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Disorder-order transition in multiprincipal element alloy: A free energy perspective
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Although the concept of high entropy has flourished in the development of engineeringly important multi-
principal elemental crystalline materials, the role of entropy is controversial in driving possible disorder-order
transition. Here we provide a thermodynamic perspective on this transition based on absolute free energy calcu-
lations of a list of equilibrated CoCrNi configurations extracted from the annealing history. A set of new physical
quantities associated with the degree of anharmonicity, chemical short-range order, and Shannon-entropy-
informed disorder temperatures are proposed to signify the disorder-order transition. The interrelationships
between these thermodynamic quantities consistently suggest a disorder-order transition that is supported by
experimental observation. The analysis further recognizes the critical role of the anharmonic effect in driving the
random solid solution to a chemically short-range ordered phase. The free energy insights help us to understand
the formation mechanism of locally ordered structures emerged from the solid solution of ideal mixing.
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I. INTRODUCTION

A recent innovation in the physical metallurgy is the intro-
duction of a category of high-entropy materials [1,2], which
finds versatile applications in both mechanical and functional
properties spanning a very wide range of critical service con-
ditions [3–7]. The material design concept employs a basic
rule of thermodynamics—random mixing of multiple prin-
cipal elements at invariant lattice positions of crystals gives
birth to high configurational entropy and, thus, lower free
energy to render the thermodynamically stable solid phases of
materials [8,9]. Following this philosophy, a lot of engineer-
ingly important multiprincipal element alloys (MPEAs), or
medium- to high-entropy are successfully synthesized which
exhibit abnormal elastic behavior, good balance between
strength and ductility due to novel plastic mechanism, un-
precedented fracture toughness at cryogenic temperature, high
strength at high temperature, good soft magnetic property,
promising catalytic ability, as well as outstanding corrosion
resistance [3–6,10–19]. Especially, the thermodynamics and
mechanics of high-entropy alloys are of vast interest in mate-
rial physics community in the light of both scientific curiosity
and engineering significance.

The unexpected thermodynamic stability and excellent me-
chanical properties are attributed to the formation of possible
chemical short-range order (CSRO) in the MPEAs. Both
high-resolution transmission electron microscope characteri-
zations [20–26] and atomistic simulations based on molecular
dynamics and density-functional theory [27–41] provide com-
pelling evidences toward the appearance of the short-range
order in both the annealed and cast state of such alloys. The
CSRO can be induced by extra thermo-mechanical process-
ing of the as-cast MPEAs. It is a common wisdom that the
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competition between enthalpic and entropic term in free
energy determines the microstructure of a solid. At high
temperature near the melting point of a crystalline solid,
the entropic contribution is significant such that a random
solid solution with ideal mixing of elements is preferred
in the multicomponent alloys. However, at low tempera-
ture the enthalpic interaction between atom pairs becomes
strong, sometimes enthalpy plays a dominating role such
that some long- or short-range chemical order is produced
in the crystalline alloys [24,42,43]. In extreme cases, one
has the opportunity to notice elemental segregation or even
spinodal decomposition phenomenon in multicomponent al-
loys. Therefore one may postulate a chemical disorder-order
transition happens at appropriate thermodynamic conditions,
e.g., the annealing temperature. Actually, this postulation has
been confirmed in experiments [20,21].

If the spatial arrangement of atoms can be sufficiently rec-
ognized at lattice sites with advanced experimental facilitates,
it is easy to judge the disorder-order transition mechanism
from a pure structural point of view. For example, a physi-
cally relevant phase order parameter from purely static atomic
structure, and detail of its evolution path could give abun-
dant information about the microscopic mechanism of such
disorder-order transition in solid solutions [42,43]. However,
this operation is an extremely challenging mission at present.
Moreover, it is still controversial whether the so-called CSRO
in MPEAs is a consequence of formation of real local struc-
tural pattern, or only the unavoidable interference from the
crystalline planar defects in experimental characterizations
[44]. In this context, how to understand the chemical disorder-
order transition in MPEAs constitutes the most basic and
important question in the community of materials physics and
condensed matter physics.

To fully understand the physical mechanism of the
disorder-order transition, the knowledge of the absolute free
energy of equilibrated MPEA configurations is required along
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the annealing path. The knowledge allows to quantitatively
decouple the enthalpic and entropic contribution in free en-
ergy, which may give clear picture of the disorder-order
transition mechanism from a thermodynamic point of view.
However, direct calculations of free energy in MPEAs are
rarely reported in the literature. This is because sampling
the absolute free energy of a solid is not a trivial task
[45–49]. It cannot be explicitly computed from any ensemble
average of atomistic trajectories. A conventional first-order
approximation of free energy is either from the harmonic, or
quasiharmonic approximation, which should miss important
anharmonic effect [47,50]. The latter might be an impor-
tant factor that cannot be neglected in chemically complex
MPEAs. Thermodynamic integration is a usual choice in sam-
pling the absolute free energy of a system of interest, which
is a standard equilibrium method [51]. However, it is time-
consuming to construct a series of system Hamiltonians as
the quasiequilibrium path connecting two given equilibrium
states, especially in a complex system. Furthermore, it is
nontrivial to implement the intermediate equilibrium states
along the thermodynamic integration path. Sometimes domain
knowledge is an extra requisition in this method. Remem-
bering that the disorder-order transition involves complicated
atom movements in the rugged potential energy landscape of
the chemically disordered lattice [38,52], sampling the abso-
lute free energy of MPEA along a yet not well defined cooling
history seems an intricate task in atomistic simulations.

Here we provide a solution to rationalize the disorder-order
transition in the MPEAs by calculation of the absolute free
energy from an efficient nonequilibrium technique [45,48,49],
following the Frenkel-Ladd path [53]. Comparison between
the absolute free energy and the harmonic approximation re-
veals a critical role of anharmonicity played in the transition.
Several new physical parameters including the atomic-scale
Shannon entropy, chemical order parameter, and disorder
temperature are also proposed to signify the transition. The
interrelationships between all the discussed thermodynamic
quantities give consistent criterion of the disorder-order tran-
sition. All the information provides fresh physical insights
into the mechanism of the disorder-order transition in such
complex concentrated alloys.

II. METHODS

A. Atomistic simulations

The force field of Co-Cr-Ni system in MD is described by
an embedded-atom method (EAM) empirical potential [24],
which has been extensively calibrated by both quantum me-
chanics calculations and experimental data in terms of lattice
constant, crystalline defect energetics, elasticity and lattice
vibration, plasticity, and thermodynamics of this alloy [54,55].
Each CoCrNi sample contains N = 108 000 atoms with three-
dimensional (3D) geometry of ∼106.8 × 106.8 × 106.8 Å3,
which are large enough to guarantee the convergence of the
calculated physical entities, e.g., free energy. Periodic bound-
ary conditions and NPT ensemble (with constant number of
atoms, constant stress tensor, and constant temperature) are
employed in all the atomistic simulations. The temperature is
controlled by the Nosé-Hoover thermostat and the stress ten-

sor is maintained zero within a Parrinello-Rahman barostat.
All the atomistic simulations herein are performed using the
LAMMPS code [56]. The OVITO package is used to visualize the
atomic configurations of MPEAs [57].

We prepare a list of the equilibrium configurations for
the CoCrNi MPEAs by a hybrid simulation protocol involv-
ing both molecular dynamics (MD) and Monte Carlo (MC)
simulations at various annealing temperatures ranging from
300 to 1600 K. In the simulation combination of MD and
MC, each accepted MC swap is followed by MD simulation
[24,54,58]. In each one MC cycle, a significant fraction of N/4
atoms swap randomly within every 20 MD steps. The MD
time step is 2.5 femtosecond. The considered high tempera-
ture is approaching the melting point (1675 K) of this alloy.
The MC is used to find the lower and final stable thermody-
namic states, and MD conducted after each MC is used to
record the potential energy of the system. A key parameter
to guarantee the equiatomic concentration of compositions
in the multicomponent alloy is the chemical potential differ-
ences between elemental pairs, which are adopted �μNi-Co =
0.021 eV, �μNi-Cr = −0.031 eV that have been validated as
suitable choices [24]. Sufficient MC cycles up to 1 000 000
are applied in the cases of 300–800 K, and 50 000 cycles for
the samples at temperature 900–1600 K to reach the respective
equilibrium configurations of CoCrNi.

B. MSD and spring constant

The vibrational mean-squared displacement (vMSD) of
atoms, or MSD, is defined as〈

�r2
i

〉 = 〈|ri(t) − ri,equil|2〉τ . (1)

Here ri(t ) is the instantaneous position of the atom i at time
t during thermodynamic equilibration for 100 ps. Such a suit-
able time duration makes sure that the atoms vibrate around
their thermodynamic equilibrium positions without escaping
from the original lattice in the solid state. ri,equil is the time-
invariant equilibrium position of this atom at the lattice site
after energy minimization, which is equivalent to the time av-
erage of ri(t ). The angular brackets imply time average during
the observation time τ . After this operation, the atomic-scale
spring constant of the Einstein crystal is determined by

k = 3kBT/
〈
�r2

i

〉
, (2)

with kB the Boltzmann constant and T the absolute tem-
perature in Kelvin. Another parameter 〈�r2

i 〉1/2/a0(T ) is
calculated based on the MSD at temperature T , where a0(T )
is the lattice constant of the configuration at temperature T .
It is the relatively vibrational amplitude that can effectively
inform the characteristics of solids near the melting point.

C. Absolute free energy

We adopt a nonequilibrium thermodynamic integration
method to calculate the absolute free energy of the MPEAs
following the Frenkel-Ladd path, as implemented by Freitas
et al. in LAMMPS [48]. The Frenkel-Ladd method computes the
free energy difference between two specific equilibrium states
by connecting by a list of nonequilibrium intermediate states
[53]. The method has been validated in calculations of free
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energies of bulk crystal [48], crystalline defect [49], as well as
liquid and glass [45,59]. Generally, it allows the calculation
of any free energy difference of a given Hamiltonian H (λ) by
interpolation between two ends

H (λ) = λHf + (1 − λ)Hi, (3)

where Hi and Hf represent the Hamiltonians of the initial
and final state, respectively. λ is a order parameter which
characterizes the thermodynamic state of a system between
the initial and final one.

Following the definition, the free energy difference be-
tween the final and initial state �F = Ff − Fi = ∫ 1

0 dλ〈Hf −
Hi〉λ by the Hamiltonian interpolation. In the nonequilibrium
estimation of free energy difference in an intermediate state at
time ts by MD sampling, the forward work done is

W irr
i→f =

∫ ts

0
dt

dλ

dt
[Hf (�(t )) − Hi(�(t ))]. (4)

Here �(t ) is the phase space trajectory of the system along the
process. The backward work is in a similar form of W irr

f→i =∫ ts
0 dt dλ

dt [Hi(�(t )) − Hf (�(t ))].
In this work, the initial Hamiltonian Hi is chosen to be the

system of interest, the free energy of which is calculated with
respect to a reference system with fixed Hamiltonian Hf and
known free energy. The classical Hamiltonian of the system
of interest is

Hi =
N∑
i

p2
i

2m
+ U (r), (5)

where pi is momentum of the ith particle, m is the particle
mass, and U (r) is the potential energy, respectively. For a
system of noninteracting particles of mass m, each atom is
attached to a lattice point by a 3D harmonic spring with
elastic constant k. The crystallographic lattice to which these
particles are connected corresponds precisely to that of the
equilibrium phase of system with Hf , which is actually an Ein-
stein crystal with 3N independent vibrations. Consequently,
the Hamiltonian of this harmonic system is rewritten as

Hf ≡ HEinstein =
N∑

i=1

[
p2

i

2m
+ 1

2
mω2(ri − ri,equil )

2

]
, (6)

where ω is the vibrational frequency and N is the number of
atoms in the system. The free energy of Einstein crystal is
known analytically as

FEinstein(N,V, T ) = 3NkBT ln

(
h̄ω

kBT

)
, (7)

with h̄ the Planck’s constant.
Note that the work associated with the initial and final

states involves both the forward and backward switching pro-
cesses. Taking average of the two processes will eliminate
the energy dissipation during the nonequilibrium thermody-
namic integration. Standard equilibrium method to calculate
the free energy difference �F , which is based on the two
equilibrium states determined by calculating the relevant ther-
modynamic mean values of these states through a set of
independent equilibrium simulations. The reversible work

Wrev is done along the quasistatic path connecting them. How-
ever, the nonequilibrium approach assumes this path as a
clearly time-dependent process, where the time duration of
this process determines the deviation from the quasistatic
path. Therefore the free energy difference �F = Wrev =
Wirr − Ediss, where the Wirr is the mean work and Ediss is the
mean dissipated heat produced by a series of the nonequilib-
rium processes. If the nonequilibrium process is sufficiently
close to the ideal quasistatic process, the dissipated heat
which is systematic error becomes the same for the two
processes, which proceed in opposite directions. For exam-
ple, for a linear response, nonequilibrium process connecting
states 1 and 2, the dissipated heat E1→2

diss = E2→1
diss , so that the

free energy difference �F = F2 − F1 = 1
2 (W rev

1→2 − W rev
2→1) =

1
2 (W irr

1→2 − W irr
2→1). The systematic error can be eliminated by

combining the calculation of the forward and backward pro-
cesses. Therefore the time-dependent nonequilibrium process
can be estimated from several relatively short simulations, and
its convergence can be systematically verified. In sum, the free
energy of interest Fi can be estimated as

Fi(N,V, T ) = FEinstein(N,V, T ) + 1
2

(
W irr

i→f − W irr
f→i

)
. (8)

In this work, we have chosen a reasonable equilibration
time of 10 000 MD steps before starting the nonequilibrium
switching process. The forward and backward switching takes
85 000 MD steps, respectively. The spring constant k of the
reference Einstein crystal, and thus the vibrational frequency
ω, is obtained by measuring the MSD as described in the
method section.

D. Shannon entropy and chemical short-range order parameter

To measure the global degree of CSRO in a multi-
component alloy, we first propose a quantitative metric of
atomic-scale Shannon information entropy

si,Shannon = −kB

n∑
α

xα ln xα, (9)

here xα is the probability of finding one type of the atom
around the central atom, and n = 3 the number of compo-
sitions in the studied alloy. The atoms are selected by all
the nearest neighbors of the central atom based on the FCC
lattice, where the spatial radius from the central atom to the
nearest atom is determined by the position of the first peak of
the radial distribution function. In the case of intermetallics,
there is long-range chemical order and the sequence of atoms
around a central atom is well defined. Therefore the Shannon
entropy is zero. In the case of a random solid solution, the
probability of finding a neighboring element is 1/n such that
the entropy is maximized with si,Shannon = 1.09. To further
quantify the degree of chemical order of a multicomponent
system, a global parameter is defined after the Shannon en-
tropy via

ϕ = 〈exp(−si,Shannon/kB)〉N , (10)

here 〈· · · 〉 denotes the average over all the atoms and chemical
species in the alloy system. ϕ is always between 0 and 1
in mathematics. In the present ternary CoCrNi system, ϕ =
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FIG. 1. Atomic vibration and spring constant in CoCrNi MPEA. (a) Spatial illustration of the trajectories of distinct atoms at 300, 900, and
1600 K, respectively. The red boxes in the lower panels are magnified from the selected area in the upper panels. (b) The distribution of the
MSD for different type of atoms at 300, 900, and 1600 K, respectively.

0.336 represents the totally disordered random solid solution,
and ϕ = 1 denotes an ordered intermetallic, respectively.

III. RESULTS

Before going to the free energy calculations, we first test
the vibrational nature of the atoms in this CoCrNi MPEAs.
For this purpose, the MSD is demonstrated as a spatial nature
in Fig. 1(a). This plot shows the trajectories of atoms during
an equilibration time of 100 ps to estimate the MSD. From the
amplified slices taken from one atom layer shown in the lower
panels, one can notice diversity in the vibrational amplitudes
of different atoms.

For a quantitative comparison, the histograms of MSD
for different elements are summarized in Fig. 1(b) at dif-
ferent temperatures. While it is straightforward that higher
temperature gives larger vibrational amplitude and wider dis-
tribution in MSD, the vibration in MPEAs brings about new
temperature-dependent phenomena. At low temperature, the
MSD of Co, Cr, and Ni are well distinguished. Among them,
MSD of Ni is the smallest, and Cr presents the largest MSD.
It means that the Ni atoms are most strongly constrained
rather than the other two type of atoms. However, this trend
is broken at high temperature, e.g., the case of 1600 K. At
such high temperature, the MPEA becomes almost random
solid solution such that all the three type of atoms demonstrate
the same distribution of MSD. The observation implies that
local atomic environment becomes homogeneous and all the
atoms become feel the same constraint. Therefore they are
indistinguishable in vibration in the case of ideal mixing.
However, some chemical segregation or even CSRO form at
low temperature. Then, the local atomic stiffness is different
and MSD diverge for different elements.

Once the MSDs are available, one has the opportunity to
examine the atomic-scale stiffness in this list of MPEAs in
light of the spring constants [60]. In Fig. 2(a), the spring
constants of different elements are displayed as a function
of temperature. There are several conclusions can be drawn
from this plot. First, the spring constants, or vibration con-

straints, of these elements are different. Among them, Ni
feels the strongest constraint and thus has the largest spring
constant. This observation is in agreement with the smallest
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FIG. 2. Lattice constraints of the elements in CoCrNi MPEAs, in
comparison with that in the elemental Ni. (a) Evolution of the spring
constant as a function of temperature. (b) The ratio of MSD to lattice
constant (i.e., Lindemann parameter) versus temperature. (Inset) The
slope of the curves in the main plot.
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MSD noticed from Fig. 1(a). Next, the diversity in atomic
stiffness becomes smaller at higher temperature. At high
temperature 1600 K near melting, all the spring constants
converge to a single value, indicating that the elastic field
becomes more homogeneous in this alloy if random solid
solution is approximated. Then, the spring constant decreases
with increasing temperature, which is a natural consequence
of the thermal softening effect due to phonon. However, the
gradient of decrease in these curves varies remarkably with
temperature. This is a signal that is in striking contrast with
that of an elemental FCC Ni, as illustrated by the purple line
in Fig. 2(a). It might also mean that the atomic environment
of CoCrNi varies while the lattice is always FCC according
to temperature. The short-range ordering is driven by the
competition between enthalpic and entropic interactions. The
spring constant of a pure FCC Ni is shown in purple rhombus
line, which decreases linearly with increasing temperature.
Obviously, the MPEA is of more anharmonic nature than
a single elemental metal. Finally, the temperature-dependent
spring constants of the compositions are indicative of differ-
ent free energy trend at different temperature. Free energy
might tell something about the driving force for the disorder-
order transition upon cooling in MPEAs from a physical
perspective.

It is then worth testing the validity of Lindemann melting
criterion in MPEAs since all the MSDs and lattice constants
are available at different temperatures up to melting. The well-
known Lindemann melting criterion claims that the melting
of a crystalline solid happens once the MSD from the equilib-
rium position reaches a critical value of about 0.1 of the lattice
constant [61]. Although the criterion has been widely assumed
in the conventional solids with a threshold between 0.1 and
0.2 [62–66], the validity of this empirical rule is largely
unknown since the complex atomic environment already gen-
erates strong lattice distortion instead of the thermal MSD far
below the lattice instability point. In Fig. 2(b), the ratio of
MSD to lattice constant 〈�r2

i 〉1/2/a0(T ) (i.e., the Lindemann
parameter) is shown as a function of temperature. Note that
here we test the Lindemann proposition in the bulk form as
a first approximation, which neglects the pre-melting mecha-
nism from crystalline defects such as surface. In comparison,
we also show the data for pure Ni. It is clear that the ratio
increases with temperature in both MPEA CoCrNi and pure
Ni, as predicted by the Lindemann criterion. However, pure
Ni shows a linear relationship in the temperature-dependent
Lindemann parameter whereas the trend in MPEA is strongly
nonlinear, as illustrated by the slopes shown in the inset of
Fig. 2(b). The melting point of this CoCrNi alloy is 1675 K
based on this EAM potential [24]. Upon approaching the melt-
ing point, the Lindemann parameters of the three constitute
atoms converge to a single value of about 0.12. This critical
magnitude of MSD lies well in the prediction of the Linde-
mann melting criterion. However, the chemical discontinuity
in MPEA could lead to partial local disordering which renders
different atomic mechanism of melting in bulk multicompo-
nent alloys that is in contrast with the picture obtained from
pure elemental metals [67].

With the knowledge about the MSD and the atomic-scale
elastic constants, we are able to calculate the absolute free en-
ergy of the CoCrNi MPEA as a function of temperature, which
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FIG. 3. Free energy and entropy. (a) Free energies of the CoCrNi
MPEA as a function of temperature, which include the absolute
free energy from Frenkel-Ladd method, and these calculated from
harmonic and quasiharmonic approximations, respectively. (b) The
corresponding vibrational entropies calculated by taking derivatives
of the free energies with respect to temperature.

are summarized in Fig. 3(a). To get deeper insight into the
anharmonic effect in this alloy, we also show the free energy
determined from either harmonic or quasiharmonic approxi-
mation, which are provided together in Fig. 3(a). In contrast
with the Einstein model, the vibrational density of states g(ω)
of a real solid are calculated by taking the Fourier transform
of the velocity auto correlation function during a canonical
MD sampling of vibration, i.e., g(ω) = ∫ ∞

0 eiωt 〈v(t )·v(0)〉
〈v(0)·v(0)〉 dt . In

the framework of harmonic approximation, g(ω) is estimated
at extremely low temperature. The quasiharmonic approxima-
tion framework further considers the thermal expansion effect
and g(ω) is recalculated with varied simulation box whose
size changes with temperature. Then the vibrational free en-
ergy of the system is determined from vibrational density of
states via

Fvib(T ) = kBT
∫ ∞

0
g(ω) ln

[
1 − exp

(
− h̄ω

kBT

)]
dω (11)

since phonon obeys the Bose statistics. From the difference
in free energies as shown in Fig. 3(a), which are obtained by
different theoretical protocols, one can find strong anharmonic
effect in this CoCrNi alloy. Either harmonic or quasiharmonic
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FIG. 4. Evolution of the degree of anharmonicity χanh as a
function of the chemical order parameter, which indicates a disorder-
order transition at 900 K in this CoCrNi MPEA. (Inset) The slope of
the curves in the main plot.

approximation overestimates the absolute free energy. The an-
harmonicity becomes more remarkable at higher temperature.

Since free energy is the king parameter measuring the ther-
modynamic stability of a solid matter, one may expect to see
some discontinuity in its nature of temperature dependence.
However, such anomaly is not directly noticed in Fig. 3(a). To
seek for a physical signature for the existence of some chemi-
cal disorder-order transition in this alloy, we further calculate
the temperature-dependent vibrational entropy in Fig. 3(b) by
taking differential of the free energy curve with respect to
temperature, i.e.,

Svib(T ) = −∂Fvib(T )

∂T
. (12)

Obviously, the absolute vibrational entropy is larger than the
those from either harmonic or quasiharmonic approximation
in the whole temperature range of interest. It is quite inter-
esting to see an inflection point at 900 K in the absolute
vibrational entropy. This inflection point possibly indicates
a disorder-order transition in the CoCrNi alloy. Careful ex-
amination of the variation gradient in entropy from harmonic
or quasiharmonic approximation also tells something useful.
The slopes both exhibit crossover point at 900 K. All the
information suggests possible structural transition happening
at 900 K in this MPEA.

In order to quantitatively analyze the anharmonic contri-
bution to the absolute free energy, we define a parameter to
characterize the degree of anharmonicity via

χanh(T ) = Fabs(T ) − Fhar (T )

Fabs(T )
, (13)

in which the absolute free energy Fabs(T ) [from Eq. (8)] and
the harmonic free energy Fhar (T ) [from Eq. (11)] have been
shown in Fig. 3(a). This parameter is shown in Fig. 4 versus
both the CSRO parameter ϕ and temperature. It is intriguing

to discover that the chemical order is a strong function of the
degree of anharmonicity χanh. At 900 K, the disorder-order
transition occurs as informed simultaneously by the degree of
anharmonicity and CSRO. The inset of Fig. 4 is the gradient
of the main plot, which clearly demonstrates the critical point
at ϕ = 0.385. It is corresponding to the MPEA configuration
prepared at 900 K by the hybrid MD/MC annealing. Since
the anharmonicity parameter χanh is directly from the free
energy data, we therefore predict the chemical disorder-order
transition in this CoCrNi MPEA from a free energy point of
view.

IV. DISCUSSION

The chemical disorder-order transition is not like that of
the structural phase transition, e.g., the liquid-solid transition.
In the latter case, positional rearrangement of atoms can be
observed intuitively by any suitable experimental characteri-
zation or atomistic simulation method. However, the chemical
disorder-order transition only involves exchange of elements
at specific lattice sites that is invariant, which is hard to
distinguish. To comprehend this chemical disorder-order tran-
sition in MPEA upon cooling from high temperature in the
solid solution, herein we discuss the relationship between a
set of important physical entities, either from calculation or
rationale proposition based on simulation data. This strat-
egy avoids the difficulty of analyzing transition from a pure
structural perspective. It therefore provides an alternative
view solution to understand the disorder-order transition in
MPEAs. The discussed entities include the absolute free en-
ergy, the chemical order parameter, potential energy, Shannon
entropy and its conjugate disorder temperature, as well as
the thermodynamic temperature. All the interrelationships be-
tween them are shown and explained in Fig. 5.

First of all, the relationship between the absolute free en-
ergy [from Eq. (8)] and the chemical order parameter is shown
in Fig. 5(a). The absolute free energy decreases as the order
parameter decreases, along with increase in temperature. It
is a natural consequence that the free energy is lower for
the samples annealed at lower temperature. It means that
the change in both enthalpic interaction as well as entropy
plays an critical role in driving the evolution of configuration
upon cooling. There is a sharp downward trend starting from
900 K, which indicates a dramatic disorder-order transition
at ϕ = 0.385. This observation is in good agreement with the
scenario in the degree of anharmonicity, as shown in Fig. 4.
The argument is also supported by experiment [21]. When
the CoCrNi sample is annealed sufficiently at 1000 ◦C, the
short-range order forms and produces higher stacking fault
energy and hardness in this concentrated alloy.

Next, in Fig. 5(b), we report the correlation between
the potential energy per atom and the average value of the
atomic-scale Shannon entropy (sShannon = 〈si,Shannon〉). The
latter quantity characterizes the information entropy of diver-
sity of elements occupying the FCC lattice sites and therefore,
the chemical disorder of the distribution of elements in the
CoCrNi MPEA. It is clear that the potential energy is pos-
itively correlated with Shannon entropy—more chemically
disordered configuration with higher potential energy. The
relationship shows a trend of exponential growth in potential
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FIG. 5. The chemical disorder-order transition in CoCrNi MPEA signified by the interrelationships between different thermodynamic
quantities. (a) Absolute free energy versus chemical order. (b) Potential energy versus Shannon entropy. (c) Shannon entropy versus the
disorder temperature. (d) Disorder temperature versus thermodynamic temperature. In all the figures, the vertical or horizontal dash lines in
blue indicate the critical point of the disorder-order transition.

energy with a strong upturn at Shannon entropy 0.96kB. This
value is just corresponding to temperature 900 K at which the
disorder-order transition takes place.

Then, from the relationship between potential energy and
Shannon entropy in Fig. 5(b), it is physically meaningful to
define an effectively disorder temperature TShannon through

TShannon = −∂Epot(T )

∂sShannon
, (14)

in which Epot(T ) is the potential energy per atom for the
equilibrium configuration of MPEA annealed at T . Note that
the defined disorder temperature is only a measure of degree
of chemical disorder that is quantitatively different from the
thermodynamic temperature T . Figure 5(c) illustrates how the
Shannon entropy is modulated by the disorder temperature. As
the disorder temperature increases the Shannon entropy rises
significantly until to a critical point with sShannon = 0.96kB,
after which the growth rate is drastically slowed down. This
critical point is again corresponding to the disorder-order
transition. In this way, the disorder temperature is validated
to be a suitable metric to signify the disorder-order transition
in MPEA. Such a definition of the disorder temperature can
be generally used to study the nonequilibrium process of any
meta-stable multicomponent alloy from atomistic simulations.

Last but not the least, the two kinds of temperatures—
the chemical disorder temperature and the thermodynamic
temperature—are compared in Fig. 5(d). Basically, there a

positive scaling between disorder temperature and thermo-
dynamic temperature. Besides, an interesting observation is
that the curve presents two regimes with 900 K as a critical
point separating the high-temperature and low-temperature
regimes. Consequently, the TShannon–T relationship is also able
to indicate the disorder-order transition in CoCrNi alloy. In the
high-temperature regime, the chemical disorder loses quickly
following a typical equilibrium cooling path. The chemical or-
der are mostly established in this regime. When the state goes
into the low-temperature regime, the chemical order is almost
frozen although disorder temperature still evolves mildly with
the change in temperature. Such information is meaningful to
the experimentalists working at optimization of the mechani-
cal properties of MPEAs by controlling the microstructure via
proper heat treatment process during materials fabrication.

V. CONCLUSION

The driving force and the physical mechanism of chemical
ordering constitute a central unsolved problem in the generic
high-entropy alloys. The missing quantity is the absolute free
energy during a whole annealing process. In this context,
this work provides a comprehensive free energy perspective
on the obscure chemical disorder-order transition in a pro-
totypical CoCrNi MPEA via atomistic simulations. For this
purpose, we extensively calculate the free energy of the equi-
librium MPEA samples prepared at different temperatures via

033606-7



XIAO-SHI WANG AND YUN-JIANG WANG PHYSICAL REVIEW MATERIALS 7, 033606 (2023)

a hybrid MD/MC simulation protocol. The free energies are
from the nonequilibrium thermodynamic integration through
a Frenkel-Ladd path, the harmonic approximation, as well
as the quasiharmonic approximation, respectively. It allows
to quantitatively assess the role of anharmonicity played in
the disorder-order transition in this multicomponent alloy. We
also propose a set of new parameters, including the degree of
chemical order ϕ, the atomic-scale Shannon entropy sShannon,
the chemical disorder temperature TShannon, respectively. The
interrelationships among all these quantities together with
temperature and free energy are fully discussed. All the cor-
relations are found effective in indicating a crossover point in
the cooling history, consistently providing a complete picture
of the chemical disorder-order transition in this CoCrNi alloy.
The proposed methodology is general to study the structural
evolution of any multicomponent alloy from a thermodynamic
point of view via performing atomistic simulations and free
energy samplings.
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APPENDIX: SHANNON ORDER PARAMETER VERSUS
WARREN-COWLEY PARAMETER

In our work, the Shannon entropy is a statistical metric of
the distribution of different kinds of atoms around the central
atom. Similarly, the chemical order parameter ϕ represents the
distribution of local atoms, which is derived after the Shannon

FIG. 6. Order parameter ϕ as a function of the mean Warren-
Cowley parameter α over all possible pairs.

entropy. In order to show the effectiveness of our new metric,
we further calculate the Warren–Cowley parameters αi j =
1 − pi j

c j
of atom pairs, where pi j is the probability of finding

a j-type atom around an i-type atom in the nearest neighbor
shell, and c j is the nominal concentration of the j-type atom in
the chemically disordered system. The mean Warren-Cowley

parameter α = | ∑M
i αi j |
M , where M is the number of pair types.

The relationship between the order parameter ϕ and the mean
pair SRO parameter α is further shown in Fig. 6. It can be
clearly seen that there is a positive correlation between them.
Therefore the order parameter ϕ based on Shannon entropy
can also represent the local atomic distribution. The advantage
of the Shannon entropy order parameter is that it can reflect
the level of chemical order at the system level with a single
parameter.
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