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In this paper, we propose a convenient strategy to accelerate the evaluation of lattice thermal conductivity
through combining phonon Boltzmann transport equation (PBTE) and on-the-fly machine learning potential
(FMLP). The thermal conductivity of diamond silicon (d-Si) is evaluated firstly by density functional theory
(DFT), FMLP, and empirical potential with PBTE, respectively. The results demonstrate the proposed strategy
integrates the prediction accuracy of DFT and computational speed of empirical potential, breaking the dilemma
of traditional thermal conductivity assessment schemes. Based on this, the efficient strategy is applied to
predict thermal conductivity of 102 low-energy metastable silicon crystals with energies between d-Si and
experimentally Sip;. Among them, the Cmcm-Sig, P6/mmm-Siss-2, Pnma-Sis,-2 are predicted to host lowest
lattice thermal conductivity in xx (8.213 Wm™'K~!), yy (10.917 Wm™!K~"), and zz (11.807 Wm™'K~")
directions, respectively. Such low lattice thermal conductivity benefits from the combined effect of low phonon
group velocity and intense phonon scattering caused by distorted sp* hybrid states in these metastable silicon
crystals. The findings presented in this work provide new candidates and insights of silicon-based materials
with ultra-low thermal conductivity, which will greatly expand the applications in thermoelectric and thermal
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I. INTRODUCTION

As an essential performance parameter of materials, ther-
mal conductivity plays a crucial role in thermoelectrics [1,2]
and thermal management [3-5]. In order to achieve efficient
design of heat-related functional materials and avoid danger-
ous situations from overheating, it is particularly necessary
to establish an accurate and rapid strategy for evaluating ther-
mal conductivity. However, rapid assessment to obtain precise
lattice thermal conductivity will always be an extreme chal-
lenge both in theoretical and experimental models. Currently,
combining the density functional theory (DFT) simulations
and phonon Boltzmann transport equation (PBTE) is one of
the most credible methods to evaluate the lattice thermal
conductivity of bulk and low-dimensional materials [6—10].
Solving PBTE for obtaining the lattice thermal conductivity
always takes the harmonic second-order interatomic force
constants (2"¢ IFCs) and anharmonic third-order interatomic
force constants (3" IFCs) as inputs. Nevertheless, the 2
IFCs, and especially the 3" IFCs and high-order anharmonic
force constants, are usually derived from at least hundreds
or thousands of single-point DFT force calculations on the
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corresponding supercell [11]. Obviously, evaluation of lattice
thermal conductivity of materials through using the above
approach usually requires expensive computational resources
and time costs.

The empirical potential could accelerate the evaluation
of interatomic interactions, and is extensively employed to
explore the mechanical, thermal, and other physical and
chemical properties of materials [12—-15]. Unfortunately, their
parameters are generally derived by fitting extremely lim-
ited experimental data (e.g., structural properties and elastic
constants) from given structures, which leads to unsatisfac-
tory accuracy of prediction of physical properties including
the thermal conductivity based on the empirical potential. In
recent years, Gaussian Approximation Potential (GAP) [16],
Neuroevolutionary Machine Learning Potential (NEP) [17],
Matrix Tensor Potential (MTP) [18], Deep Potential (DP)
[19], etc., have emerged to greatly accelerate the evaluation
of higher-order interatomic force constants while ensuring
certain computational accuracy. The training set for training
these machine learning potentials usually contains atomic
coordinates, as well as information such as energy, force,
and virial obtained from DFT calculations. The DFT cal-
culation is usually performed by first-principles calculation
software such as the Vienna Ab initio Simulation Package
(VASP) [20], CP2K [21], and Quantum Espresso (QE) [22].
The recently introduced on-the-fly Machine Learning Po-
tential (FMLP) of VASP automatically interpolates during
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training between known training systems previously com-
puted from scratch, predicting force field errors on freshly
sampled structures in real-time based on Bayesian linear re-
gression [23,24]. As an active learning strategy for dynamic
structure generation during Molecular dynamics (MD) sim-
ulations, it has been proved to be particularly flexible and
effective, and could achieve seamless integration into first-
principles codes [25,26]. Meanwhile, it is identified to greatly
reducing computational cost and manual intervention while
maintaining the computational accuracy of first-principles
methods [27].

Silicon-based materials are widely applied in transis-
tors [28,29], integrated circuits [26,30], and photovoltaic
devices [31,32] owing to their advantages of low raw ma-
terial cost, mature preparation process, excellent electronic
performance, and stability [33,34]. Among specific applica-
tions such as insulation and thermoelectric materials, low
thermal conductivity materials are beneficial in blocking ther-
mal transport and improving the thermoelectric figure of
merit (ZT). Unfortunately, the high lattice thermal conduc-
tivity of diamond-configured silicon [35-37] (d-Si, the most
thermodynamically stable phase at room temperature) lim-
its its development in thermoelectrics and thermal insulation
field. On considering the natural advantage of compati-
bility with modern silicon-based semiconductor processes
[38—40], exploring metastable silicon crystal structures with
low thermal conductivity is expected to dramatically expand
and enhance the application in thermal transport field. Al-
though a few investigations on the thermal properties of
some metastable silicon crystals have been carried out, re-
search in this area still lacks systematicity [39—42]. The
major obstructions are attributed to the complexity of gen-
erating reasonable and well-stabilized silicon allotropes and
the expensive computational resources required to obtain
anharmonic force constants in evaluating lattice thermal
conductivity.

Based on the above statement, we employ the recently in-
troduced FMLP in VASP combined with ShengBTE software
[11] to accelerate the prediction of lattice thermal conduc-
tivity of multiple low metastable silicon crystal structures,
and a series of ideal configurations with ultralow thermal
conductivity (e.g., Cmcm-Sig, P6/mmm-Siss-2, Pnma-Siz,-
2, etc.) are screened. The results confirm the method being
an effective strategy to evaluate thermal conductivity of ma-
terials accurately and quickly, which will greatly facilitate the
efficient design of thermoelectrics and thermal management
in the future. The paper is organized as follows. In Sec. II,
the calculation method and parameter settings of this work
are introduced in detail, and the calculation flow chart is
shown. In Sec. III, we present the phonon transport properties
of d-Si calculated by employing DFT, FMLP, and empirical
Tersoff potentials combined with ShengBTE software pack-
age to calculate under same parameter settings. The accuracy
of the FMLP generated after MD simulation [23,43] in the
accelerated evaluation of lattice thermal conductivity is veri-
fied by comparative analysis. Subsequently, 102 plausible and
well-stabilized configurations are selected from 2585 silicon
allotropes according to the energy criterion. After that, the
2" TECs and 3" IFCs of the above 102 ideal configuration
are calculated by using the FMLP method to accelerate the

evaluation of lattice thermal conductivity. In addition, the
phonon mode information of metastable silicon crystal with
extremely low lattice thermal conductivity is analyzed, and
the underlying physical mechanism is revealed. Finally, we
summarize the overall work in Sec. IV.

II. COMPUTATIONAL METHODOLOGY
A. Training of on-the-fly machine learning potential

The FMLP is generated based on structural dataset (Bra-
vais lattice and atomic positions of the system and contains
total energy, forces, and stress tensor calculated by first prin-
ciples) identifying local structures around atoms [23,24,27].
The potential energy UTMIP of a structure with N, atoms [44]
is approximated as the aggregate of local atomic potential
energies U,

No Np

Ny
Uyl;MLP _ ZU’ — Z Z w;, K(X;, Xi,)- @))]
i=1
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The linear combination of weight factor w;, and kernel func-
tion K (X;, X;,) is represented for each U;. The kernel evaluates
the similarity between the local configuration around atom i
and the reference local configuration ig. The energy, force,
and stress tensor of structure is represented by ¢w, where
¢ is a matrix containing kernel function and the derivatives
with respect to coordinates and lattice vector, and w = {w;,}.
The energy, force, and stress tensor on all training con-
figurations could be summarized as ®w, where ® is the
energy, force, and stress tensor on all training configurations
collected. The parameters w = [1/52 + &7 & /8] 1dTYy/s?
and uncertainty o = 021 + ¢T[I/o2 + ®T®/02]"'¢ in pre-
dicting the energy, force, and stress tensor are determined
based on Bayesian inference [45-47] to reproduce the first-
principles energy, force, and stress tensor. The first-principles
data of training configurations are retained in the vector Y,
where [ is the identity matrix. The o2 and o2 are deter-
mined using the evidence approximation method [45,46] to
balance accuracy and robustness when training FMLP based
on VASP. Each structural potential function is trained based
on its own independent MD simulation, i.e., one structure has
a corresponding FMLP. The results of calculating the lattice
thermal conductivity of d-Si based on FMLP trained under
MD simulations [23] with total steps ranging from 1000 to
10000 (with an interval of 1000) are compared (see Sec. S1
of Supplemental Materials [48]). It can be found that the
number of steps of pure DFT in MD simulations is extremely
small (about 33 steps on average), however, the lattice ther-
mal conductivity is well predicted (about 154.93 Wm~!K~!
on average) based on 10 different sets of simulated cases.
According to the above experimental results, MD simulation
training parameters of this work are set as follows: MD is
performed with the isothermal-isobaric (NPT) condition at
300 K and 0 Pa. MD steps are 5000 steps with a time step
of 1 fs, supercell has a length of no less than 25 A in all three
lattice directions, cutoff energy of the plane wave is 450 eV,
cutoff distance is 6 A, and Monkhorst-Pack meshes are set to
1x1x1.
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FIG. 1. The flow chart of FMLP combined with ShengBTE software to predict lattice thermal conductivity of various low-energy
metastable silicon crystal structures. In the dashed boxes, the left inset shows the crystal structures of three metastable silicon(Cmcm-Sie,
P6/mmm-Siss-2, and Pnma-Siz,-2) with extremely low lattice thermal conductivity, and the right inset shows the phonon transport properties
of Cmcem-Siy¢. The spheres with different colors represent unequal silicon atoms.

B. Generation of candidate structures

By using the crystal structure search software RG? [49]
based on random strategy, group theory, and graph theory,
taking the d-Si configuration with Fd-3m symmetry as the
starting point, 2585 silicon allotropes are quickly obtained.
The first-principles calculations are performed through using
the Projected Augmented Wave (PAW) [50] method im-
plemented in the VASP [20]. The Perdew-Burke-Ernzerhof
(PBE) [51] generalized gradient approximation (GGA) [52]
is utilized to describe the ion-electron interactions. In our
calculation, the cutoff energy of the plane wave is set as
450 eV and the energy convergence criterion for the electron
self-consistent field is set as 10~7 eV until the residual stress
on each atom is less than 0.001 eV/A [51]. The Brillouin
zone is sampled using Monkhorst-Pack [53] k meshes. The
k-point grid spacing in each direction of reciprocal space
is within 0.03 x 27 A~! generated by VASPKIT [54] code.
Taken the cohesion energy as a criterion, 102 reasonable and
well-stabilized silicon crystal structures are finally screened
between the experimentally prepared d-Si and Sip4 [55]. In ad-
dition, the band-gap characteristics of 2585 silicon allotropes
are qualitatively counted at the DFT-PBE level.

C. Evaluation of lattice thermal conductivity

Based on FMLP combined with Phonopy [56] and thir-
dorder.py code [57], 2" IFCs and 3™ IFCs could be quickly
obtained as input files for the ShengBTE [11] software in
order to derive the phonon transport properties. The 2" IFCs

and 3" IFCs are calculated with the supercell size not less
than 20 A in all three directions with a cutoff distance of 6 A.
The lattice thermal conductivity could be described as [11]

! 1 !
K" = GTON ;fo(wx)(fo(wx) + D(hw, ) viv) T, (2)

where kg, T', 2, i, and N are the Boltzmann constant, temper-
ature, volume of unit cell, Planck constant, and the number of
wave-vector points in the first Brillouin zone; w,, v,, and t;
are the angular frequency, group velocity, and relaxation time
of phonon mode A; x and y are the Cartesian components of x,
y, or z, and fy(w,) is the equilibrium Bose-Einstein distribu-
tion function. The k mesh with k.a ~ k,b ~ k¢ not less than
80 A are used in ShengBTE for sampling the first Brillouin
zone to ensure the convergence of thermal conductivity. The
complete computational flow is shown in Fig. 1.

III. RESULTS AND DISCUSSION

Taken the d-Si as an example, we firstly examine the re-
liability of FMLP combined with ShengBTE in accelerating
the evaluation of lattice thermal conductivity. Figures 2(a) and
2(b) illustrate the per-atom energy and atomic force of multi-
ple silicon configurations calculated by the FMLP and DFT. It
is obvious that the calculation date of energy and atomic force
obtained from the FMLP method possess excellent linear re-
lationship (the slope is approximately 0.5) with the results
from the DFT method. The corresponding root mean square
errors (RMSE) of energy and atomic force are estimated as
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FIG. 2. The comparison of (a) per-atom energy and (b) atomic force when FMLP and DFT calculate multiple silicon configurations.
(c) The phonon dispersion of d-Si based on DFT, FMLP, and empirical Tersoff potential, respectively. (d) The room temperature lattice
thermal conductivity of d-Si in experiments and theoretical calculations, and based on DFT, FMLP, and empirical Tersoff potential combined

with ShengBTE package, respectively.

0.166 meV/atom and 0.0202 eV/A. Such extremely small
RMSE values indicate that FMLP has comparable accuracy
in regenerating potential energy surface compared with DFT
calculation. That is to say, the accelerated calculation based
on FMLP could ensure the accurate prediction of multitarget
physical properties. The phonon dispersion contains a vari-
ety of phonon information, including phonon band structure,
group velocity, and phonon scattering phase space, which is
an important prerequisite for accurately evaluating the phonon
transport properties of materials. Based on the FMLP com-
bined with Phonopy software, the phonon dispersion of d-Si is
calculated, and the result is depicted in Fig. 2(c). Here the cal-
culation date based on the DFT and empirical Tersoff potential
[58] is given as well for comparison. One can note clearly
that the phonon dispersion predicted by the empirical Tersoff
potential (blue dotted line) deviates considerably from the
DFT calculations (red solid line), while that obtained from the
FMLP (black double-dotted line) are in excellent agreement
with the DFT results owing to the accurate energy and atomic
force calculation. Afterwards, the lattice thermal conductivity
of d-Si obtained for different situations is comparatively an-
alyzed to obviously demonstrate the accuracy and efficiency
of FMLP-based calculations. As shown in Fig. 2(d), the green
reference area (the floating range is 137-172 Wm~'K~!) is
plotted according to the lattice thermal conductivities of d-Si
calculated based on DFT from several references [39,59,60],

and the reference lines of the experimental data are the orange
dotted line (156 Wm~'K~') [35], blue double-dotted line
(150 Wm~'K~") [36], and purple solid line (142 Wm 'K
[37]. Undoubtedly, the empirical Tersoff potential evidently
overestimates the lattice thermal conductivity of d-Si, while
the lattice thermal conductivity evaluated from the FMLP
combined with ShengBTE software falls perfectly in the DFT-
based predicted and experimental data interval. These results
confirm that FMLP combined with ShengBTE is a reliable
strategy to evaluate the thermal conductivity of materials.
Taken the Silicene and 2H-Si as representatives, we further
demonstrate the robustness of the strategy proposed in this
work, and the detailed content is provided in Sec. S2 of the
Supplemental Materials [48]. On considering the negligible
computation time when calculating the 2"¢ IFCs and 3" IFCs
based on FMLP compared to DFT (supporting information
could be found in Sec. S3 of the Supplemental Materials [48]),
such strategy could be utilized well to accelerate the accurate
evaluation of lattice thermal conductivity.

To systematically investigate the thermal transport proper-
ties of silicon allotropes, one should construct the structure
database of metastable silicon crystals firstly. In this work,
we mainly focus on the metastable silicon crystals with sp?
hybridization state. Thus, the fundamental input information
is learned from the d-Si [bonding list (Si: Si Si Si Si), aver-
age bond length is 2.366 A, average bond angle is 109.47°],
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FIG. 3. (a) The total energy per atom and the basic electronic property as a function of their corresponding number of space group for 2585
silicon allotropes. (b) 102 metastable silicon crystal structures with reasonable and good stability in the low energy region. A few structures

are old structures (marked in red) that have been predicted earlier.

and we obtain 2585 silicon allotropes by means of the crys-
tal structure search software RG?. The input parameters for
searching for silicon allotropes employing RG? can be found
in the Supplemental Material [48], Sec. S4 for interested read-
ers. The total energy per atom and basic electronic property as
a function of their corresponding number of space groups are
depicted in Fig. 3(a). Generally speaking, if total energy per
atom of system is lower, kinetic energy of atoms is lower and
the bonds are less likely to be broken, implying the structure is
more stable and possesses high probability of existence under
natural or prepared in experiment. On the fundamental of this
criterion, we mainly focus on the silicon allotropes with total
energy lower than the experimentally prepared Siy4 (—5.334
eV/atom). Among the 2585 candidates, we merely screen
out 102 metastable silicon crystals with total energy located
between the d-Si and Sipy, which are shown in Fig. 3(b).
According to the space group (Sg) and number of atoms in
the primitive cell (Si,), these low-energy silicon structures are
named as Sg-Si,-O, and the label O (O is an integer starting
from 1) is utilized to distinguish the silicon allotropes with
same Sg and Si,. Such naming strategy is convenient for
managing the metastable silicon crystal family and helping
us to check the structure repetitiveness. Through comparing
the structure data in open-source materials database Materials
Project [61], 10 structures are old structures [marked in red
symbols in Fig. 3(b)] that have been predicted in earlier works.
All the remaining 92 structure are semiconductors, containing
18 direct band-gap semiconductors and 74 indirect band-gap
semiconductors. As we know, semiconductors always pos-
sess better thermoelectric performance than metal. That is
to say, these new 92 metastable silicon-based semiconduc-
tors provide fruitful potential candidates for thermoelectrics.
Meanwhile, the 18 direct band gap silicon-based semiconduc-
tors also offer potential suitable candidates for photovoltaics.
More detail structure information for d-Si, Siys, and 102
metastable silicon crystal structures is prepared as Supple-
mental Material [48], Sec. S5 for interested readers.

By utilizing the FMLP combined with ShengBTE, in Fig. 4
we depict the lattice thermal conductivity versus the space

group of 102 metastable silicon crystal structures. More de-
tailed information is provided in Sec. S5 of the Supplemental
Materials [48]. It can be seen from Figs. 4(a) to 4(c) that the
lattice thermal conductivity of most metastable silicon crystal
structures is concentrated between 20—40 Wm 'K~ along
three crystal directions. The average lattice thermal conduc-
tivity is provided in Fig. 4(d) as well. One can know that the
average lattice thermal conductivity of the 102 metastable sil-
icon structures along the xx, yy, and zz directions are 29.519,
30.541, and 31.397 Wm~'K~!, respectively. Among the 102
metastable silicon structures, we screen out three structures
with the lowest unidirectional lattice thermal conductivity in
xx, yy, and zz directions, i.e., Cmcm-Sij¢ (8.213 Wm~'K~!

© xx Direction 140
© yy Direction

© zz Direction 230 240 0
© Average

90
Space Grou, 140
100 P P 130 159 110 1%

130 120 110

FIG. 4. The lattice thermal conductivities along the xx, yy, and zz
directions for d-Si, Siy4, and 102 metastable silicon crystal structures,
and average lattice thermal conductivities for each structure at room
temperature are distributed by space group.
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TABLE I. The lattice parameters of three metastable silicon (Cmcm-Sijg, P6/mmm-Sise-2, and Pnma-Sis;-2) with extremely low lattice

thermal conductivity.

Name a(A) b (A) c(A)

o B y Kj-XX Ki-yy K1-22
Cmem-Siyg 13.797 13.797 3.869 90° 90° 153° 8.213 11.839 35.528
P6/mmm-Sizg-2 15.606 15.606 3.864 90° 90° 120° 10.912 10.912 46.502
Pnma-Siz-2 7.447 6.481 14.237 90° 90° 90° 24.242 29.838 11.807

in xx direction), P6/mmm-Siz-2 (10.917 Wm~'K~! in yy di-
rection), and Pnma-Siz;-2 (11.807 Wm™'K~! in zz direction).
The lattice thermal conductivity of Cmcm-Sijg, P6/mmm-
Size-2, and Pnma-Si3-2 as a function of temperatures are
presented in Sec. S6 of the Supplemental Materials [48].
Because of the enhanced phonon-phonon scattering with tem-
perature, their lattice thermal conductivity decreases with the
increase of temperature, which is a common thermal phe-
nomenon in most bulk materials. Meanwhile, from Fig. 4 one
can also note that the metastable silicon crystal structures with
extremely low lattice thermal conductivity mostly possess
small space group numbers. This is mainly originated from the
fact that the lower symmetry will enhance the avoid-crossing
behavior of phonon branches and reduction of phonon de-
generacy [62], which gives rise to the stronger anharmonic
lattice vibrations and low thermal conductivity. The lattice
parameters, lattice thermal conductivity in three directions,
and crystal structures of the above three structures are shown
in Table I and Fig. 1, respectively. The more detailed atomic
structure information is provided in Sec. S7 of the Supple-
mental Materials [48].

The dynamical, thermal, and mechanical stability of
Cmcem-Sig, P6/mmm-Siz¢-2, and Pnma-Sis,-2 are verified in
order to ensure a rational practical application. As shown in
Figs. 5(a) to 5(c), the phonon dispersion spectra obtained un-

der DFT, FMLP, and empirical Tersoff potential calculations
for all three configurations are without imaginary frequency,
indicating they are dynamically stable. It is worth mentioning
that the phonon spectra of the three structures obtained based
on the FMLP accelerated calculations are basically consistent
with respect to the DFT, further validating the reliability of
the evaluation of FMLP accelerated of 2" IFCs and 3" IFCs.
Additionally, the comparisons of per-atom energy and atomic
force when using FMLP and DFT calculations is provided
in Sec. S8 of the Supplemental Materials [48]. The root
mean square errors of energy (atomic force) are estimated as
0.103 meV/atom (0.0284 eV/A), 0.258 meV /atom (0.0354
eV/A), and 0.153 meV /atom (0.0374 eV /A) for Cmem-Siyg,
P6/mmm-Size-2, and Pnma-Sis,-2, respectively. As for the
thermal stability, one can see from Figs. 5(d) to 5(f) that after
running MD simulation for 50000 fs at room temperature
the final structural configurations of these three metastable
silicon structures are maintained without damage. The energy
of the system over time fluctuates only slightly in the range of
stable values, further demonstrating the thermal stability. In
addition, the Cmcm-Sig, P6/mmm-Siss-2, and Pnma-Sizp-2
all possess great mechanical stability. Their elastic constants
are all in accordance with the mechanical stability criteria in
the corresponding systems, and the detailed process is also
provided in Sec. S9 of the Supplemental Materials [48].
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FIG. 5. The phonon dispersion of (a) Cmcm-Siyq, (b) P6/mmm-Sizg-2, and (c) Pnma-Sis;-2 based on DFT, FMLP, and empirical Tersoff
potential, respectively. The MD simulations of (d) Cmcm-Siyg, (€) P6/mmm-Sise-2, and (f) Pnma-Sis,-2 at 300 K for 50 000 fs. The structures
in the inset are the final configurations after MD simulations are performed.
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of Crystal Orbital Hamilton Population for d-Si, Siy, and Cmcm-Sie.

To understand the underlying physical mechanisms of
the extremely low lattice thermal conductivity, we decom-
pose the phonon mode information of the above-mentioned
three metastable silicon structures. In this work, the structure
Cmcm-Si¢ with the lowest lattice thermal conductivity in the
xx direction is taken as an example for specific analysis. The
phonon transport properties for P6/mmm-Sizs-2 and Pnma-
Sis;-2 with the lowest lattice thermal conductivity in the yy
and zz directions are also presented (see Sec. S10 of the
Supplemental Materials [48]). It can be seen from Fig. 6(a)
that the phonon group velocity of Cmcm-Sijc is significantly
slower than that of d-Si, which is one of the sources for its low
lattice thermal conductivity. This is mainly due to the presence
of more flat phonon modes in the phonon dispersion spectrum
of Cmcm-Si¢ relative to d-Si, and the phonon group velocity
is related to the slope of the phonon modes. The phonon
group velocity of Cmcm-Sij¢ is only slightly lower than that of
Siy4, yet has a much lower lattice thermal conductivity, which
implies that more significant factors than the group velocity
are dominant. The phonon lifetime is another important pa-
rameter in determining the lattice thermal conductivity, and
it can be found from Fig. 6(b) that the phonon lifetime of
Cmcm-Sij¢ is obviously lower than that of d-Si and Siy4. The
phonon lifetime shows a positive correlation with the lattice
thermal conductivity, and its magnitude is mainly determined
by two factors: scattering probability and scattering intensity.
Therefore, the phonon scattering mechanisms involved are
further analyzed in detail from both perspectives.

As shown in Fig. 6(c), Cmcm-Sij¢ possesses significantly
larger scattering phase space than d-Si and Siy4, and larger
scattering space means more phonon scattering channels, re-
sulting in shorter phonon relaxation time. This phenomenon

is mainly owing to the mixing of acoustic and optical phonon
modes of Cmcm-Sijg, where phonon scattering is more likely
to satisfy the requirements of energy conservation and quasi-
momentum conservation, resulting in a larger scattering phase
space in Cmcm-Sije. The phonon scattering intensity is quan-
tified by the Griineisen parameter, and it can be seen from
Fig. 6(d) that the average Griineisen parameter (absolute
value) of Cmcm-Sijg is higher than that of d-Si and Siyq,
indicating that it has a stronger degree of phonon scattering.
Atoms are only allowed to be displaced from equilibrium by
the natural energy of thermal fluctuations, hence the stronger
the phonon-phonon scattering occurs the further the atom
deviates from its equilibrium position. The root-mean-square
deviation (RMSD) [63,64] could be used to quantify the
amplitude of atomic vibrations, reflecting the distance of
the atom from its equilibrium position and the sensitivity
of the atom to the potential energy surface. The RMSDs of
d-Si, Siy4, and Cmcm-Sij¢ are calculated separately by em-
ploying Visual Molecular Dynamics (VMD) [65]. The larger
RMSD of Cmem-Sijg (0.266 A) relative to d-Si (0.131 A)
and Siyy (0.211 A) in Fig. 6(e) further confirms its strong
phonon anharmonicity. Moreover, this means that Cmcm-Sijq
deviates further from the equilibrium position in the lattice
vibration and therefore requires more energy to recover the
deviation, i.e., weaker interatomic bonding. In contrast to the
perfect tetrahedra in d-Si (all bond lengths are 2.366 A and
all bond angles are 109.47°), the atoms in Cmcm-Sijg form
tetrahedral connections with distorted sp® hybrid, and bond
lengths range between 2.345 AA ~ 2.403 A and bond angles
range between 90° ~ 122.15°. The integration of Crys-
tal Orbital Hamilton Populations (ICOHP) [66] value could
indicate bonding state occupation by the orbital electrons,
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thus reflecting the strength of the interatomic bonding. The
ICOHP is calculated by employing the LOBSTER [67] code,
and as can be seen in Fig. 6(f), Cmcm-Sij¢ (-4.23617 eV)
has a higher ICOHP value than Siys (-4.34846 eV) and d-
Si (-4.49728 eV). This implies that Cmcm-Sij¢ has smaller
bonding state occupation by the orbital electrons, i.e., weaker
interatomic bonding, which resulted in lower lattice thermal
conductivity [68,69]. Hence, the slow phonon group velocity
and extremely strong phonon-phonon scattering (scattering
intensity and scattering probability) caused by the distorted
sp® hybrid states in Cmcm-Sijg together attribute to its low
lattice thermal conductivity.

IV. CONCLUSION

In summary, we demonstrate that PBTE combined with
FMLP introduced in VASP is an effective strategy for ac-
curately and rapidly assessing the thermal conductivity of
materials, and applied the approach to evaluate the thermal
conductivity of metastable silicon crystals in batches. The
extremely minor differences in energy per atom, atomic force,
and phonon dispersion under FMLP and DFT calculations
suggest that FMLP could be well suited for accelerated lattice
thermal conductivity evaluation. The lattice thermal conduc-
tivity of d-Si calculated based on FMLP falls perfectly in
the DFT-based predicted and experimental interval showing
excellent accuracy. The lattice thermal conductivity of the
102 metastable silicon crystal structures [energy per atom
is between d-Si (—5.425 eV /atom) and experimentally pre-
pared Sips (—5.334 eV/atom)] are predicted through FMLP
combined with ShengBTE software, and a series of well-
stabilized ultralow lattice thermal conductivity configurations
are screened out. Among them, the silicon allotropes with the
lowest lattice thermal conductivity in xx, yy, and zz directions
are Cmem-Sijg (8.213 Wm™'K~1), P6/mmm-Sizs-2 (10.917

Wm~!'K~"), and Pnma-Siz-2 (11.807 Wm~'K~1), and they
are demonstrated to be dynamically, thermally, and mechani-
cally stable. Furthermore, the potential physical mechanisms
for its extremely low lattice thermal conductivity are sys-
tematically explored by calculating its phonon group velocity
and phonon lifetime. It is revealed that such ultralow lattice
thermal conductivity benefits from the combined effect of
low phonon group velocity and intense phonon scattering
caused by the distorted sp® hybrid state. The above findings
indicate that the PBTE combined with FMLP introduced in
VASP is an effective strategy to evaluate thermal conductivity
accurately and rapidly in batches, which will considerably
facilitate the research on thermal transport of various ma-
terials. Meanwhile, the metastable silicon crystal structures
with extremely low thermal conductivity will most probably
be prepared experimentally, expanding the practical applica-
tions of silicon-based materials in thermoelectric and thermal
insulation.
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