quasiparticles. In Fig. 3, we show the QPI spectra at
the Fermi energy (ω = 0) relevant to Mn doped Sr3Ru2O7 .
For Zxy = 0.1 in Fig. 3(b), QPI peaks can be seen at the three
wave vectors q1 = (π, 0), q2 = (π, π ), and q3 = (π/2, π/2)
that agree well with corresponding observations in x ∼ 5%
Mn doped Sr3Ru2O7 [31]. As shown in Fig. 3(a), the curvature
of the �-centered pocket near the (±π/2, 0) and (0,±π/2)
region are responsible for the enhanced joint density of state
at the q1 and q3 wave vectors. The presence of a QPI peak at
the AFM wave vector in the paramagnetic phase explains the
presence of a fourfold symmetry in this peak as observed in
the experiments.

As the system is further Mn doped, an OSMT phase is
obtained where Zxy → 0. As shown in Fig. 3(d) for the case
of Zyz/xz = 0.4, and Zxy = 0, this causes the q3 = (π/2, π/2)
to strongly disperse. The vanishing of this q3 peak can also be
understood from the constant energy contour in Fig. 3(c), the
quasi-1D nature of the Fermi pockets suppresses the curvature
of the inner pocket near the (±π/2, 0) and (0,±π/2) points,
leading to suppression of the JDOS at the antiferromagnetic
wave vector. However, we find that the q1 and the q2 peaks
survive and are in fact strengthened with the formation of the
quasi-1D bands. These QPI peaks and their dispersion are in
agreement with the experiments on doped Sr3Ru2O7 [31].

In Fig. 4(a) and Fig. 4(b) we compare the spectral function
and QPI spectra obtained above with those obtained from the
noninteracting Hamiltonian in doped Sr3Ru2O7 (trot = 0.1,
and U = 0) at ω = 0. This spectra will be qualitatively similar
to the effect observed at the Fermi energy when the quasi-
particle renormalizations are not orbitally selective (U > 0,
and Zyz/xz = Zxy). Note that in this case we do not obtain the
quasi-1D nature of spectral function [see Fig. 4(a)]. Similarly,
for the QPI spectra in Fig. 4(b) we also do not obtain the
observed peaks at the q1, q2, q3 wave vectors. This indicates
the relevance of accounting for the orbitally selective Mott
physics to understand the low energy electronic structure in
Mn doped Sr3Ru2O7 . However, it can be seen from Fig. 4(b)
that the 1D enhancement of the JDOS along the (qx, 0), and

FIG. 4. Calculation of (a) spectral function and (b) QPI spectra
at ω = 0, trot = 0.1, and Zyz/xz = 1, Zxy = 1.

(0, qy) is present in the QPI spectra in the OSMT phase shown
in Fig. 3(d). This implies the dominant mechanism for the
formation of these quasi-1D regions are the reduced interor-
bital hybridization trot between dxz and dyz orbitals. Similar
quasi-1D enhancements in QPI intensity have been observed
in measurements in the x ∼ 10% samples studied in Ref. [31].

We further looked at the energy dependence of QPI spec-
trum at ω = ±0.02 as shown in Fig. 5. At finite energies the
QPI peak at q1 and q2 wave vectors are observed but the peak
at the AFM wave vector is suppressed. We also find that for
the QPI spectra in the OSMT phase, the QPI intensity shows
quasi-1D features for small positive energies but similar to
experiments it is suppressed for ω < 0. A generic intensity en-
hancement along the lines q = (0, qy)/(qx, 0) will in general
be dominated by contributions from the dyz/xz orbitals (even
for Zxy > 0) and represents the quasi-1D nature of the spectral
function in Mn doped Sr3Ru2O7 .

IV. CONCLUSION

We have studied the effect of strong electron correlations in
Mn doped Sr3Ru2O7 . The effect of Mn doping is simulated
through a suppression of oxygen octahedral rotation that is
modeled with a suppression of the parameter trot. We utilize
a self-consistent U(1) slave-spin formulation that allows us to
probe the low energy properties of the doped material. The
orbital resolved quasiparticle weight shows the emergence of
an OSMT phase where Zxy < Zyz/xz. As a consequence of the
suppression of the dxy orbital quasiparticle weight, the spectral
function develops quasi-1D features similar to observations in
ARPES experiments.

We further evaluate the QPI spectra within this orbital se-
lective phase and find clear evidence of enhanced JDOS at the
wave vectors q1 = (π, 0), q2 = (π, π ), and q3 = (π/2, π/2)
similar to observations from STM experiments. In particu-
lar, we find that the presence of the q1 = (π, 0) and q3 =
(π/2, π/2) intensities in QPI calculations does not require
the explicit presence of a charge ordered and AFM state.
However, whereas the QPI peaks correspond to high curvature
regions of the constant energy contours [Figs. 3(a) and 3(b)],
the Fermi pockets also form flat regions that could enhance
nesting at the above wave vectors and support the formation
of density wave instabilities.

The q3 peak is suppressed as trot → 0 and Zxy → 0, in
agreement with QPI experiments [31]. Further, this peak is
strongly suppressed for small but finite energies, although the
q1 and q2 peaks remain robust.
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FIG. 5. Calculation of spectral function and QPI at Zyz/xz = 0.4,
and Zxy = 0 for energies ω = −0.02 (Left column) and ω = 0.02
(Right column)(ω is in 600 meV unit): (a) and (b) are the spectral
functions at the two energies. The panels (c) and (d) show the QPI
spectra at the above energies for which the corresponding plots along
high symmetry paths are shown in (e) and (f). The plots have been
constructed in a tetragonal unit cell with lattice constant a. The
momentum space vectors k and q are presented in r.l.u.

In summary, we find that the modeling of Mn doped
Sr3Ru2O7 used in our study can reproduce the experimen-
tally observed spectral function and QPI peaks as well as the
quasi-1D enhancement of JDOS along the (qx, 0) and (0, qy)
regions. The orbital resolved quasiparticle weight splitting
between the Zxz/yz and Zxy, and the critical U for orbital
selective Mott transition increase with Hund’s coupling J. The
choice of J = 0.2U is based on the experimentally observed
renormalization of the dxz/yz orbital dominated bands in the
orbitally selective Mott phase [3].

The spectral function and quasiparticle interference spectra
are strongly influenced by electron correlation effects that
lead to an orbitally selective Mott phase in addition to the
role of reduced oxygen octahedral rotation in modifying the
electronic structure in Mn doped Sr3Ru2O7 . These results
will have significance in other strongly correlated materi-
als where oxygen octahedral rotation and strong correlation
physics are being studied, including surface of unconventional
superconductor Sr2RuO4[39], infinite layer nicklates [40], and
recent work in Ca doped Sr2RuO4 where experiments find
an intricate relationship between OSMT physics and oxygen
octahedral distortions [41].
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APPENDIX A: TIGHT BINDING HAMILTONIAN

As discussed above, the tight binding Hamiltonian [28] for
Mn doped Sr3Ru2O7 can be written in block diagonal form
for kz = 0 and kz = π . The Hamiltonian can be expressed as

h0(kz ) =
∑

k

φ
†
k,s,kz

(
ĥ0s(k, kz ) ĝ†(k, kz )

ĝ(k, kz ) ĥ0s(k + Q, kz )

)
φk,s,kz ,

(A1)

where the basis is given by

φ
†
k,s,kz

=(
dyz†

k,s,kz
, dxz†

k,s,kz
, dxy†

k,−s,kz
, dyz†

k+Q,s,kz
, dxz†

k+Q,s,kz
, dxy†

k+Q,−s,kz

)
,

(A2)

where dα†
k,s,kz

creates an electron in orbital α of Ru ion with
spin s. Here, k = (kx, ky) is the in-plane momentum index.
The sublattices are described by the ordering vector Q =
(π, π ).

The individual Hamiltonian components, ĥ0s(k, kz ) and
ĝ(k, kz ), are given by

ĥ0s(k, kz ) = Âs(k) + B̂1 cos(kz ), (A3)

ĝ(k, kz ) = Ĝ(k) − 2B̂2 cos(kz ). (A4)

Here, the matrix kernel Âs(k) is intralayer hopping without
oxygen octahedral rotation, and Ĝ(k) contains the contribu-
tion from in-plane staggered hopping. The interlayer hoppings
with and without octahedra rotation are given by B̂2 and B̂1,
respectively [28]. The individual matrix elements are given by

Âs(k) =
⎛
⎝ ε

yz
k εoff

k + isλ 0
εoff

k − isλ εxz
k 0

0 0 ε
xy
k

⎞
⎠, (A5)

Ĝ(k) =
⎛
⎝ 0 2trotγk 0

−2trotγk 0 0
0 0 0

⎞
⎠, (A6)

B̂1 =
⎛
⎝−t⊥ 0 0

0 −t⊥ 0
0 0 0

⎞
⎠, (A7)

B̂2 =
⎛
⎝ 0 t⊥

INT 0
−t⊥

INT 0 0
0 0 0

⎞
⎠. (A8)

In the above expressions the components are given by

ε
yz
k = −2t2 cos(kx ) − 2t1 cos(ky), (A9)

εxz
k = −2t1 cos(kx ) − 2t2 cos(ky), (A10)

035001-5



DEBNATH, DAS, ADHIKARY, AND MUKHERJEE PHYSICAL REVIEW MATERIALS 7, 035001 (2023)

ε
xy
k = −2t3[cos(kx ) + cos(ky)]

−4t4 cos(kx ) cos(ky)

−2t5[cos(2kx ) + cos(2ky)], (A11)

εoff
k = −4t6 sin(kx ) sin(ky), (A12)

γk = cos(kx ) + cos(ky). (A13)

The tight binding Hamiltonian is expressed in the tetrag-
onal unit cell and all the hopping parameters are in the unit
of 600 meV. The value of hopping parameters are given
by t1 = 0.5, t2 = 0.05, t3 = 0.3, t4 = 0.06, t5 = −0.018, t6 =
0.05, λ = 0.1, t⊥ = 0.005, and t⊥INT = 0.005.

APPENDIX B: U(1) SLAVE-SPIN MODEL

We include an on site, multi-orbital Hubbard-Hund Hamil-
tonian where the correlation term is given by [1,38,42]

HU =U
∑

iα

n̂iα↑n̂iα↓ + U ′

2

∑
i,α 	=β

∑
σ

n̂iασ n̂iβσ̄

+ U ′ − J

2

∑
i,α 	=β

∑
σ

n̂iασ n̂iβσ + Hpair + Hμd , (B1)

where c†
iασ corresponds to the electron creation at site i of

Ruthenium t2g orbitals α, β, and spin σ = ↑,↓. The first
term U accounts for the intraorbital Coulomb interaction, the
Hund’s interaction is given by J, and the interorbital Coulomb
interaction for opposite spin is given by U ′ = U − 2J . The
term n̂iασ = c†

iασ ciασ is the electron occupation for orbital α

and spin σ . The additional term Hpair is a pair hopping term
[38] given by

Hpair = − J

2

∑
i,α 	=β

[c†
iα↑ciα↓c†

iβ↓ciβ↑

+ c†
iα↑c†

iα↓ciβ↑ciβ↓ + H.c.] (B2)

and,

Hμd = −μU
d

∑
iασ

n̂iασ . (B3)

Within a U(1) slave-spin formalism we associate the Hilbert
space containing the charge degree of freedom with an auxil-
iary fermion containing the degree of freedom of the physical
spin [35,38,43]. Under these conditions, the electron creation
operator will take the form

c†
iασ = S+

iασ f †
iασ , (B4)

where i, α, and σ stand for the site index, orbital index, and
the spin index, respectively. According to the formulation of
the Hilbert space, the charge degree of freedom follows the
spin half algebra where the S+

iασ behaves as the charge creation
operator which takes the empty state (zero charge) to a filled
state (−e charge). So, here the physical states should look like
[44]:

|0〉 = ∣∣n f
iασ = 0, Sz

iασ = −1/2
〉
, (B5)

|1〉 = ∣∣n f
iασ = 1, Sz

iασ = 1/2
〉
. (B6)

There should obviously be some extra nonphysical states like
|n f

iασ = 1, Sz
iασ = −1/2〉, which could be eliminated by intro-

ducing the constraint

Sz
iασ = f †

iασ fiασ − 1
2 . (B7)

The constraint equation is averaged over all sites and
introduced in the Hamiltonian by introducing Lagrange mul-
tipliers. Upon a mean field decomposition, the Hamiltonian
is reduced into a spinon Hamiltonian (H f ) and a slave-spin
Hamiltonian (Hs), which are solved self-consistently to cal-
culate the mean field parameter like zασ . The quasiparticle
weight is calculated to be

Zασ = |zασ |2. (B8)
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