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Revealing contributions to conduction from transport within ordered
and disordered regions in highly doped conjugated polymers through analysis of

temperature-dependent Hall measurements
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Hall effect measurements in doped polymer semiconductors are widely reported but are difficult to interpret
due to screening of Hall voltages by carriers undergoing incoherent transport. Here, we propose a refined analysis
for such Hall measurements, based on measuring the Hall coefficient as a function of temperature, and modeling
carriers as existing in a regime of variable “deflectability” (i.e., how strongly they “feel” the magnetic part of the
Lorentz force). By linearly interpolating each carrier between the extremes of no deflection and full deflection,
we demonstrate that it is possible to extract the (time-averaged) concentration of deflectable charge carriers,
〈nd 〉, the average, temperature-dependent mobility of those carriers, 〈μd 〉(T ), as well as the ratio of conductivity
that comes from such deflectable transport, d (T ). Our method was enabled by the construction of an improved
AC Hall measurement system, as well as an improved data extraction method. We measured Hall bar devices
of ion-exchange doped films of PBTTT-C14 from 10–300 K. Our analysis provides evidence for the proportion
of conductivity arising from deflectable transport, d (T ), increasing with doping level, ranging between 15.4%
and 16.4% at room temperature. When compared to total charge-carrier-density estimates from independent
methods, the values of 〈nd〉 extracted suggest that carriers spend ∼37% of their time of flight being deflectable
in the most highly doped of the devices measured here. The extracted values of d (T ) being less than half this
value thus suggest that the limiting factor for conductivity in such highly doped devices is carrier mobility, rather
than concentration.
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I. INTRODUCTION

Since the original, Nobel-prize-winning discovery of sub-
stantial electrical conductivities in polyacetylene by Heeger
et al. [1] there has been continued interest in understanding
the charge-transport physics of such degenerately doped, con-
jugated polymers. Recent advances in doping methods have
focused on minimizing structural disorder associated with
incorporating dopant ions into polymer films, thus reaching
optimal electrical conductivities. An example of this is the
recently explored technique of ion-exchange (IEx) doping,
where a polymer film is exposed to a solution containing
both a molecular dopant and an electrolyte. After electron
transfer from the polymer, the ionized molecular dopant is
exchanged for a stable, closed-shell ion, which becomes the
stabilizing counterion for the mobile charge carriers on the
polymer chains [2,3]. This is depicted in Fig. 1(b). IEx doping
also provides a powerful method of systematically studying
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the influence of ion size and shape on polymer charge trans-
port. This has enabled the identification of key factors that
determine and limit achievable electrical conductivities [4].

Hall effect measurements are normally a mainstay of
semiconductor characterization, with such measurements be-
ing used to determine charge-carrier densities and mobilities
[5–7]. However, for conjugated polymers, these measure-
ments are not straightforward to interpret, due to contibutions
from disordered transport [8–10]. Attempting to use the stan-
dard single-carrier formulation, where the Hall coefficient
is given by RH = [qn]−1, often leads to unreliable and un-
physical estimates of carrier concentration. For instance, in
their 2019 paper on IEx doping, Yamashita et al. reported
charge-carrier densities of 1.4 × 1021 cm−3 in their devices.
However, XPS and NMR measurements published by Jacobs
et al. in 2022 have shown that in similarly doped devices
of the same material, charge-carrier densities are actually
closer to 8 × 1020 cm−3—about half that reported by the
Hall measurements [4]. Similarly, carrier mobility extracted
this way—often referred to as the “Hall mobility”—is conse-
quently an underestimate. The strong temperature dependence
of the Hall coefficient, and thus the measured carrier density,
is inconsistent with spectroscopic measurements, underscor-
ing the unreliability of these values.

It was shown by Yi et al. in 2016 [10] that the origin
of such discrepancies, at least in molecular crystals, can be
explained by the presence of charge carriers in localized
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FIG. 1. PBTTT Hall measurements: (a) PBTTT Hall bar loaded on cryostat via custom-made sample board with device schematic
displayed; (b) diagram displaying the stages of the ion-exchange doping process (I, charge transfer; II to III, exchange of ions; IV, charge
carrier and exchanged ion diffuse into polymer); (c) diagrammatic representation of the AC Hall measurement system used for measurements.

electronic states. They suggested that localized carriers (in
contrast to carriers in extended bandlike states) do not partake
in generating the transverse Hall voltage but are still driven
by its corresponding electric field. Therefore, they partially
screen the Hall voltage leading to an underdeveloped Hall
effect. Mathematically, they expressed this in terms of two
parameters: γ and β, the fraction of bandlike carriers and ratio
of localized to bandlike mobility, respectively. The subsequent
reduction in the measured Hall coefficient leads to an overesti-
mation of carrier concentration and underestimation of carrier
mobility. By taking certain temperature limits, Yi et al. were
able to formulate approximate expressions for their crystalline
materials, allowing them to reliably extract carrier density and
mobility values from their measurements.

A reliable means of estimating carrier density and carrier
mobility is important for better understanding of the under-
pinning, fundamental charge-transport physics. Therefore, in
an effort to achieve the same for IEx-doped polymer devices,
we propose here to perform a similar analysis, thus requir-
ing high-resolution, temperature-dependent measurements to
be undertaken. This necessitated the construction of a new

experimental system, based on the design first published by
Chen et al. in 2016 [11] with some incremental improvements.
These improvements were both to the hardware of the system,
but also to the method of data processing used on its output,
and are detailed later on.

For the analysis itself, we first show that an expres-
sion equivalent to that obtained from the β-γ analysis of
the two-carrier model can also be derived within a frame-
work that is more appropriate for polymers—albeit with
subtly different definitions of β and γ . By making some
reasonable assumptions about the arguments of the expres-
sion (β and γ ) we arrive at an approximate expression
for the overall temperature dependence of the Hall coeffi-
cient. The analysis allows us to extract reliable values of
charge-carrier density. We applied this method to highly con-
ducting, IEx-doped films of poly(2,5)-bis(3-alkylthiophen-2-
yl)thieno[3,2-b]-thiophene (PBTTT). We chose PBTTT due
to it being a widely studied conducting conjugated polymer
model system and our ability to determine carrier concentra-
tions in IEx-doped PBTTT independently by spectroscopic
means.
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II. EXPERIMENTAL SYSTEM AND DATA PROCESSING

There are a number of experimental challenges to perform-
ing temperature-dependent Hall measurements on conjugated
polymers. Polymers are (relatively) electrically resistive ma-
terials, thus limiting the current densities that can be injected.
This results in small Hall signals and subsequently low signal-
to-noise ratios [12,13]. This is normally mitigated by using
superconducting electromagnets (SCEMs) to compensate for
the low current densities. However, this is often not enough
to fully compensate for the loss of signal. Therefore, the
magnetic field would normally be ramped up and down slowly
to the maximum accessible magnetic field, allowing for suffi-
ciently large Hall voltage values to be measured as a function
of time, and thus field. Such measurements normally take
a prohibitively large amount of time to complete and are
susceptible to electromagnetic interference and slow drift of
signal. Additionally, slightly misaligned Hall electrodes on
a device can cause issues if the longitudinal voltage is at
all field-dependent. Specifically, magnetoresistance can often
cause a greater change in longitudinal voltage with respect to
field strength than in the Hall voltage itself—particularly at
low temperatures.

A solution to both of these issues is offered by AC field
measurements, in which the magnetic field is modulated
(sinusoidally) on a time scale of ∼1 s. The resulting modu-
lation of the Hall voltage can then be detected with lock-in
techniques. This spreads noise across the entire frequency do-
main while concentrating the Hall signal at a single frequency,
thus significantly increasing the signal-to-noise ratio. Further-
more, since magnetoresistance is at least a second-order effect
[i.e., ∼O(B2)], no contribution from it would be present at the
field frequency [11,14]. In Ref. [11], Chen et al. implemented
this with an experimental design that used a rotating assembly
of permanent magnets. These were aligned across two plates
in an alternating fashion to generate an alternating magnetic
field as it rotated. The RMS amplitude of the subsequently
alternating Hall voltage was then measured by use of a lock-in
amplifier, with reference signal provided by the analog voltage
output of a magnetometer.

In this work we made some iterative improvements upon
this design [depicted in Fig. 1(c)] to allow for temperature
control and to further reduce noise. This improved system
allowed us to take temperature-dependent Hall measurements
at relatively high speeds (∼ 1 day for a full temperature
sweep), without magnetoresistance posing any issues, and
with a greater signal-to-noise ratio. Specifically, the following
additions were made:

(1) A vacuum cryostat for temperature control and to pre-
vent degradation of air-unstable devices;

(2) Minimization of enclosed area due to loop created
by Hall voltage leads, including by use of twisted-pair,
cryogenic-loom wiring;

(3) An increased number of magnets per plate (four in-
stead of two), resulting in a more accurately sinusoidal field
and preventing the desired signal from being split across mul-
tiple harmonics;

(4) A bespoke sample-loading mechanism, allowing for
devices to be swapped in and out with relative ease [shown
in Fig. 1(a)];

(5) A high-impedance (>1 T�) voltage preamplifier, al-
lowing for measurement of low conductivity devices (down to
<1 S/cm);

(6) Software-based digital PID control to stabilize the ro-
tational frequency of the magnet assembly, and hence field
frequency.

Furthermore, improvements were made to the data-
processing method used to extract the Hall coefficient from
raw data. This could better separate out the Hall voltage from
any Faraday-induced voltages and also allow for the sign of
the Hall coefficient to be reliably determined.

To understand this, we must consider the main voltages
that contribute to the measured output of such an AC Hall
system: the Hall voltage itself, VH , and voltages induced by
the Faraday effect, VF , due to changing magnetic fluxes [11].
Both oscillate at the same frequency as the field [15,16]. To
distinguish between the two contributions, it is important to
note that only VH should depend on the source-drain current,
I , and that VF will be π/2 out of phase with respect to VH

[11]. Since a dual-phase lock-in amplifier was used, both the
in-phase (Vx) and π/2 out-of-phase (Vy) components of the
signal are measured separately. One might then think that it
is possible to directly measure VH separately from VF using
this feature. However, since the reference signal used by the
lock-in amplifier will have an arbitrary phase offset, φ, from
the field experienced by the device under test (DUT), this
becomes nontrivial, with the vector voltage output becoming

V =
[
Vx

Vy

]
=

[
cos φ − sin φ

sin φ cos φ

][
VH

VF

]

=
[
VH cos φ − VF sin φ

VH sin φ + VF cos φ

]
. (1)

To extract VH on its own will require an assumption to
be made. The assumption made in Ref. [11] was that VF is
perfectly stable for a single measurement. The result of this is
that by taking the vector differences of voltage measurements
like so,

|�V| = |V(I1) − V(I0)|

=
∣∣∣∣
[

(VH (I1) − VH (I0)) cos φ

(VH (I1) − VH (I0)) sin φ

]∣∣∣∣
= |VH (I1) − VH (I0)|
= |�VH |, (2)

one can find the magnitude of the Hall coefficient by finding
the gradient of this vector difference versus current. Which
value is used as the “zero” value is an arbitrary choice. For
instance, one could simply take the first measurement in a
sweep as being V(I0) and subtract it from all measured points.

This method is quick and can be performed live as data
is acquired. However, the downside is that any noise in VF

ends up being incorporated into the extracted VH signal. The
assumption that VF is constant is also not entirely physi-
cal, as the moving parts in the system are liable to cause
VF to fluctuate throughout a measurement via mechanical
vibrations.

Alternatively, one could assume that the phase offset be-
tween the reference signal and DUT-experienced magnetic
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FIG. 2. Data extraction from a Hall measurement: (a) a seemingly trustworthy-looking measurement where both the vector-subtracted
(VS) and phase-optimized (PO) data match closely and fluctuations in the Faraday voltage (VF ) are small relative to the Hall signal; (b) sign
determination of a measurement, showing a negative gradient of Faraday voltage versus frequency indicating a positive Hall coefficient; (c) a
simulated example of what a change in sgn(RH ) between two temperatures would look like in the calculated phase offset versus temperature—
i.e., a jump in phase by a value of π between the two temperatures.

field is constant. If the position of the magnetometer sensor is
fixed, then this would seem to be a more physical assumption.
Further to this, if one assumes that VF fluctuates around a
constant value, then it is possible to use numerical methods
in an attempt to determine the phase offset, and separate
V back into VH and VF .

This can be formulated as a minimization problem by
defining a minimization parameter, P(φ), to be

P(φ) =
∣∣∣∣My(φ)

Mx(φ)

∣∣∣∣, (3)

where Mn(φ) is the gradient resulting from a linear fit of Vn

versus I after rotating V through a phase φ. The value of
φ that minimizes P(φ) should be the phase needed to rotate
V through to separate out the Hall and Faraday components,
since one would expect that 〈∂VF /∂I〉 ≈ 0 and |〈∂VH/∂I〉| �
|〈∂VF /∂I〉|, where 〈...〉 indicates a mean value.

Both methods have drawbacks. Vector subtraction (VS) is
inherently noisier while phase optimization (PO) may home
in on the wrong value of φ if VF happens to have some
sort of correlation with current (either by random chance
or otherwise). Therefore, for each measurement performed
using this system, both methods were used and their outputs
compared. This provided a means of testing the reliability of
a measurement. If the two outputs differed significantly or
the extracted VF signal had large fluctuations relative to the
VH signal, then the measurement was deemed unreliable. An
example of a typical “trustworthy” measurement is shown in
Fig. 2(a).

In both methods explored thus far, it is only possible to tell
the magnitude of the Hall coefficient—not its polarity. For VS,
this is because only the magnitude of a vector is being found.
For PO, this is because there is no way to tell whether φ or φ +
π is the “correct” offset without more information. However,
it should be possible to extract the sign of the Hall coefficient
by checking how Vy (Faraday) varies with frequency relative
to how Vx (Hall) varies with current. When properly aligned,

the x and y components should be

Vx = RH BzI sin(ωt )/d,

Vy = −ω�Bz sin(ωt + π/2), (4)

where RH is the Hall coefficient, � is the cross-sectional area
enclosed by the loop created by the Hall measurement wires,
Bz is the perpendicular magnetic flux density amplitude, I is
current, ω is the angular frequency of the field, t is time, and d
is the thickness of the DUT. If RH is positive, then the gradient
of Vx versus I should have the opposite sign to the gradient of
Vy versus ω. If it is negative, then they will have the same
sign. Therefore, after rotating through the determined value
of φ, the sign of RH can be determined from

sgn(RH ) = −sgn

(
∂Vy

∂ω

∂Vx

∂I

)
. (5)

Therefore, by performing frequency-dependent measurements
one can extract the sign of the Hall coefficient as well as its
magnitude.

This method was simplified for these measurements by
always taking the value of φ that yields a positive Hall co-
efficient, then determining the sign by use of sgn(RH ) =
−sgn(∂Vy/∂ω). An example of this is shown in Fig. 2(b).
Further to this, only one frequency sweep at one temperature
would be necessary, as any changes in sign of the Hall coeffi-
cient should result in whether φ or φ + π is the positive result
changing. This would result in a “jump” in the selected phase
offset by a value of π between measurements. An illustration
of what this would look like is shown in Fig. 2(c). Therefore, if
the sign is known at one temperature, then the sign at all other
temperatures can be determined by spotting these π -sized
discontinuities in the phase offset versus temperature.

Given recent observations of n-type behavior in some
p-doped polymer Hall measurements [17], having the ability
to determine the sign of RH was considered to be important
for these measurements. This method was used on the PBTTT
devices measured here to determine that the Hall coefficient
was positive at all temperatures—as was expected.
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FIG. 3. Plots of temperature-dependent data acquired from five IEx-doped Hall bar devices, three measured using the AC Hall system and
two confirmatory measurements performed using a DC Hall system: (a, d) Hall coefficient with fitted “guides for the eye” (dashed); (b, e)
conductivity; (c, f) Hall carrier density with fitted “guides for the eye” (dashed).

While the devices measured in this work did not exhibit any
noticeable frequency dependence in their Hall coefficients, it
is conceivable that other devices may. In such cases, since
frequency-dependent measurements will be necessary any-
way, it is worth noting that extrapolating to zero frequency
should effectively remove any influence of Faraday induction
on the measured Hall signal (since VF ∝ ω).

III. PBTTT HALL EFFECT MEASUREMENTS

Measurements were performed on devices of PBTTT-C14,
fabricated and doped using the methods described in Ref. [3]
using FeCl3 as the molecular dopant and BMP TFSI as the
electrolyte for IEx. The polymer films (thickness 40 nm)
were patterned into a Hall bar shape [rectangle of length
900μm, width 100μm, with two pairs of bottom-contact Hall
electrodes spaced equidistantly at 300μm intervals along the
channel, as shown in Fig. 1(a)] using the methods described
in Ref. [18]. Three different films, doped to different lev-
els of conductivity, were measured in the AC Hall system.
Their room temperature conductivities (987 S/cm, 776 S/cm,
and 719 S/cm) were high, with their temperature dependen-
cies revealing metallic transport signatures. Specifically, at
room temperatures, their conductivities decrease with increas-
ing temperature and, at temperatures as low as 10 K, their

conductivities retain values that are between 70–80% of those
at room temperature. As control measurements, two further
devices were measured in a standard DC Hall system with
a 12 T SCEM. The results of the AC Hall measurements
are shown in Figs. 3(a)–3(c) and DC in Figs. 3(d)–3(f). The
undoped thickness of the films was used to calculate RH ,
as it should allow us to more readily compare results to
other known quantities pertinent to the undoped film (such as
monomer and polymer chain density).

For the AC measurements, temperature was swept from
10 K to 300 K in steps of 10 K. Previous tests had shown
no hysteresis with temperature, thus it was only necessary to
sweep in one direction. At each temperature step, the system
would be left to stabilize for at least 30 min before performing
any measurements. After stabilization at each temperature,
conductivity was measured, whereas Hall measurements were
only performed (after conductivity) at a subset of steps (typ-
ically 10 K, 20 K, 30 K, 40 K, 50 K, 100 K, 150 K, and
200 K). This was because the low-temperature measurements
were thought to be the most important for later analysis with
values >50 K being less important.

The conductivity measurements were four-wire measure-
ments performed using a Keithley 2450 source-measure unit
(SMU), using its independent force and sense probes. For
the Hall measurements, the voltage signal was extracted by
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use of a Stanford Research Systems SR830 lock-in amplifier
via a SR551 voltage preamplifier (>1 T� input impedance)
using a 30 s time constant (integration time) and ±500 μV
sensitivity range, with current being injected by the previously
mentioned SMU (now operating in two-wire mode).

The choice of frequency values to use was also important.
Lower frequencies would require the use of longer integration
times, as well as having to compete with greater 1/ f noise.
However, higher frequencies would result in greater noise
from Faraday-induced voltages. It was found that a frequency
of 1.2 Hz achieved a good balance between these competing
factors, while still being reliably achievable using the DC
motor (i.e., the motor and PID control were found to reliably
and stably achieve this speed without stalling). Furthermore,
minimizing the area enclosed by the Hall voltage measure-
ment loop—for instance, by ensuring wire bonds were not
overly long—helped minimize Faraday induction. For the
room-temperature, frequency-dependent measurements, fre-
quencies of 1.2 Hz, 1.5 Hz, and 1.7 Hz were used. Similarly,
these values were chosen due to them being reliably achiev-
able.

The data generally reveal good consistency between AC
and DC measurements; both setups measure the same tem-
perature dependence, thus showing the AC measurements in
our new experimental setup to be reliable. The measurements
show a pronounced negative correlation of RH with tem-
perature, with this dependence becoming stronger at lower
temperatures. This is consistent with what one should ex-
pect: as temperature decreases, the localized carriers (which
move by a thermally-activated hopping transport mechanism)
should become less mobile and thus less able to screen out
the Hall voltage. The result of this screening is that at high
temperatures the charge-carrier densities extracted by assum-
ing the simple RH = [qn]−1 relation [plotted in Figs. 3(c) and
3(f)] are clearly spurious. For instance, at 200 K the largest
value of ∼ 8 × 1021 cm−3 represents a density of ∼ 8 carriers
per monomer, since PBTTT typically has monomer densities
∼ 1 × 1021 cm−3. That is, each monomer unit would need
to be in a stable +8 oxidation state, which is chemically
impossible.

IV. MODEL FORMULATION

To develop a reliable method for analyzing such Hall
data, we first discuss the model for the underdeveloped Hall
effect proposed in Ref. [10]. This model, devised for crys-
talline organic small-molecule semiconductors, assumes the
existence of two uniform populations of carriers: “band-
like” carriers and localized, “hopping” carriers, denoted here
with subscripts b and h, respectively. By assuming that only
bandlike carriers experience a nonnegligible contribution
from the v × B term in the Lorentz force (for instance, one
could argue that they have a negligibly small drift velocity),
the Hall coefficient can be expressed as

RH = nbμ
2
b

q(nbμb + nhμh)2
, (6)

where q is the charge on each carrier, nb,h are the respective
charge-carrier densities, and μb,h are the respective charge-
carrier mobilities. Then by defining the two parameters, β and

γ , with definitions

β = μh

μb
γ = nb

nb + nh
, (7)

the Hall coefficient can be written as

RH = 1

qnb

[
γ

γ + (1 − γ )β

]2

. (8)

We now show that a very similar expression can be derived
from a more generalized approach, which may be more suited
to polymers. In this approach, instead of two uniform popu-
lations, we think of carriers as existing in a single population
distributed on a continuous scale from completely localized
to completely bandlike. In an attempt to account for this, we
assign each carrier a continuous and dimensionless “magnetic
coupling parameter,” g, where 0 � g � 1, to quantify how
strongly each carrier “feels” the magnetic term in the Lorentz
force:

F = q[E + g(v × B)]. (9)

By performing the usual derivation for the Hall effect (i.e.,
balancing transverse currents to zero) [19] and integrating
over the total population of carriers, the Hall coefficient be-
comes

RH = 1

qnt

∫ 1
0 gμ2

B
(g) f (g) dg[∫ 1

0 μE (g) f (g) dg
]2 , (10)

where nt is the total charge-carrier density, and f (g) is the
distribution function describing the proportion of carriers that
have a given value of g. It is worth noting that in this expres-
sion, we are implicitly assuming that carriers with different
values of g contribute to the conduction as channels in parallel.
The subscripts of μ—E and B—are introduced to keep track
of which mobility values pertain to acceleration from the
electric and magnetic parts of the Lorentz force, respectively.
For instance, if one were to assume that electric fields are able
to accelerate carriers for their entire time of flight, but only
for a portion of it for magnetic fields, then a carriers average
mobility as “seen” by magnetic fields will not necessarily be
the same as “seen” by electric fields (as they will be averaged
over different periods of time).

Regardless of assumption, it can be seen that the integrals
in Eq. (10) are over the entire domain of, and contain, the
distribution function, f (g). Therefore, they can be written as
expectation values, allowing us to write

RH = 1

qnt

〈
gμ2

B

〉
〈μE 〉2

, (11)

thus showing that the “normal” Hall coefficient ([qnt ]−1) is
reduced by an interplay between the most-delocalized carriers
providing the greatest contribution to the numerator, 〈gμ2

B
〉,

due to being weighted by g, and the least-delocalized carriers
contributing significantly only to the denominator, 〈μE 〉2.

Equations (10) and (11) should be thought of as general
(albeit abstract) expressions for describing the underdevel-
oped Hall effect in single-carrier, partly disordered materials.
The intricacies of how it applies to a specific material, then,
are to be found in what functional form its important parame-
ters [i.e., μE ,B (g) and f (g)] are assumed to take. For instance,
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if one were to assume that

nt f (g) = nbδ(g − 1) + nhδ(g),

μE = μB =
{
μh for g = 0
μb for g = 1, (12)

where δ(x) is the Dirac δ distribution, then the expression will
reduce back to that in Eq. (8) with γ = f (1)/[ f (0) + f (1)]
and β = μ(0)/μ(1). Therefore, the two-carrier model can
be thought of as being the result of binning all carriers into
having either g = 0 or g = 1 (i.e., being either fully localized
or fully delocalized).

However, in polymers such as PBTTT, charge transport is
often thought of as occurring along conductive pathways, or
“fibrils,” comprising different sections where carriers undergo
different modes of transport (typically bandlike, hopping, and
disordered-metallic) [20]. Properties, such as resistivity, are
then predicted by adding these contributions together in se-
ries, weighted by the fraction of the fibril they account for.
Therefore, for the Hall coefficient, we took a similar approach
by assuming that g comes about due to a carrier only spending
a proportion g of its time of flight moving via mode(s) of
transport under which the magnetic field is able to deflect it.

To model this, we define 〈μd〉 to be the average mobil-
ity of carriers when they are undergoing such “deflectable”
transport, and 〈μn〉 to be that when they are undergoing “non-
deflectable” transport. Therefore, by assuming that carriers
are always being driven be electric fields, regardless of trans-
port mechanism, we can write μE as the weighted average of
both average mobilities:

μE (g) = g〈μd〉 + (1 − g)〈μn〉. (13)

Similarly, by assuming that magnetic fields effectively only
act on the carrier when it is traveling via deflectable mecha-
nisms, we equate μB to the average deflectable mobility only:

μB (g) = 〈μd〉. (14)

Then, by defining
∫ 1

0 gf (g)dg = 〈g〉 and b = 〈μn〉/〈μd〉, the
Hall coefficient can now be expressed as

RH = 1

q〈nd〉
[ 〈g〉
〈g〉 + (1 − 〈g〉)b

]2

, (15)

where 〈nd〉 = 〈g〉nt is the average effective deflectable car-
rier density—that is the average density of carriers that are
deflectable at any given moment in time. This expression is
very similar to that derivable from Ref. [10], with the only
difference being that γ and β have been substituted with 〈g〉
and b, respectively.

This implies that by allowing carriers to exist anywhere
in a linear interpolation between the fully localized and fully
delocalized states previously assumed, one still arrives at the
same functional form—albeit with subtly different definitions
to its arguments. That is, the value of 〈g〉 or γ may be thought
of as an average measure of the overall delocalization of
carriers, as opposed to the fraction of carriers that are fully
delocalized. Therefore, the two-carrier functional form from
Ref. [10] should be usable for polymers so long as these
different definitions are kept in mind. To emphasize this, from

this point onward, we shall use the notation 〈g〉 and b instead
of γ and β.

V. RELATING TO PHYSICAL QUANTITIES

With just two independent experimental measurements at
each temperature (RH and σ ) it is not possible to extract
the three model parameters (〈nd〉, 〈g〉, and b) unambigu-
ously. Therefore, it is necessary to make further assumptions.
Since the polymer systems in question are highly doped—
implying that the Fermi energy is large compared to kBT —it
is unlikely that a change in temperature will affect the distri-
bution of carriers across different modes of transport much.
Therefore, we assume 〈g〉 to be mainly a function of carrier
concentration, and independent of temperature. However, b,
being a ratio of mobility values, is likely to be a strong func-
tion of temperature only:

〈g〉 ≈ 〈g〉(nt ) b ≈ b(T ). (16)

Finding an appropriate functional form for b(T ) requires
us to consider which scenarios, that a charge carrier might
find itself in, would result in deflectable and nondeflectable
transport. The simplest pair of contrasting scenarios would
be when a carrier is undergoing localized, variable-range-
hoppinglike transport versus delocalized, bandlike transport.
In the former case, such carriers would not have a coher-
ent enough wave vector to be deflected by a magnetic field,
whereas in the latter case they would. Thus, it may be
tempting to suggest that 〈μn〉 should arise from hoppinglike
transport and 〈μd〉 from bandlike transport. However, there
are other factors in polymers that may cause a carrier to
become nondeflectable.

For instance, polarons in different regions of the poly-
mer with differing amounts of structural disorder will have
differing degrees of delocalization, while quite possibly still
having bandlike mobilities. Similarly, the effect of transient
(de)localization may be such that otherwise localized carriers,
being excited into bandlike states temporarily, do not remain
in such delocalized states long enough to be fully deflected
by magnetic fields. Whatever the case, it is clear that which
mobility contributions should be categorized into the “de-
flectable” and “nondeflectable” categories is not as obvious
as just deflectable being bandlike and nondeflectable being
hoppinglike. Therefore, a better approach may be a semi-
empirical one, where we choose a functional form of b(T )
based on the behavior of the measured data.

Since the functional form, when incorporated into Eq. (15),
will take the form ∼[1 + b(T )]−2 we will want a function for
b(T ) that is small with a strong temperature dependence at
low temperatures, while plateauing at higher temperatures. A
good fit for this would be an exponential function, similar to
that used for variable-range hopping:

b(T ) ≈ b∞ exp

{
−

[
T∗
T

]D
}

, (17)

where b∞, T∗, and D are all positive constants to be fitted.
At low T (T � T∗) this function has a small value (b(T ) → 0
as T → 0) with a strong temperature dependence, and at high
temperatures (T � T∗) it plateaus asymptotically towards b∞.
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FIG. 4. Various plots of the theoretical temperature dependence of the Hall screening factor with D = 0.25, T∗ = 1 K, b∞ = 1, and 〈g〉 =
0.5 unless stated otherwise: (a) plotted as a function of temperature for 0.5 � 〈g〉 � 1.0; (b) plotted logarithmically against T −D demonstrating
a linear relationship for small T −D or large T ; (c) plotted as its inverse square against T −D again showing a linear relationship for small T −D

or large T .

Taking this functional form for b(T ) yields an approximate
expression for the Hall coefficient given by

RH (T ) ≈ R0
H

[ 〈g〉
〈g〉 + (1 − 〈g〉)b∞e−(T∗/T )D

]2

, (18)

where R0
H has been introduced as the “deflectable Hall coef-

ficient” given by R0
H = [q〈nd〉]−1. For convenience, we also

define fs(T ) = RH (T )/R0
H as the “screening factor.” To il-

lustrate the expected dependence of the Hall coefficient on
temperature, we choose an example with parameters b∞ = 1,
T∗ = 1 K, D = 0.25, and 0.5 � 〈g〉 � 1.0, allowing us to plot
fs against temperature in Fig. 4(a). Qualitatively, its behavior
is in good agreement with the measured data, providing assur-
ance that it might be possible to fit the data to this model.

It should now be possible to attempt extracting the
values of the functions parameters by fitting to temperature-
dependent Hall coefficient data. However, it is still important
to note that in this model, there are five parameters:

(1) T∗ The mobility-ratio temperature coefficient;
(2) D The mobility-ratio temperature exponent;
(3) b∞ The mobility-ratio value as T → ∞;
(4) 〈g〉 The mean magnetic coupling parameter;
(5) R0

H The deflectable Hall coefficient.
Therefore, to achieve a reliable fit it was important to constrain
some of their values via alternative methods. This was done
by approximating the full expression in certain temperature
limits. For instance, when b(T ) � 〈g〉/(1 − 〈g〉) (i.e., when
nondeflectable transport is dominating), the expression can be
approximated as

RH ≈ R0
H

[ 〈g〉
b∞(1 − 〈g〉)

]2

exp

{
2

[
T∗
T

]D
}

, (19)

which was used to fit the “guides for the eye” in Figs. 3(a)
and 3(d). Following this, D can now be estimated by finding
the value that gives the most linear fit of ln (RH ) against T −D,
allowing T∗ to then be estimated by use of

T∗ ≈
[

1

2

∂ ln (RH )

∂T −D

] 1
D

, (20)

which can be calculated using a linear fit, an example of which
is shown in Fig. 4(b).

Following from this, if one assumes to be in the limit of
T � T∗, then R0

H can be estimated by fitting R−1/2
H against

T −D to yield a linear relation of

R−1/2
H ≈ MT −D + C,

M = −(
R0

H

)− 1
2 (〈g〉−1 − 1)b∞T D

∗ ,

C = (
R0

H

)− 1
2 − M

T D∗
, (21)

thus allowing for R0
H to be estimated from

R0
H ≈

[
C + M

T D∗

]−2

, (22)

an example fit of which is shown in Fig. 4(c).
At this point, three of five parameters have been estimated,

thus reducing the fitting problem to a relatively simple two-
variable one. However, 〈g〉 and b∞ are not uniquely solvable.
This can be seen by dividing Eq. (18) through by 〈g〉2 to give

RH (T ) ≈ R0
H

[
1 + he−(T∗/T )D

]−2
, (23)

where we have defined h to be

h = 1 − 〈g〉
〈g〉 b∞. (24)

Different value pairs of 〈g〉 and b∞ can be chosen and, so
long as they produce the same value of h, they will produce
the same fit. Therefore, the true fitting parameter is h. By
considering the meanings of the parameters that make up h,
one can arrive at

he−(T∗/T )D = σn(T )

σd (T )
, (25)

where σn,d are the temperature-dependent contributions to
conductivity from nondeflectable and deflectable transport,
respectively. We can then rearrange to give the fraction of
conduction that is deflectable, as a function of temperature,
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the result of which can be seen to equal the square root of the
screening factor, fs:

d (T ) = σd

σd + σn
=

[
1 + he−(T∗/T )D

]−1
=

√
fs. (26)

Furthermore, Eq. (25) allows us to calculate 〈μd〉 as a function
of temperature by use of

〈μd〉(T ) = σ (T )R0
H

1 + he−(T∗/T )D , (27)

where σ (T ) is the measured temperature-dependent conduc-
tivity.

By considering temperature limits, it can be seen that
Eqs. (25) taken in the limit of T � T∗—that is when it has
plateaued—simply gives h. Therefore, h on its own can be a
useful parameter, since Eq. (26) can then be estimated by

d (T � T∗) ≈ (1 + h)−1. (28)

If T∗ is much smaller than room temperature, then this value
should accurately estimate the fraction of conductivity that is
deflectable at room temperature.

Estimating h can be done with the approximate expression
in Eq. (19) by realizing that the prefactor to its exponential is
equal to R0

H h−2. Therefore, we have managed to estimate all
fitting parameters, making a fit of the full expression relatively
simple. However, the limits in which these approximations
apply cannot be determined until the values they approximate
have been calculated. Therefore, the estimates they provided
would often constitute visually poor fits.

To combat this, an iterative, self-consistent approach was
employed. After computing the estimates described above,
using all available data points, the resulting values were then
used to calculate the limits. Data points would then be re-
moved from the fits based on these new limits and the process
repeated and the limits recalculated. Data points would then
be removed again (or at this point possibly readded) based
on the new limit values. This would repeat until no further
changes occurred—that is the results became self-consistent.
In some cases, where such a method would lead to all points
being removed in early iterations (causing the process to ter-
minate prematurely), a more simplistic approach of removing
low-temperature points one by one would be used until the
estimates became self-consistent.

After this, fits would normally still appear visually to be
suboptimal, thus a final, generalized fitting would be run.
In this, the whole expression would be fit to, using a least-
squares, Nelder-Mead optimization function. The previously
estimated values would be used as the initial values for the fit,
with their values being constrained to remain within 30% of
these values.

VI. RESULTS

By performing the self-consistent analysis presented in the
previous section, three sets of Hall data from Figs. 3(a) and
3(d) were fitted (with maximum conductivities: ∼ 600 S/cm,
∼ 750 S/cm, ∼ 1000 S/cm). The other two sets of data proved
to have too few points and too much noise to reliably fit. The
results of these fittings are shown in Fig. 5.

Focusing first on the values of T∗, it should be possible to
glean some insights. In our chosen function for b(T ), T∗ con-
trols the temperature above which the ratio of nondeflectable
to deflectable mobilities plateaus and becomes relatively tem-
perature independent. Therefore, a greater value of T∗ would
correspond to a system that requires a greater value of temper-
ature to achieve relatively temperature-independent transport.
Therefore, it could be said that a greater value of T∗ indicates
a greater amount of energetic disorder, with its transport re-
maining thermally activated for greater values of temperature.
Following this line of logic, all three devices have similar,
small values of T∗, with a slight decrease being apparent at
the greatest conductivity, albeit within the error ranges of
the other two devices. The small values of T∗ here (rela-
tive to room temperature) indicate relatively low levels of
disorder overall. If the decrease in device 3 can be trusted,
then it would suggest that the energetic disorder of such
systems continues to decrease with increased doping. This
is all consistent with our recent study of the charge-transport
physics of IEx-doped conjugated polymers, including PBTTT
[3,4], where grazing-incidence wide-angle x-ray scattering
(GIWAXS) measurements of IEx-doped PBTTT films showed
reduced π -π stacking disorder at high doping concentrations.
There is also evidence that the intrachain and interchain po-
laron delocalization lengths become very long at high doping
concentrations allowing the charges to average effectively
over individual Coulomb wells and reducing the energetic
disorder felt by the carriers. This would also appear to be
supported by the value of 1/(1 + h) increasing slightly with
doping concentration, from 15.4% to 16.4%, which would
indicate a greater degree of deflectable transport contributing
to conduction. However, the errors on these values overlap,
hence it is hard to say with any certainty if this is truly what
is happening in these data, or whether this is simply due to
random error.

The maximum 〈μd〉 values extracted here range around
μ ∼ 4–8 cm2/Vs. This is consistent with mobilities esti-
mated from carrier densities measured by XPS previously
(6–8 cm2/Vs) and an order of magnitude greater than typical
values for undoped PBTTT in FET architectures [21]. This
similarly supports the idea that these doped films exhibit sig-
nificantly less energetic disorder as a result of their doping.
Furthermore, the two most highly doped devices here exhibit a
significantly less temperature-dependent deflectable mobility
than the least doped device. This similarly suggests that these
devices exhibit a greater amount of order, with deflectable
transport becoming more bandlike in its temperature depen-
dence at greater doping levels. This finding has important
implications: it shows that a new regime has been reached,
where not only does doping to high concentrations not disrupt
the crystalline and energetic order of the polymer, but goes so
far as to enhance it. In previous work on solid-state-diffusion-
doped PBTTT [22], where only the uncorrected values of Hall
mobility were available for analysis (with those values being
underestimates and effectively only acting as a lower bound
on the true value) it was only possible to conclude that doping
did not significantly disrupt the lattice structure of the polymer
[22]. Now that more meaningful values of mobility can be
extracted, as well as T∗ and 1/(1 + h), it is clear that this may
have been something of an understatement.
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FIG. 5. The results of fitting the Hall data acquired from three IEx-doped PBTTT hall bars, with plots of Hall coefficient (RH ), conductivity
(σ ), and mean deflectable mobility (〈μd 〉) on the left, and a table of fitted parameters on the right.

The values of 〈nd〉 for all three devices are much more
physically reasonable values than those extracted by simply
assuming RH = [qn]−1 in Figs. 3(c) and 3(f). By assuming
a monomer density of ∼1 × 1021 cm−3, estimated from the
polymer film density, these suggest that devices 1, 2, and 3
(on average) have roughly one deflectable polaron per 9, 8,
and 3 monomer sites, respectively.

Further to this, the total charge-carrier density of a PBTTT
device, similarly doped to device 3 here, was measured in our
previously mentioned, recent charge-transport study [4] using
x-ray photoemission spectroscopy (XPS) and nuclear mag-
netic resonance (NMR). By determining the concentration
of TFSI− anions in the film, its total charge-carrier density
was determined to be nt = (8.84 ± 0.24) × 1020 cm−3. Since
〈nd〉 = 〈g〉nt , this would suggest that device 3 has a value
of 〈g〉 ≈ 0.37. That is, carriers spend ∼37% of their time
moving deflectably. Following from this, the result here of
deflectable transport only accounting for ∼16% of the con-
ductivity despite carriers being in such states for ∼37% of
the time, suggests that the carriers undergoing less deflectable
transport may in fact exhibit higher carrier mobilities than
those in more deflectable pathways. This is not necessarily
a contradiction, as more deflectable pathways are likely to
consist of more highly ordered, crystalline polymer domains
that support more delocalized carriers, but may not be well
interconnected. This also suggests that the limiting factor on
conductivity in such deflectable pathways is mobility rather
than charge-carrier density. This further solidifies the obser-
vation in our previous study that the limit of conductivity

enhancement that can be achieved by adding charge carriers
has been reached with IEx doping. Indeed, the fact that the
most highly doped device here (device 3) has a significantly
smaller maximum deflectable mobility than the other two,
lesser-doped devices suggests that something of a tradeoff
is occurring between carrier density and mobility—where
greater carrier densities provide diminishing returns on their
enhancement of conductivity.

VII. CONCLUSIONS

We have presented a new methodology for interpreting
Hall effect measurements on highly doped PBTTT, based on
analyzing temperature-dependent Hall data. To provide said
data, we have developed an improved AC Hall measurement
system and data-extraction routine, allowing measurements
of the Hall effect from 10 K to room temperature with high
signal-to-noise ratios. Using PBTTT as a model system we
have shown that the improved Hall analysis is able to de-
termine the “deflectable” carrier concentration and mobility.
Not only that, but our method also provides insight into how
“ideal” the transport of charge carriers is by allowing us to
estimate the relative contributions to the total conductivity
from more ordered regions of the polymer, where carriers can
be deflected by magnetic fields, and from less ordered regions
where they cannot. Our method and analysis promises to
transform the Hall effect from a finicky and hard-to-interpret
transport phenomenon in polymer semiconductors, into a
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valuable tool for understanding and optimizing such materials
in the future.
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