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Magnetic iron-cobalt silicides discovered using machine-learning
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We employ machine-learning (ML) combined with first principles calculations to discover different rare-earth-
free magnetic iron-cobalt silicide compounds. Deep machine-learning models are used to provide rapid screening
of over 350 000 hypothetical structures to select a small fraction of promising structures and compositions for
further studies by first-principles calculations. An adaptive genetic algorithm is used to search for lower energy
structures based on the promising chemical compositions. Such a ML-guided approach dramatically accelerates
the pace of materials discovery. We discover four new ternary Fe-Co-Si compounds, which exhibit desirable
properties such as a large magnetic polarization (Js > 1.0 T), a significant easy-axis magnetic anisotropy (K1 �
1.0 MJ/m3), and a high Curie temperature (TC > 840 K). Moreover, the formation energies of these compounds
are all within 70 meV/atom relative to the ternary convex hull, offering the possibility of synthesis.
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I. INTRODUCTION

Magnetic materials play an important role in advanced
technology and clean energy. Specific applications include
computer hard drives, cell phones, medical equipment, elec-
tric vehicles, and wind turbines. The key properties governing
the performance of a magnet include the magnetization, the
magnetocrystalline anisotropy, and the Curie temperature.
High anisotropy also allows for high coercivity. Although
rare-earth elements could lead to high magnetization and
anisotropy, such as the case in Nd2Fe14B5 and SmCo5,
economic risks call for the search for rare-earth-free alterna-
tives [1–8]. Iron-cobalt based compounds in particular appear
promising in this respect [9]. For example, elemental body-
centered-cubic Fe and B2-FeCo intermetallics possess sizable
ferromagnetic magnetization. However, these compounds are
cubic, so no magnetic anisotropy is expected. Anisotropy
can be introduced by growing FeCo thin film on substrates,
which leads to tetragonal distortion. Alternatively, doping
with nonmagnetic elements can stabilize noncubic structures
and lead to the enhancement of magnetic anisotropy. Nontoxic
dopants for this purpose include Si, N, P, and B. In particular,
iron-cobalt silicide is of interest since it is anticipated to be
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compatible with a silicon substrate. Magnetic devices, such
as storage, using this material may be integrated on silicon
technology. The binary phases of Fe-Si and Co-Si subsystems
have been previously studied [10–12]. In addition, ternary
iron-cobalt silicides of varied levels of crystallinity have been
synthesized [13,14]. Most studies on these compounds are fo-
cused on characterizing their structural or electric and optical
properties. One particular study reported the magnetic prop-
erties of two compounds: Fe2CoSi and FeCo2Si [15]. They
possessed sizable magnetization (magnetic moment per metal
atom > 1.6μB, where μB is the Bohr magneton). However,
their in-plane anisotropy (anisotropy constant > 1.6 MJ/m3)
is not suitable for permanent magnet applications. An ex-
tensive exploration of the Fe-Co-Si ternary space to identify
easy-axis anisotropy candidates is lacking.

Traditional trial and error with experiment can be in-
efficient in discovering new materials. Alternatively, data-
intensive approaches coupled with first-principles calculations
is quickly advancing [8,16–34]. ML can assist in rapidly
screening a vast composition space [35–38]. The concept of
active learning is particularly useful in the context of high
throughput first-principles calculations. Active learning seeks
to adaptively refine a ML model by expanding the training
data in the desired property space. By incorporating new cal-
culated data of relevant structures, the model is expected to
improve. Success on using such a technique for magnetic ma-
terials has been reported for two-dimensional materials [33].
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However, the size of the data set was small. A quantitative
evaluation of the model improvement is in demand.

We use a ML-guided framework, which we proposed re-
cently [39]. Our framework effectively integrates deep neural
network ML with first-principles calculations and an adaptive
genetic algorithm (AGA). We demonstrated the efficiency of
this approach in accelerating materials discovery for simi-
lar materials, Fe-Co-B. In this paper, we extensively search
for different magnetic ternary Fe-Co-Si compounds for per-
manent magnet applications. The improvement over three
“generations” (details below) of models is quantified. We
show that training ML on Fe-Co-X data specifically results
in an accuracy superior to training on general materials. In
addition, feeding back first-principles data of Fe-Co-Si further
improves the accuracy. We discover five new ternary Fe-Co-
Si compounds that exhibit high magnetic polarization (Js �
1.0 T), easy-axis magnetic anisotropy (K1 � 1.0 MJ/m3), and
a high Curie temperature (TC > 840 K). The formation ener-
gies of these compounds are within 70 meV/atom relative to
the ternary convex hull. We expect compounds this close to
the convex hull to be accessible in terms of synthesis.

II. METHODS

In our approach, ML models are utilized to provide rapid
predictions of chemical compositions and crystal structures,
which are likely to be energetically stable and possess desired
magnetization. Selected structures from the ML screening are
further validated by first-principles calculations, and promis-
ing compositions from ML predictions are further explored
using an AGA to search for low energy structures. Further-
more, new low-energy structures and their properties obtained
from the first-principles calculations and AGA search are used
to adaptively refine the ML model, thus improving the accu-
racy of the prediction.

The machine-learning model is a crystal graph convolu-
tional neural network (CGCNN) [38]. In CGCNN, the crystal
structure is represented by a graph. The nodes and the edges
represent the atoms and the bonds, respectively. The atomic
descriptors include properties such as the location in the
periodic table (group and period), the electronegativity, the
covalence radius, the number of valence electrons, the first
ionization energy, the electron affinity, and the atomic volume.
The bond descriptor is the bond length. Convolutional layers
“convolute” the atom feature vectors with their neighboring
atoms and bonds. A pooling layer sums the atom feature vec-
tors into one overall feature vector. After a few hidden layers,
the prediction is output. The depths mentioned are optimized.
In this study, we set the hyperparameters mostly to default
values in the code provided in Ref. [38]. We use three convo-
lutional layers, one pooling layer, and one hidden layer after
pooling for the model training. The batch size is set to 256
and the total number of epochs to run is set to 100. Stochastic
gradient descent is used as the optimization algorithm. Crystal
structures and their properties are the input to the training
(and validation and testing) of the model. When a collec-
tion of new structures without the corresponding properties
are supplied, the ML model outputs the predicted properties.
After 100 epochs of run, the best model with the minimum
mean absolute error of the validation set is selected. The mean

absolute error here is used as the criteria of the accuracy of the
prediction, which is adaptively improved through an iterative
process. The first CGCNN model was directly adopted from
Ref. [38], which was trained using the structures and energies
of 28 046 compounds in the Materials Project database from
density functional theory (DFT) calculations [38]. We refer to
this model as the first generation (1G) generalized CGCNN
model. In training the models, the data set is divided into
training set (80%), validation set (10%), and test set (10%).
The mean absolute error of the validation set for the 1G model
for formation energy is 0.039 eV/atom. 1G-CGCNN is used
to screen hypothetical structures. Then a second generation
(2G) CGCNN model is trained using the DFT formation ener-
gies of 427 Fe-Co-Si structures selected from the prediction of
1G-CGCNN and 3469 Fe-Co-X (X = B, C, N, S) structures
from our magnetic materials database [8]. Finally, a third
generation (3G) CGCNN model is further trained by adding
1775 Fe-Co-Si structures from 2G-CGCNN prediction and
AGA structure search (details below).

The trained 2G-CGCNN for formation energy predic-
tion has low mean absolute error for the validation set
(0.104 eV/atom) and the test set (0.136 eV/atom). 3G-
CGCNN has lower mean absolute error for validation set
(0.058 eV/atom) and test set (0.60 eV/atom). We note that
1G-CGCNN is more general since it is trained on data involv-
ing many different combinations of chemical elements. On the
other hand, the 2G and 3G-GCGNN models are specifically
trained on Fe-Co-X systems. For magnetic polarization, we
use the same procedure as above.

The first-principles calculations are based on DFT [40].
We adopt the generalized gradient approximation of Perdew,
Burke, and Ernzerhof (PBE) [41] for the exchange-correlation
energy functional. We selected the projector-augmented wave
(PAW) method [42]. The Monkhorst-Pack scheme [43] is
utilized to generate a k-point grid with a mesh size of 2π ×
0.025 Å−1 for spin-polarized calculations [44]. A cutoff en-
ergy of at least 500 eV is used for the wave functions. These
settings are used to compute the formation energy and mag-
netization of structures from ML and AGA [45].

We employ an AGA to search for low energy structures for
a given chemical composition [46,47]. For each composition,
up to four formula units per unit cell are generated with initial
128 randomized structures. The AGA adds an additional loop
on the traditional GA loop to adaptively adjust the interatomic
potential. The most time-consuming step of structural opti-
mization and energy evaluation is accelerated by using an
auxiliary interatomic potential based on the embedded atom
method [48]. One-shot DFT calculations are performed at the
end of each GA cycle on several of the lowest energy struc-
tures. The DFT results are used to update the parameters of the
potential. Another cycle of GA search is then performed using
the latest adjusted interatomic potential. This is followed by a
readjustment of the potential parameters. The AGA iteration
process is then repeated. The AGA enjoys the efficiency of
the traditional GA prediction while retaining a high level of
accuracy owing to the DFT feedback.

The formation energy per atom relative to the elemental
phases of a FeαCoβSiγ with α + β + γ = 1 is defined as

E f = E (FeαCoβSiγ ) − αE (Fe) − βE (Co) − γ E (Si).
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Here, E (FeαCoβSiγ ) is the total energy per atom of a
FeαCoβSiγ structure. Reference energies are the total energies
per atom of body-centered-cubic Fe, hexagonal-close-packed
Co, and diamond Si. We also calculate the energy above
the convex hull, Ehull, by comparing the formation energy
of FeαCoβSiγ with respect to the nearby three known stable
phases. The chemical compositions of these phases are located
at the vertexes of the Gibbs triangle that encloses the compo-
sition of FeαCoβSiγ . We use this construction to assess the
thermodynamic stability against decomposition into the stable
phases.

We calculate the magnetocrystalline anisotropy energy
for the structures with high magnetic polarization (Js >

1.0 T) and with formation energies within 0.1 eV/atom above
the convex hull. We perform spin-polarized calculations for
collinear magnetism self-consistently. We then include the
spin-orbit couplings and perform a non-self-consistent calcu-
lation [49–51]. When the spin-orbit couplings are included,
symmetry operations are removed and the spin-quantization
axis is set to the chosen direction. For the magnetocrys-
talline anisotropy calculations, we use a finer mesh size of
2π × 0.016 Å−1 to achieve better accuracy. For the candi-
date structures, the formation energy and magnetization are
updated using these settings.

For each structure, we calculate the total energy for mag-
netic moments oriented along the Cartesian (100), (010), and
(001) directions, respectively. The direction associated with
the lowest total energy is labeled as the magnetic “easy”
direction. The direction with the second lowest total energy
is labeled as the “intermediate” direction. The magnetocrys-
talline anisotropy constants K1 is the total-energy difference
between the ferromagnetic states with magnetization in the
easy and intermediate directions divided by the unit cell
volume:

K1 = (Eintermediate − Eeasy)/V.

A high easy-axis anisotropy is desirable for permanent magnet
applications.

We calculate Curie temperature TC using a full poten-
tial Korringa-Kohn-Rostocker (KKR) Green function method
[52,53]. The nonspherical part of the potential is taken into
account in the wave functions exactly. The method has advan-
tages of speed, accuracy, and stability.

The phonon dispersion is calculated using density func-
tional perturbation theory through the PHONOPY code [54,55].

III. RESULTS AND DISCUSSION

We first collect the 11 916 ternary structures from MP
which all have an experimental ID in the Inorganic Crystal
Structure Database (ICSD) [56]. A structure pool of hypo-
thetical ternary Fe-Co-Si compounds is then generated by
threading the three elements Fe, Co, and Si on the lattice of
the 11 916 structures. There are six ways to shuffle the three
elements on a ternary structure. We also allow the volume
of the unit cell to vary by a scaling factor of 0.96–1.04,
in increments of 0.02. Since the CGCNN model does not
have the interatomic forces to relax the bond lengths in the
structures, the use of scaling factor for the volume helps
the model differentiate the energetic stability of the same

FIG. 1. Formation energy distribution predicted by the (a) first,
(b) second, and (c) third generation CGCNN models for structures
generated from the MP database. The total number of structures is
357 480 in (a) and (b) and 854 070 in (c).

structure with different bond lengths. There are 357 480
ternary Fe-Co-Si structures generated in this way. The 1G-
CGCNN model is first used to evaluate the formation energy
of these 357 480 structures. The model predicted that there
are 832 structures having E f < −0.5 eV/atom. We show the
distribution in Fig. 1(a). Out of these, 427 were found to have
negative formation energy after DFT structural optimization
and removing equivalent structures.

We also apply the 2G-CGCNN on the 357 480 hypotheti-
cal structures. The formation energy distribution is shown in
Fig. 1(b). Structures with negative predicted E f are selected
for DFT optimization, after which 4014 nonequivalent struc-
tures are found to have negative E f .

Next, we apply the 3G-CGCNN to a larger hypothetical
structure pool. The pool is generated in the same way as
described above except we collect all ternary structures from
MP including those without an experimental ID in ICSD to ac-
cess more structures. There are 854 070 hypothetical Fe-Co-Si
structures in this larger pool. The formation energy histogram
from the 3G-CGCNN prediction is shown in Fig. 1(c). There
are 6185 nonequivalent structures with predicted E f < 0 eV.
By further applying the ML model for magnetization predic-
tion [35], we find that only 4748 are predicted to have Js >

0.5 T. These 4748 structures are optimized by DFT calcula-
tions, resulting in 1119 nonequivalent structures which cover
270 compositions. The distribution of these 270 compositions
and those obtained from DFT calculations on the 1G and
2G-CGCNN selected structures are shown in Fig. 2.

In Fig. 3(a), the energetic stability and magnetic po-
larization from DFT calculation for the structures selected

FIG. 2. Convex hull phase diagram. Known stable phases on the
convex hull are indicated by black pentagons. Compositions exam-
ined by ML are labeled with red circles indicating those examined
by 1G + 2G and blue diamonds by 3G.
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FIG. 3. Stability and magnetic polarization of structures from
(a) ML and (b) AGA compared to ML. Diamond markers indicate
known structures from MP.

by different ML generations are displayed. Structures with
Ehull < 0.1 eV/atom and Js > 1 T would be promising for
magnetic materials. We can see that there are no structures
from 1G-CGCNN selection in this area. The structures with
Ehull < 0.1 eV/atom and Js > 2 T all come from 3G and are
noncubic.

From the ML screening and DFT calculation, we discover
eight promising compositions which are transition-metal rich
and yield low-energy and high-magnetization structures. The
compositions are Fe-Co-Si = 2-1-1, 4-5-1, 12-1-3, 3-4-1, 9-
1-2, 9-2-1, 15-4-1, and 6-1-1. These compositions are chosen
for further exploration by the AGA. 40 AGA iterations are
performed, with 16 candidate structures selected from each
iteration. After 40 AGA iterations, 50 structures are selected
with the lowest energies calculated by DFT. We get 1000
structures from the AGA search in total. In Fig. 3(b), the
formation energy and magnetic polarization for the structures
from the AGA are compared to those from ML. We can see
that a large proportion of AGA structures are within the “target
region”: Ehull < 0.1 eV/atom, Js > 1 T, and are noncubic.
For Fe-Co-Si compositions of 9-1-2 and 6-1-1, some struc-
tures obtained from the AGA are energetically more favorable
than those obtained by CGCNN screening.

To demonstrate how the iterative process can effectively
improve the accuracy of the CGCNN model for the system
of interest, we examine the accuracy of different generations
of the model on 2281 Fe-Co-Si structures obtained by our
CGCNN and AGA search. The prediction accuracy of 2G
improves upon 1G because 2G is specifically trained on Fe-
Co-X structures. Then the model is being further optimized
by feeding in more Fe-Co-Si to the 3G-CGCNN training. In
Figs. 4(a) and 4(b), we see that E f and Js of the Fe-Co-Si
structures predicted by the 3G model are in good agreement
with those from DFT calculations. The mean absolute er-
ror for predicting E f evolves from 0.334 eV/atom for 1G,
0.091 eV/atom for 2G, to 0.082 eV/atom for 3G as shown in
Fig. 4(c). Similarly, we find 0.284, 0.190, 0.119 T for 1G, 2G,
3G for the Js prediction. The improvement of E f prediction
from 1G to 2G is especially significant compared to that from
2G to 3G. The Js prediction improves at a roughly constant
rate over the generations.

According to Fig. 3(b), we obtained 114 structures from
our CGCNN + DFT + AGA approach with Ehull <

0.1 eV/atom and Js > 1 T. We evaluate the magnetic
anisotropy constant K1 and Curie temperature TC for these 114
structures using DFT calculations. We found five structures

FIG. 4. ML predictions for Ef and Js compared to DFT results.
(a) Formation energies Ef and (b) magnetic polarization Js of Fe-Co-
Si structures predicted by the 3G-CGCNN model compared to DFT
calculations. (c) Evolution of the ML model over generations. Mean
absolute errors in predicting Ef and Js are shown in blue and red,
respectively.

with K1 � 1 MJ/m3 and TC higher than 840 K. Their forma-
tion energies are within 70 meV/atom above the convex hull.
We carried out the phonon calculations for the five structures
shown in Figs. 5(a)–5(e). Four of these structures [Figs. 5(a)–
5(d)] are found to be dynamically stable. The Fe6Co8Si2

structures shown in Fig. 5(e) exhibits some imaginary modes.
We attempted to stabilize this structure by moving the atoms
in the direction of the eigenvector of the soft phonon mode
near R then relaxing the structure. We arrived at a dynami-
cally stable structure with lower energy as shown in Fig. 5(f).
However, this lower-energy and dynamically stable structure
is a cubic structure and has no magnetic anisotropy. Further
investigation by inserting small elements (e.g., B or N) into
the interstitial sites to stabilize the structure in the tetrag-
onal symmetry to enhance and magnetic anisotropy might

FIG. 5. Candidate structures with easy-axis anisotropy. Fe, Co,
and Si atoms are indicated by yellow, blue, and green spheres, re-
spectively. Panels (a)–(d) are the four candidate structures. Panel (e)
stabilizes to (f), which has no anisotropy.
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FIG. 6. Phonon dispersion of the structures corresponding to
Fig. 5.

be interesting. We present the phonon dispersion in Fig. 6.
One candidate structure in Fig. 5(a) resembles a stacking of
body-centered cells. The other three candidate structures in
Figs. 5(b)–5(d) are in the Pmm2 space group. Among these,
Fe4CoSi with space group P4/mmm has large Js = 1.7 T,
K1 = 1.4 MJ/m3, and the highest TC = 1413 K. More struc-
ture information on these four promising ternary compounds
is given in the Supplemental Material [57].

Finally, we confirm that a ferromagnetic (FM) configura-
tion is indeed the ground state for the candidates. We test
a number of antiferromagnetic (AFM) configurations of the
four final candidates. We check configurations in which the
spins of each metal layer point in the same direction (detailed
figures are in the Supplemental Material [57]). Interlayer di-
rections point oppositely. For our top candidate, Fe4CoSi, we
also extensively examine 27 AFM configurations, including
1 × 2 × 1 supercells. The FM configuration is found to be
lower in energy than all of the AFM configurations by at least
43 meV/atom. These results confirm that the four candidates
are promising for permanent magnet applications. In magnetic
materials studies, the stability comparison of FM/AFM is
important. ML models to study FM/AFM competitions would
be interesting but also more challenging (see, for example,
Ref. [33]). However, since the scope of this paper is to find
stable FM structures for rare-earth-free permanent magnets,
ML models trained for FM structure predictions are a more
efficient approach. As long as the predicted FM structures
(usually small numbers for a given ternary) are checked to
be energetically favorable than the competing AFM states by
ab initio calculations, “false positive” FM predictions can be
avoided. Those structures which have an AFM ground state

would likely be eliminated by such ML screenings, but these
structures are not suitable for permanent magnets and are not
what we are searching for in this paper.

IV. SUMMARY

Iron-cobalt silicides are promising rare-earth-free magnet
candidates since they may be integrated with silicon tech-
nology. We utilized a machine-learning guided framework
with first principles calculations to discover such ternary com-
pounds. Three generations of CGCNN ML models screened
more than 350 000 theoretical structures. An AGA was useful
for access to new low energy structures based on the promis-
ing compositions selected by ML. We demonstrated that the
accuracy of the ML models can be improved adaptively by
incorporating additional Fe-Co-Si structures obtained from
the ML and AGA search in the training data set. We proposed
four easy-axis anisotropy candidates for synthesis. In partic-
ular, the easy-axis Fe4CoSi compound possessed Js = 1.7 T,
K1 = 1.4 MJ/m3, TC = 1413 K.

The data leading to the findings in this paper are avail-
able on the Materials Project [24] and Magnetic Materials
Database [8]. The ML models are available from the authors
upon reasonable request.
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