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Structural prediction for the discovery of novel materials is a long sought-after goal of computational physics
and materials sciences. The success is rather limited for methods such as the simulated annealing method (SA)
that require expensive density functional theory (DFT) calculations and follow unintelligent search paths. Here
a machine-learning based crystal combinatorial optimization program (CCOP) with a fitting-search style is
proposed to drastically improve the efficiency of structural search in SA. CCOP uses a graph neural network
energy prediction model to reduce the DFT cost and a deep reinforcement learning algorithm to direct the search
path. Tests on six multicomponent alloys show the energy prediction model is capable of extracting the bonding
characteristics of the complex alloys to achieve interpretability. It also achieves high accuracy with a tiny training
set (an increment of 30 samples per iteration) by active learning in less than five iterations. Comparison with a
few conventional methods shows that CCOP finds the lowest-energy structures with the smallest number of
search steps. CCOP cuts the computing cost of SA by two orders of magnitude, while providing better search
results than SA. CCOP is promising for serving as a broadly applicable tool for the efficient crystal structure
predictions.
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I. INTRODUCTION

Finding materials with the desired properties is an im-
portant task in the condensed matter physics and material
sciences, and guides the direction in the structural search
field [1,2]. Alloying is commonly used for obtaining the
desired materials, as the structural, electronic, transport and
optical properties of alloys can be tuned by varying the
compositions [3–5]. Unfortunately, the complexity of alloy
structural search grows exponentially with the number of
atoms in a unit cell. Thus, reducing the computing costs while
maintaining the reliability of the search results is of high
importance for a structural search method.

To tackle the structural search problem, many algorithms
have been developed, such as simulated annealing (SA) [6–8],
ab initio random structure search [9], and the evolutionary
algorithms, e.g., genetic algorithm (GA) [10–12] and particle
swarm optimization [13,14]. The methods have shown success
to various degrees, but there is still large room for improve-
ment. For example, the GA search is extremely dependent on
the quantity and diversity of chosen populations. SA and ab
initio random structure search, however, require many thou-
sands of iterations to reach the low-lying minima in the energy
landscape and are expensive due to the CPU demanding den-
sity functional theory (DFT) [15,16] calculations. Fortunately,
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SA can be easily parallelized [17], making it a good candidate
for large-scale deployment to alleviate the bottleneck of DFT.

Machine learning (ML) is becoming increasingly popular
in accelerating the discovery of new materials by encoding
physical knowledge into property models [18,19]. For in-
stance, the deep tensor neural network [20] unifies many-body
Hamiltonians to design neural network. The crystal graph
convolutional neural network (CGCNN) [21] considers the
topology of crystal to build graph, providing a universal and
interpretable representation of materials. These methods min-
imize the need of DFT calculations and have shown high
performance in property predictions via the combination of
ML and physical concepts. Nevertheless, training the ML
models to gain the desired generalization capability still re-
quires a large amount of labeled data that often means a large
amount of expensive DFT computations. Therefore, reducing
the number of data required by training the property prediction
model (PPM) is a key issue to be resolved for the improved
efficiency.

ML may also be used to design the strategy of exploring the
potential energy surface (PES) to cut the computational cost
of a structural search method. As is known, the reward-driven
reinforcement learning (RL) focuses on the best policy of ex-
ploration in an interactive environment. RL has shown success
in various fields. For instance, AlphaGo [22] showed its strong
ability in combinatorial optimization to maximize the gain and
defeated the world championship in Go game. In the fields of
physics, chemistry, and biology, RL has been used to design
nanophotonic devices [23] and drug molecules [24–27] by
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FIG. 1. Workflow of the crystal combinatorial optimization pro-
gram (CCOP). The program starts with a few initial structures as
the samples. The samples are labeled with DFT energies and used
as the training set (step 1). The labeled training set is used to train a
machine-learning potential that fits the PES (step 2). It is followed by
training an RL agent for the efficient sampling of the PES to find the
low-energy structures (step 3). Then clustering analysis is performed
on the sampled structures to select samples for the training set (step
4). The entire optimization program runs in a closed loop.

learning the policy to optimize the objective function. Natu-
rally, RL is expected to be helpful for the structural search
methods by learning and making decision on the favorable
descent path on PES.

In this paper, we proposed a crystal combinatorial opti-
mization program (CCOP), which uses a weighted crystal
graph convolutional neural network (WCGCNN) as the
PPM, and employs a deep reinforcement simulated anneal-
ing (DRSA) technique as the searching algorithm. The active
learning [28–30] is applied with the selection of highly repre-
sentative samples so that the training of PPM requires only
a small data set. The DRSA is used to guide the search
agent to further reduce the computational cost. The numerical
efficiency of CCOP is illustrated by its applications to the
search of the ordered structures of six testing multicompo-
nent alloys: BN, BeZnO2, AlNSiC, GaNZnO, BeMgCaO3,
and Al2Ga2Zn2N3O3. The test also reveals that the PPM is
interpretable, accurate and fast to compute. Meanwhile, the
DRSA is shown to have the highest performance among the
tested search methods, including the conventional RL algo-
rithm of proximal policy optimization (PPO2) [31], SA, and
the random search.

II. METHODS

The workflow of CCOP proposed here is illustrated in
Fig. 1. It consists of four major parts: (i) training set labeling,
(ii) property prediction model, (iii) structural search, and (iv)
sample selection. Each part is explained as follows.

Training set labeling. To ensure the accuracy of the PPM in
fitting the PES, the training set of structural samples is labeled
with the single-point DFT energies that are calculated with
the Vienna Ab initio Simulation Package (VASP) [32–34].
The generalized gradient approximation (GGA) with

Perdew-Burke-Ernzerhof (PBE) exchange and correlation
functional [35] is used, and the ion-electron interactions
are treated by projector-augmented-wave (PAW) [36,37]
technique. The initial training structures are generated by
sampling the PES with 30 SA steps. Thirty more structures
selected by active learning are added to the training set after
every fitting-search iteration of CCOP.

Property prediction model. Training a PPM to replace the
expensive DFT calculations (step 2 in Fig. 1) is the second
part. The PPM is built based on CGCNN, and modified under
the architecture of message passing neural network [38]. At
the kth message passing phase, atom vectors hk

i , hk
j and their

bond feature vector ei j form the message by function Mk . The
aggregated message mk+1

i = ∑
j∈N (i) Mk (hk

i , hk
j, ei j ) is the

sum of all N (i) neighbors of atom vector hk
i in crystal graph

G. New representation of atom vector hk+1
i = Uk (hk

i , mk+1
i )

is obtained by updating function Uk . After K times of mes-
sage passing, property can be predicted by ŷ = R({hK

i |i ∈ G}),
where R is a differentiable function. In order to focus on
the property related messages in the model, we assign each
message with a weight ωk

j and modify Mk of CGCNN as

Mk = wk
j · σ

(
xk

i jW
k
f + bk

f

) � g
(
xk

i jW
k
s + bk

s

)
, (1)

where � denotes elementwise multiplication, W k
f ,W k

s and

bk
f , bk

s are weight matrices and bias vectors of the kth layer,
respectively, and σ is a sigmoid function, g is a softplus
function [39]. xk

i j = hk
i ⊕ hk

j ⊕ ei j concatenates neighboring
atom pair with their bond [40]. The 12 nearest-neighboring
atoms are found by using a cutoff distance of 8 Å [41].
The message weights, ωk

j , for the 12 neighboring atoms are
initialized with the same value, since it is hard to tell which
message is more important at first. This permits the PPM to
reasonably allocate the relative strengths of the interactions
between atoms. Moreover, we perform a gated structure [42]
to control the update process,

Uk = zk
i � hk

i + (
I − zk

i

) � mk+1
i , (2)

zk
i = σ

[
W k

u · (
hk

i ⊕ mk+1
i

)]
, (3)

where I is an all-ones vector, W k
u is the weight matrix, σ is

applied to scale each dimension of zk
i in [0, 1], and weight

vector zk
i is used to determine the update ratio of hk

i . The
gated structure has shown a good performance in retaining and
filtering information [43]. When the message passing process
finish, atom i is embedded into its chemical environment by
iteratively including the surroundings, thus hK

i can be treated
as the representation of atom i in the structure. As for the
representation of crystal structure, we sum up N atom vectors
and average them as the crystal vector c = ∑

i hK
i /N , which

contains machine-learned structural features. A three-layer
fully connected network [44] is set as the differentiable func-
tion for the property prediction,

ŷ = W 3(g(W 2(g(W 1c + b1)) + b2)) + b3, (4)

where W s are the weights, and bs are the biases. Eq. (4) is
a universal approximator for nonlinear functions [45]. More
details about the WCGCNN based PPM are given in the
Sec. I of the Supplemental Material (SM) [46]. The PPM is

033802-2



MACHINE-LEARNING ACCELERATED ANNEALING WITH … PHYSICAL REVIEW MATERIALS 7, 033802 (2023)

trained with the MXNet [47] framework using the Adam op-
timizer [48] for gradient descent optimization, using the mean
square error (MSE) as the loss function (step 2 in Fig. 1). The
training uses 150 samples obtained by SA and DFT calcula-
tions as the validation set. Since the size of training set is small
and there are more parameters in WCGCNN than CGCNN, it
is hard to determine the suitable model in the huge parameter
space. Therefore, the weights of the nearest atoms and update
ratios are frozen at the beginning of training (60 epochs),
namely training the network in a smaller parameter space. The
model with the lowest validation loss is then chosen, and the
weights and update ratio are unfrozen to fine tune the model
(60 epochs). The utilization of a two-step training technique
can guarantee the reliability of the PPM during the search
process [49]. Further information on the effects of network
freezing can be found in Sec. II of SM [46].

Structural search with DRSA. Training an RL agent and use
it to direct the SA path for the efficient determination of the
lowest-energy structures (step 3 in Fig. 1) is the third part. The
positions of atoms are encoded as a one-dimensional list, and
a sequence of actions are applied to minimize the structural
energy. An action is defined here as the exchange between
atoms with the same sign of electricity, and the exchange
between the same atoms is forbidden. The RL agent assigns
weights to the allowed actions, and the masking of 0 is used to
implement action suppression, thereby avoiding unreasonable
structures.

At the t th SA step, the DRSA agent performs action at by
the ε-greedy policy πθ (at |st ) to adjust structure st under the
Metropolis criterion [6]. The value of energy descent rt+1 =
E0 − Êt+1 is defined as the reward, where E0 is the energy
of the search starting structure calculated by DFT and Êt+1

is the energy of sample predicted by PPM. The discounted
sum of rewards is defined as G(τ ) = ∑T −1

t=0 γ t rt+1, where
τ = {s0, a0, s1, r1, a1, · · · , sT , rT } is a trajectory of Markov
decision process and γ is the discount factor determining
the priority of short-term rewards. Minimizing the structural
energy within T steps is equivalent to maximizing the ex-
pectation of G, thus the agent can learn the policy of energy
descent.

The agent’s policy πθ (at |st ) is a key for finding the op-
timal structure. The agent is trained by the clipped loss of
PPO2 [31],

LA = −Êτ,t [min(pt (θ )Ât , clip(pt (θ ), 1 − ε, 1 + ε)Ât )],

(5)

where pt (θ ) = πθ (at |st )/πθold (at |st ) is the probability ratio
of current and old policies, Ât is the estimator of advan-
tage [50]. The clip function in Eq. (5) removes the incentive
of pt beyond the interval [1 − ε, 1 + ε], and means a penalty
for a large policy update. To reduce the variance of Ât ,
the TD(0) [51] form of Ât is adopted, i.e., Ât = rt+1 +
γVπ (st+1) − Vπ (st ), where the state-value function Vπ (st ) =
Eτ [rt |st ] is the expected return from state st . Vπ (st ) can be
approximated by minimizing the loss [52]

LC = Êτ,t [rt+1 + γVπ (st+1) − Vπ (st )]
2. (6)

Through learning from the search paths, the agent’s pol-
icy πθ (at |st ) generates a suitable weight for each action to

minimize energy [53], thus improving the search efficiency of
SA actions. More information about the DRSA can be found
in the Sec. III of SM [46].

Sample selection. Choosing the representative samples to
add to the training set (step 4 in Fig. 1) is the last part of
the workflow. To be most beneficial for reducing the mean
absolute error (MAE) of PPM predictions, samples with the
highest uncertainties should be considered. The uncertainty 	

is defined as the variance of predictions [28]

	(x) = 1

M − 1

M∑

m=1

( fm(x) − 1

M

M∑

l=1

fl (x))2, (7)

where x is a searched sample, fm denotes a trained PPM, and
M is the number of PPMs. Specifically, 10% of the samples
with the highest uncertainties and 10% of the samples with
the lowest energies are selected. The crystal vectors of these
samples are calculated by the PPM, followed by t-distributed
stochastic neighbor embedding (TSNE) [54] to reduce the
dimension of crystal vectors. The reduced vectors are grouped
into 30 clusters by the Kmeans method [55]. The minimal
energy sample in each cluster with its DFT energy computed
is added into the training set. Clustering can contribute to
enhancing the diversity of structures during the search process
as detailed in Sec. IV of SM [46]. Moreover, the lowest-energy
sample in the training set, with the energy referred as E0

above, is used as the initial structure of the next fitting-search
iteration.

III. RESULTS AND DISCUSSION

In this section, we first showcase the performance of the
CCOP by applying it to three compositions with four distinct
lattices. Next, we select the wurtzite lattice to compare the
search ability of DRSA with SA, PPO2, and random search.
Then, the following three parts delve deeper into the reasons
for the success of CCOP: (i) role of RL and SA in DRSA, (ii)
role of active learning in CCOP, and (iii) interpretability of
PPM.

A. Performance on various lattices

To demonstrate the capability of CCOP in crystal struc-
ture prediction, we select three multicomponent alloys, BN,
BeZnO2, and GaNZnO, and conduct tests on four different
lattices: perovskite, rocksalt, wurtzite, and zincblende. The
grid points are fixed for each lattice, with 40 grid points in per-
ovskite, 64 in rocksalt and zincblende, and 72 in wurtzite. The
structural search is performed using the P1 space group sym-
metry, which means each atom is independently. The CCOP
is initiated by DFT-SA, and each fitting-search iteration in-
volves 30 samples selected by active learning. As illustrated
in Fig. 2, CCOP effectively reduced the energy and identified
low-energy ordered structures for almost all compositions and
lattices.

More specifically, after searching, the BN composition
exhibits configurations of alternating B and N atoms in the
rocksalt, wurtzite, and zincblende lattices. This is due to
the strong covalent bonds formed by the pairing of valence
electrons between B and N, resulting in stable structures. Ad-
ditionally, due to the composition not satisfying the perovskite
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FIG. 2. Performance of CCOP on four different lattices (a) perovskite, (b) rocksalt, (c) wurtzite, and (d) zincblende with compositions of
BN, BeZnO2, and GaNZnO. The initial and final lowest-energy structures for each composition and lattice are displayed in figures, as well as
the corresponding density of states (DOS) plots during the structural search process.

ABX3 requirement, where A and B sites must be nonradioac-
tive metals and X site is one or several elements from O, N, S,
and F. As a result, it is challenging to find the lowest-energy
ordered configuration in the perovskite lattice for the selected
three compositions. For wurtzite lattice, the multicomponent
alloys BeZnO2 and GaNZnO show a noticeable transition
from disordered to ordered layered structures, which is at-
tributed to the their binary counterparts that can form stable
wurtzite configurations. In other words, the electrons pairing
between Be-O, Zn-O, and Ga-N reduces the energy and leads
to the formation of the layered structures in BeZnO2 and
GaNZnO.

B. Comparison of search algorithms

The effectiveness of the search algorithm DRSA is tested
by searching the lowest-energy structure of the ordered
configurations of multicomponent alloy. Six alloys with com-
positions from simple to complex are used as the testing
cases: BN, BeZnO2, AlNSiC, GaNZnO, BeMgCaO3, and
Al2Ga2Zn2N3O3. The search is restricted to that the alloys
maintain the 72-atom wurtzite-like lattice configuration in any
temperature environment [56–58]. The unit cell consists of
eight lattice layers and there are nine atomic sites in each
layer. Initially each layer is filled with nine cations or anions,
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FIG. 3. (a) The calculated energy vs the fitting-search iteration for the six multicomponent alloys. The inner panels are the lowest-energy
structures and the energy distribution percentage of the search results. (b) The improvement scores of DRSA, PPO2, and SA for the six
multicomponent alloys.

and the cation-layer and the anion-layer alternate. The atomic
arrangements are then changed in the search process to ob-
tain lower-energy configurations. As there is only one type
of anions (cations) in BN, the search action in BN refers to
the exchange of the positions of anion and cation, instead of
exchanging among cations or among anions for the structural
searches of the other five alloys. These constraints on atom
exchange effectively decrease the occurrence of implausible
structures during the structural search.

Figure 3(a) displays the lowest energies and structural
energy distributions of the six alloys versus the searching
iterations for the DRSA, PPO2, SA, and random search
methods. The performance of different methods may be
measured by the improvement score, which is defined as
s = p · 1

5

∑5
i=1 |
Ei|/|
ER

i | · 100%. Here p is the weighted
average concerning the structural energy distribution, with the
weight ratios of 6:3:1 for the low-, middle-, and high-energy
structures. |
Ei| = |Ei − E0| is the energy difference between
the lowest-energy structure of the ith iteration and the ini-
tial structure, and we use the random search |
ER

i | as the
benchmark. The improvement scores of DRSA, PPO2, and
SA for the six alloys are shown in Fig. 3(b). On average,
the improvement scores of DRSA, PPO2, and SA for the six

alloys are 60.37%, 11.93%, and 34.62%, respectively. DRSA
has the highest score due to its combination of RL and SA,
while PPO2 has the lowest performance due to its inefficiency
in a large action space. More information about the perfor-
mances of the 4 search methods can be found in Table S2
of SM [46]. As seen in Table S2, DRSA usually finds the
lowest-energy structure with the smallest number of iterations.
Moreover, all the six lowest-energy structures, one for each of
the six alloys, are found by DRSA. However, four of them
are missed by PPO2 and SA, while five of them are missed
by the random search. Clearly, the newly proposed method
of CCOP that combines the WCGCNN, SA, and the RL is
capable of drastically reducing the computational cost, while
maintaining the desirable accuracy. Compared to SA that is
more efficient than PPO2 and the random search (Table S2),
CCOP may reduce the computational cost from 7 ∼ 9 days for
SA to 1 ∼ 2 hours (Section V of SM [46]), i.e., a reduction of
two orders of magnitude.

C. Role of RL and SA in DRSA

To analyze the function of RL and SA in DRSA, we
compare the accumulative rewards (ARs) and MAE of PPM
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FIG. 4. Performances of DRSA and PPO2 on searching the low-energy structures of six multicomponent alloys. (a) The accumulative
reward (AR, in eV) and the density of state (DOS) of DRSA and PPO2 vs the search paths. The shadow of the line is the standard deviation
(SD) of the ARs. The inner panel shows the change of MAE with the fitting-search iteration. (b) Average reduction of MAE by DRSA relative
to PPO2, and (c) Improvement on the AR by DRSA relative to PPO2.

during the structural search process. Figure 4 compares the
performances of DRSA and PPO2 on searching the low-
energy structures of six multicomponent alloys, averaged over
five separate DRSA or PPO2 runs for every alloy. Each of
the five DRSA or PPO2 runs consists of five fitting-search
iterations and 1000 search paths per iteration, for a total of
5000 search paths per run. Figure 4(a) shows the accumulative
rewards of DRSA and PPO2 for searching the low-energy
structures of six alloys. AR is calculated as the total energy
descent E0 − Ên, where Ên is the minimum predicted energy
at the nth search path. As seen in Fig. 4(a), AR of DRSA is
higher than that of PPO2 for every alloy examined. The results
are understandable as DRSA is basically PPO2, but with the
policy complexity reduced by the physical constraint of SA.
With the help of the PPM agent that learns the weight of
atomic exchange, which ensures the choice of atom exchanges
is not as random as the SA, DRSA requires no more than
5000 search paths in reaching its maximum reward for most
alloys. The fast convergence is achieved also because that the
PPO2 agent learns the energy descent policy from the paths

of DRSA and the fitting-search style relieves the difficulty of
training the agent, resulting in a reduced number of steps to
reach the maximal reward.

DRSA uses fewer samples and performs better than PPO2.
The improvement may be measured with the improvement
of sample efficiency (ISE) defined as ISE = NPPO2/NDRSA ×
100%, where NPPO2 and NDRSA are the number of samples
searched by PPO2 and DRSA, respectively. ISE, together with
the number of executable actions (allowed exchanges of atom
positions) and the number of possible structures for each of
the six alloys are shown in Table I. The number of possible
structures, or the possible permutations of the atom sites, is
found to be from 109 to 1025 for the six alloys. As the number
of possible structures is very large, certainly vastly larger
than NPPO2 and NDRSA, employing search methods such as
DRSA and PPO2 is necessary in practice. Meanwhile, DRSA
is superior with a smaller number of samples and a larger AR
than PPO2.

Among the six alloys tested, the binary alloy BN shows
the highest ISE of about 1370%. This may be attributed to

033802-6



MACHINE-LEARNING ACCELERATED ANNEALING WITH … PHYSICAL REVIEW MATERIALS 7, 033802 (2023)

TABLE I. Number of executable actions (actions), number of
possible structures (structures), and the improvement of sample ef-
ficiency (ISE) by DRSA relative to PPO2 for six multicomponent
alloys.

Type of alloys Actions Structures ISE (%)

BN 1296 1020 1370
BeZnO2 324 109 198
AlNSiC 648 1019 349
GaNZnO 648 1019 320
BeMgCaO3 432 1015 135
Al2Ga2Zn2N3O3 756 1025 192

that BN has the largest number of executable actions, 1296, at
each search step (see Table I). In fact, without the constraint
of SA, the random search at the beginning of PPO2 causes
an inefficient exploration of the low-energy area. PPO2 also
shows a slow convergence of the policy in a large action
space. The lowest-energy structure is often missing even with
five different runs of PPO2 (see Table S2 of SM for more
testing results [46]). When the number of actions is rela-
tively small, however, the difficulty of policy learning for
the RL agent is much reduced and the performance of PPO2
is much improved. As a result, PPO2 may catch up DRSA
on the accumulated reward, as shown in Fig. 4 for BeZnO2

and BeMgCaO3 with the number of actions of 324 and 432,
respectively. The MAE of the predicted energies in each
fitting-search iteration reflects the variation of the accuracy
of PPM. As seen in the insets of Fig. 4(a), the MAE for either
DRSA or PPO2 normally decreases at first due to the increase
in the training data, and then converges because of the lack of
diversity in the newly added representative samples. Overall,
however, DRSA not only shows higher ARs, but also lower
MAEs than PPO2 for the six tested alloys. To be more quan-
titative, Figs. 4(b) and 4(c) show respectively the reduction
of MAE and the improvement of reward by DRSA relative
to PPO2 for the tested alloys. Here, the reduction of MAE is
calculated as

∑5
i=1 = (MAEPPO2

i − MAEDRSA
i )/MAEPPO2

i ×
100%, where MAEDRSA

i (MAEPPO2
i ) is the MAE of DRSA

(PPO2) at the ith iteration. The improvement of reward
is calculated as

∑5000
i=1 (ARDRSA

i − ARPPO2
i )/ARPPO2

i ∗ 100%,
where ARDRSA

i (ARPPO2
i ) is the AR of DRSA (PPO2) at the

ith search path.
As can be seen in Figs. 4(b) and 4(c), there is a positive

correlation between the magnitudes of the reduction of MAE
and the improvement of reward, both are the largest for BN
and the second largest for Al2Ga2Zn2N3O3. While BN has
the largest number of executable actions, Al2Ga2Zn2N3O3

has the largest number of possible structures and the second
largest number of executable actions (see Table I). Combined
with a complicated chemical composition, Al2Ga2Zn2N3O3

is hard for PPO2 to handle. Not only the SD of AR in-
creases with the search, the SD of MAE (see the error bar
of MAE) also increases, from 3.3 meV/atom for the first
iteration to 22 meV/atom for the fifth iteration. Hence, PPO2
is unstable when applied to Al2Ga2Zn2N3O3. Detailed data
analysis shows that, due to a lack of Metropolis criterion
to constrain the search direction, a significant number of

high-energy structures are produced by PPO2, causing dif-
ficulty in training PPM. It then leads to high MAE of PPM
and improper exploration of PES. On the contrary, a positive
feedback between fitting and search is formed in the constraint
search of DRSA, leading to a continuous reduction of MAE
and a stable search.

D. Role of Active Learning in CCOP

To illustrate the benefit of the active learning for the sample
selection, the results of the clustering analysis at the last
fitting-search iteration are displayed in Fig. 5. As shown in
Fig. 5, the structural samples are grouped by Kmeans into
30 clusters, with the minimal sample energy decreases from
cluster 1 to cluster 30 and the energies are similar for samples
in the same cluster. The uncertainty of the PPM predictions
[Eq. (7)] decreases with the decreased sample/cluster energy,
indicating that the PPM is adaptive during the search, es-
pecially to the low-energy area of the PES. The correlation
between the sample/cluster energies and uncertainties may be
quantified with the Pearson correlation coefficient. As shown
in Fig. S5 of the SM [46], the Pearson correlation coefficients
are found to be higher than 0.9 for all six alloys, with the
highest of 0.951 for Al2Ga2Zn2N3O3, further illustrating the
adaptability of PPM.

The proximity of the energies for structures in the same
cluster and the strong correlation between the energies and
uncertainties are the results of the feature classification of the
PPM. Therefore, adding only the lowest-energy structure of
each cluster to the training set is quite reasonable and has
the benefit of minimizing the size of the training set. Mean-
while, adding the the high-energy structures with high PPM
prediction uncertainties, as mentioned in the sample selection
strategy above, can help the PPM to fit the entire PES better.
Consequently, the active learning in the sample selection has
a positive effect on the structural searching. It improves the
accuracy of PPM by putting the most representative samples
on the energy landscape in the training set. It also reduces the
times of expensive DFT calculations [59,60] effectively by
reducing the size of the training set. The DRSA predictions
are also coherent with the physical intuition. The lowest-
energy structures of AlNSiC, BeZnO2, BN, and GaNZnO are
predicted to be ordered structures with the obvious layered
characteristics. Specifically, GaNZnO consists of the Ga-N
and Zn-O layers placed alternatively along the z axis direction
(see the insets in Fig. 5), providing the best match of the
valence electrons for the stabilization of the sp3 hybridization.
For the quaternary alloy BeMgCaO3, the Be and Ca atoms
are placed in different layers due to the large difference in
their atomic sizes, while the Mg atoms are evenly distributed
in the Be- and Ca layer. Similar structural feature is ob-
served in the lowest-energy structure of the quintary alloy
Al2Ga2Zn2N3O3.

E. Interpretability of PPM

Interpretability of ML model, e.g., the characteristic vec-
tors extracted from the crystal information are consistent with
the physical intuition, is desired in the fields of physics,
chemistry, and material sciences. Here, AlNSiC is used as
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FIG. 5. The distribution of the clusters, the uncertainties, and the energies of selected samples for the six multicomponent alloys at the last
fitting-search iteration. The x and y axis are the feature vectors generated by TSNE. Each cluster is labeled and colored by the rank of energy.
The arrow curves show the direction of energy descent.

an example to show the interpretability of our PPM. We
label each atom vector from 1 to 72 and each layer from
1 to 9, then construct the atom similarity matrix, with a
size of 72 × 72, under different message passing phases.
As seen in Fig. 6(a), the distribution of the atom similar-
ity matrix before the PPM training mainly depends on the
input atom features, e.g., electronegativity and valence elec-
trons. The atom similarity matrix is almost unchanged after
three message passing process, which indicates that the PPM
cannot extract effective information from the input struc-
tures. After the training, atoms are gradually separated into
two clusters, i.e., the Al-N and Si-C clusters. For example,
the Al atoms (1 ∼ 9) show a higher similarity with the N
atoms (10 ∼ 18) than the Si atoms (19 ∼ 27) and C atoms

(28 ∼ 36), consistent with the fact that Al bonds with N, not
Si or C.

The results are consistent with the structural character-
istics of wurtzite structure and the matching of valence
electrons. For instance, the binary compound AlN forms a
stable wurtzite structure by the sp3 hybridization for 3s23p
and 2s22p3 electrons of Al and N atoms, respectively. Simi-
larly, SiC forms a wurtzite structure by sp3 hybridization for
3s23p2 electrons of Si and 2s22p2 electrons of C. Thereby the
Al atoms at the lowest-energy order structure must be bond-
ing with N first, while the high-energy structures have more
random atomic distributions, as seen on the top of Fig. 6(c).
Moreover, the Al-N and Si-C layers, which form the hexag-
onal rings with the neighbor atoms along the [001] direction,
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FIG. 6. (a) The atom similarity matrix of the ordered AlNSiC structure before and after PPM training. The similarity coefficient is defined
as the cosine distance between the atom vectors. (b) Atomic weights of the 12 neighboring atoms by the trained PPM, notice that the nearest
four atoms have higher weights than the others. (c) Comparison between the PPM predicted energies and the calculated DFT energies, with
the inset showing the mean absolute error (MAE) of the predictions.

usually appear alternatively in the lowest-energy structure due
to the crystal periodicity. Thus the Al and N atoms show high
similarity in the atom similarity matrix, corresponding to the
strong tendency of their bonding.

Figure 6(b) shows that, although the initial weights are uni-
formly set to 1/12, after the training, the weights of the four
nearest-neighbor atoms become larger, while the weights for
the other eight neighbors become smaller. That is, the energy
prediction is predominately determined by the four nearest
neighbor, and it matches perfectly with the four coordinated
tetrahedrons, e.g., 3Si-C-Al and 3Al-N-Si, in the lowest-
energy structure of AlNSiC. The atom similarity matrix and
the weights verify that the PPM can effectively extract the
structural characteristics from the training data. The learned
weights ensures that the choice of atom exchanges is not as
random as the SA, and reduces the cost of choosing the energy
descent path in DRSA.

Figure 6(c) displays the PPM predicted energies against the
DFT calculated values and the MAE for each fitting-search
iteration. Based on the active learning, 30 most representative
samples from the DRSA paths in each fitting-search iteration
are selected to enhance as much as possible the prediction
accuracy of PPM. As seen in Fig. 6(c), with the progress of
the fitting-search iteration, the searching area gradually moves
from the initial high-energy structures to the low-energy struc-
tures, and the corresponding MAE usually decreases. The
results reflect that the search program is capable of effec-
tively finding the low-energy area in the PES and finally
obtains the ordered structure of AlNSiC with an energy of
–7.33 eV/atom. Notice that all the energy values shown below
refer to the energies per atom.

The interpretability of ML model as shown in Fig. 6 is a
common feature of our PPM for all the alloys tested. Addi-
tional example can be found in Fig. S6 of the SM [46].
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IV. CONCLUSIONS

A machine-learning assisted structural prediction method
named as CCOP is proposed. The novel features of CCOP
include: (i) Using a modified CGCNN model as the PPM
to replace the expensive DFT calculations. (ii) Guiding the
structural search paths by DRSA, a method combining the
advantages of RL agent and Metropolis criterion, to acceler-
ate the searching process. (iii) Employing an active learning
based sample selection method to reduce the PPM prediction
error and minimize the size of the training set.

Through testing applications concerning the structural
searches of 4 different lattices and six multicomponent alloys,
it is demonstrated that: (i) The CCOP can perform effective
structural search across a diverse range of compositions and
lattices. (ii) DRSA outperforms SA, PPO2, and the random
search approach by finding the lowest-energy structures with
the smallest number of steps. The benefit of DRSA is more
pronounced when considering that SA, PPO2, and the ran-
dom search miss most of the lowest-energy structures for six
alloys. (iii) Selecting samples through active learning makes
the PPM adaptive during the search, resulting in an efficient
exploration of the low-energy area of the PES. (iv) The PPM

has the desired feature of interpretability, since the results of
the atom similarity matrix and the atom exchange weights for
the nearest neighbors are both consistent with the physical
intuition.

Overall, the integrated search framework of CCOP is found
to cut the computational cost of a conventional SA by two
orders of magnitude. Moreover, the CCOP can be integrated
with the symmetry of space groups to enhance the efficiency
of crystal structure prediction, thereby accelerating the pace
of materials discovery.
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