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Statistical properties of fractal type dislocation cell structures
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The dislocation microstructure developing during plastic deformation strongly influences the stress-strain
properties of crystalline materials. Resent theoretical investigations based on the 2D continuum theory of straight
parallel edge dislocations were able to predict a periodic dislocation microstructure. The results obtained,
however, can only be considered as a very first step toward the understanding of the origin of dislocation
patterning. One of the most challenging problems is the modeling of the formation of the fractal like dislocation
microstructure. So, it is crucial to determine the statistical properties of such a structure developing at ideal
multiple slip orientation. In the paper, by x-ray line profile analysis and the method of high resolution electron
backscatter diffraction (HR-EBSD) a complex experimental characterization of dislocation microstructure de-
veloping in uniaxially compressed Cu single crystals is presented. With these methods, the maps of the internal
stress, the Nye tensor, and the geometrically necessary dislocation (GND) density were determined at different
load levels. It is found from the fractal analysis of the GND maps that the fractal dimension of the cell structure
is decreasing with increasing average spatial dislocation density fluctuation. Moreover, it is shown that the
evolution of different types of dislocations can be successfully monitored with the HR-EBSD-based technique.
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I. INTRODUCTION

It was first observed nearly 60 years ago that dislocations
created during the plastic deformation of crystalline materials
tend to form different patterns with the morphology depend-
ing on the mode, temperature, and rate of deformation. There
is an equally longstanding discussion regarding the physi-
cal origin of these patterns. A large variety of approaches
have been proposed to model the instability leading to the
spatial variation of the dislocation density, many of which
are based upon analogies with pattern formation in other
physical systems. It has been argued that dislocation patterns
can be understood by the tendency toward the minimiza-
tion of some kind of elastic energy functional (Hansen and
Kuhlmann-Wilsdorf [1], Holt [2], Rickman and Vinas [3]),
but the theories have never been worked out in detail. Another
approach proposed is to model the dislocation patterning as
a reaction-diffusion phenomenon of the mobile and immobile
dislocation densities (Walgraef and Aifantis [4], Pontès et al.
[5]). The fundamental problem with this approach is that it
is completely phenomenological, i.e., one cannot see how
the different terms appearing in the evolution equations are
related to the properties of individual dislocations.

*Corresponding author: groma@metal.elte.hu

In a recent series of papers [6–8], a theoretical approach
based on a continuum theory of dislocations, derived from
the evolution of individual dislocations, was proposed for
modeling the patterning process. According to the theory, the
main source of the instability is the nontrivial mobility of the
dislocations caused by the finite flow stress, while the charac-
teristic length scale of the pattern is selected by diffusionlike
terms appearing in the theory due to dislocation correlation
effects. Since, however, the theory is developed for a rather
idealized 2D dislocation configuration, further experimental
and theoretical investigations are needed to create a general
comprehensive theory of dislocation patterning.

One of the most challenging issues is the characteriza-
tion and modeling of the self-similar fractal-like dislocation
cell structure formed in face-centered cubic (FCC) crystals
oriented for ideal multiple slip (for details, see the pioneer-
ing works of Zaiser and Hähner [9,10]). For developing an
appropriate theory of the problem, one should determine
experimentally the statistical properties of the fractal-like dis-
location microstructures. Since copper single crystal is an
easily processable model material, this paper reports on de-
tailed experimental investigations performed on compressed
Cu single crystals oriented for ideal multiple slip. To get a
complex picture of the dislocation cell structure, as a first step,
the earlier investigations performed by x-ray line profile anal-
ysis (XPA) and TEM investigations on samples compressed

2475-9953/2023/7(3)/033604(11) 033604-1 ©2023 American Physical Society

https://orcid.org/0000-0003-2220-105X
https://orcid.org/0000-0001-5601-5859
https://orcid.org/0000-0002-9956-0061
https://orcid.org/0000-0002-3944-8350
https://orcid.org/0000-0001-9545-2015
https://orcid.org/0000-0002-6644-1365
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevMaterials.7.033604&domain=pdf&date_stamp=2023-03-30
https://doi.org/10.1103/PhysRevMaterials.7.033604


SÁNDOR LIPCSEI et al. PHYSICAL REVIEW MATERIALS 7, 033604 (2023)

up to different stress levels (Székely et al. [11]) were revisited.
It should be noted that with the x-ray detectors available
nowadays, one can achieve a much better signal-to-noise ra-
tio than previously. This improves considerably the accuracy
of the parameters obtained from the x-ray profiles. More-
over, as a relatively recently developed method, high-angular
resolution electron backscatter diffraction (HR-EBSD) inves-
tigations were also performed on the samples. With this, the
maps of the internal stress and the geometrically necessary
dislocation (GND) density developing in the samples could
be determined. Some of the aspects of the applied methods
are developed exclusively for the specific requirements of
the addressed problem; consequently, in the first half of the
paper the applied experimental methods are explained in de-
tail. In the second part, the obtained experimental results are
discussed. The obtained statistical results (e.g., fractal dimen-
sion) have been confirmed by the simulations done by Bakó
and Hoffelner [12], which predict the formation of dislocation
cell structures with nontrivial fractal dimension in the absence
of climb for multiple slip oriented FCC materials. Neverthe-
less, the earlier TEM observations, courtesy of Essmann in
the work of Hähner and Zaiser [13], on uniaxially deformed
copper single crystals validate many of our results regarding
the statistical parameters.

II. EXPERIMENTAL METHODS

A. Sample preparation

To study the dislocation cell formation mechanism in FCC
materials, a high-purity copper single crystal was used. For
the compression tests, rectangular prism-shaped samples with
dimensions of 2.5 × 2.5 × 5 mm3 were cut with an electrical
discharge machine (EDM). The orientation of each surface
was of the (100) type. For removing the amorphous layer
created by EDM, the specimens were etched in a 30% HNO3

solution for 10 min. To reduce the initial dislocation density,
the samples were heat treated at 600 oC for 6 h in a vacuum
furnace. The average dislocation density in an undeformed
sample was determined by XPA (the details of the method
applied are explained below in Sec. II B). It was found that it
is below the 1 × 1013 m−2 lower limit that one can determine
by x-ray profile analysis.

The samples were compressed from the direction of the
square-shaped surfaces, ensuring uniaxial deformation in the
[001] direction corresponding to ideal multiple slip. The
EBSD and XPA measurements were performed on the [010]
surface.

Six different samples with the same size and orientation
were deformed up to different strain levels. The resolved
shear stress τ ∗ versus strain ε curve of the sample with
the highest terminal deformation is shown in Fig. 1. The
black dots on the curve mark the maximum stresses and
strain levels of the six different samples. (Up to the maximum
stress levels, the stress-strain curves obtained on the other
samples follow the same curve as the one plotted within 5%
of error.) The black line in the figure shows the hardening
rate Θ = dτ/dε as a function of strain. As expected for the
ideal multiple slip [14], the Θ (ε) curve consists of a nearly

FIG. 1. Resolved shear stress (τ ∗) and hardening rate (Θ) versus
strain (ε) obtained on a compressed Cu single crystal oriented for
(001) ideal multiple slip. The black dots on the curve mark the stress
levels until which the six different samples were compressed.

horizontal (stage II) and decreasing (stage III) linear part. This
is indicated by the dotted lines in the figure.

From the six specimens prepared, three are close to the
strain level corresponding to the transition from stage II to
stage III. As seen below, this strain region is critical for the
statistical properties of the dislocation cell structure develop-
ing during the deformation.

Finally, to prepare the samples for TEM and HR-EBSD
measurements, electropolishing was applied at 20 V, 1.2 A
using Struers D2 electrolyte for 30 s.

B. X-ray line profile analysis

XPS is a well-established method to determine the average
dislocation density, the average squared dislocation density,
and the dislocation polarization from the measured intensity
profile. In our analysis, the “restricted moments” method
developed by Groma et al. [15–17] was applied. In the eval-
uation of the measured data the asymptotic behavior of the
different order restricted moments are analyzed. The kth order
restricted moments are defined as

vk (q) =
∫ q
−q q′kI (q′)dq′∫ ∞
−∞ I (q′)dq′ , (1)

where q is the varying integration limit the restricted moment
vk (q) depends on; I (q′) is the intensity distribution near to a
Bragg peak, in which q′ = 2(sin θ − sin θ0)/λ; λ is the wave-
length of the applied x rays, and θ and θ0 are the half of the
diffraction and Bragg angles, respectively.

As explained in detail in Ref. [15], for large enough q val-
ues the asymptotic form of the second order restricted moment
reads

v2(q) = 2�〈ρ〉 ln

(
q

q0

)
, (2)

where 〈ρ〉 is the average dislocation density, q0 is a parameter
determined by the dislocation-dislocation correlation, and �

is a constant depending on the dislocation Burgers vector
�b, the line direction �l , and the diffraction vector �g. � is
commonly written in the form � = π |�g|2|�b2|C/2 where C
is called the contrast factor. (For its actual value, a detailed
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deduction and explanation can be found in Ref. [15].) From
the intensity profiles measured, the values of �〈ρ〉 and q0

can be obtained by fitting a straight line on the asymptotic
part of the v2(q) versus ln(q) plot. It should be noted that
if the dislocation density is less than about 1013 m−2, the
instrumental broadening is in the same order as the one caused
by the dislocations, so dislocation density below this limit
cannot be accurately determined by the x-ray profile analysis
performed in a laboratory setup applied in the investigations.

Besides the second-order restricted moment for our anal-
ysis, the fourth-order restricted moment is also important. In
the asymptotic regime, it is [15]

v4(q) = �〈ρ〉q2 + 12�2〈ρ2〉 ln2

(
q

q1

)
, (3)

where 〈ρ2〉 is the average dislocation density fluctuation, and
q1 is a parameter. For better visualization, it is useful to con-
sider the quantity

v4(q)

q2
= �〈ρ〉 + 12�2〈ρ2〉

ln2
(

q
q1

)
q2

, (4)

which asymptotically tends to �〈ρ〉. The actual values of the
parameters �〈ρ〉, �〈ρ2〉, and q1 can be determined by fitting
the form given by Eq. (4) to the asymptotic regime of the
v4(q)/q2 versus q plot.

An important statistical parameter of the dislocation mi-
crostructure developed is the relative dislocation fluctuation
defined as

σ =
√

〈ρ2〉 − 〈ρ〉2

〈ρ〉2
, (5)

which can be determined from the fourth-order restricted mo-
ment.

It should be noted that the measured intensity I (q′) often
contains a background which has to be subtracted before the
calculation of the restricted moments. Since, however, the
background has different contributions to the second- and
fourth-order restricted moments, determining the average dis-
location density from both moments offers a internal checking
possibility whether the background level was selected cor-
rectly.

The profile measurements have been performed with
a Cu rotating anode Cu x-ray generator at 40 kV and
100 mA with wavelength λ = 0.15406 nm. To reduce the
instrumental broadening, the symmetrical (220) reflection of
a Ge monochromator was used. The Kα2 component of the
Cu radiation was eliminated by an 0.1 mm slit between the
source and the Ge crystal. The profiles were registered by
a linear position sensitive DECTRIS MYTHEN2 R detector
with 50 µm spatial resolution and 1280 channels. The sample-
detector distance was 0.7 m, resulting in an angular resolution
on the order of 0.004◦. During the measurements, approx.
1x1 mm2 surfaces of the samples were illuminated by the
x ray, so the parameters obtained from x-ray measurements
correspond to average values over areas much larger than the
typical dislocation cell size (see below).

The evaluation method applied is demonstrated on the
intensity distribution (Fig. 2) obtained on the sample com-

FIG. 2. The x-ray line profile obtained at �g = (020) on the sam-
ple compressed up to 43.12 MPa. To eliminate the effect of the noise,
the peak intensity should be at least 103 − 104 times higher than
the background, and a subsequent background subtraction should be
carried out.

pressed up to 43.12 MPa resolved shear stress. The corre-
sponding restricted moments are shown in Fig. 3. As shown
in the figure, the different parameters can be determined with
an accuracy of less than a few percent.

C. HR-EBSD

EBSD measurements were carried out in a FEI Quanta 3D
scanning electron microscope (SEM) equipped with an Edax
Hikari EBSD detector. Diffraction patterns were recorded
with 1 × 1 binning (640 px × 480 px resolution) using an
electron beam of 20 kV, 16 nA. To carry out statistical
analysis on the collected data, a 20 µm × 20 µm area was
mapped with a step size of 100 nm on each sample. The
HR-EBSD technique utilizes image cross-correlation on the
recorded diffraction patterns [18]. The local strain tensor
components can be determined, and a lower bound estimate
of the GND density can be given using the commercially

FIG. 3. The raw data (blue lines) and the fitted restricted mo-
ments (orange lines).
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available software. The method requires an ideally stress-free
diffraction pattern as reference that is often difficult to obtain
experimentally. In the absence of such reference, it is noted
that the scales should be implemented as relative and not
absolute measures. Image cross-correlation based HR-EBSD
calculations were performed using BLG Vantage CrossCourt
v.4 software that provided the components of the elastic dis-
tortion (βel

i j ) and the stress tensor (σi j) and the also the values
of the GND density (ρGND).

From the distortion map, the Nye dislocation density tensor
αi j , defined as [19]

αi j = −ekl j∂kβ
el
il , (6)

can also be determined, where ei jk is the Levi-Civita symbol.
Since, however, in the HR-EBSD measurement the distortion
tensor is measured directly on the sample surface, only those
components of αi j can be calculated that are independent from
the derivation in the direction perpendicular to the sample
surface. So, in a coordinate system with the z axis perpen-
dicular to the sample surface, only the iz components of the
Nye tensor

αiz = ∂yβ
el
ix − ∂xβ

el
iy i = x, y, z (7)

can be directly determined from a HR-EBSD measurement.
With some additional assumptions, one can determine further
components of the αi j tensor [20] but, since to see the validity
of the assumptions required is not straightforward, only the
αiz were used in the investigations presented.

Since

αi j =
∑

t

bt
i l

t
jρ

t , (8)

where the superscript t denotes a given type of dislocation
present in the system with Burgers vector �bt , line direction
�lt , and dislocation density ρt , from the measured Nye tensor
components, one can make an estimate on the dislocation
population in the different slip systems (for details see below).

Furthermore, to characterize the GND density, the scalar
quantity

ρGND = 1

b

√
α2

xz + α2
yz + α2

zz (9)

was introduced. The GND density and the αiz tensor com-
ponents were determined using a C + + code developed by
some of the authors [21,22].

III. STRESS-MAP ANALYSIS WITH THE RESTRICTED
MOMENT METHOD

It was already demonstrated earlier by Groma and Bakó,
Csikor and Groma, and Wallis et al. [23–25] that for a dislo-
cation ensemble of parallel edge dislocations the asymptotic
part of the probability distribution of the internal stress p(σ )
decays as

p(σ ) ≈ b2μ2

8π2
C〈ρ〉 1

σ 3
, (10)

where μ is the shear modulus and C is a geometrical constant,
similar to the contrast factor in the case of x-ray peaks, de-
pending on the type of dislocation, the normal direction of that

FIG. 4. Stress map, stress probability distribution, and the corre-
sponding second order restricted moment v2 versus ln(σ ) obtained
on the sample compressed up to 43.12 MPa.

surface of the sample, on which the measurements are carried
out, and the stress component σ considered. So, like for x-ray
line broadening, in the asymptotic regime the second-order
restricted moment v2(σ ) is linear in ln(σ ). From its slope, one
can determine the quantity ρ∗ = C < ρ >, often referred to as
formal dislocation density. It should be noted, however, that
the stress value obtained by HR-EBSD in a given scanning
point is the average stress on the area illuminated by the
incoming electron beam. As a result, at large enough stress
levels, the probability distribution p(σ ) measured deviates
from the inverse cubic decay—it turns to a much faster decay-
ing regime [21]. Nevertheless, for most cases one can easily
identify a linear regime on the second-order restricted moment
v2(σ ) versus ln(σ ) plot (see Fig. 4). From the deviation of the
inverse cubic decay, we can define a characteristic length scale
rd = μb/σd , where σd is the stress level where the probability
distribution starts to deviate from the inverse cubic regime.

033604-4



STATISTICAL PROPERTIES OF FRACTAL TYPE … PHYSICAL REVIEW MATERIALS 7, 033604 (2023)

In the investigations performed, rd ≈ 75 nm. This means that
short-range dislocation structures (such as dipoles) narrower
than rd are not “seen” by this method. So, compared to XPA,
HR-EBSD somewhat underestimates the dislocation density
(for details see below).

Since from the HR-EBSD analysis one can obtain five
independent stress components (σ33 is assumed to vanish
in the HR-EBSD analysis), a formal dislocation density
ρ∗

i j = b2μ2/(8π )Ci j〈ρ〉 can be determined from the stress
maps corresponding to different i j stress components, where
the parameter Ci j is the contrast factor of the i jth stress
component. Unlike for the x-ray line broadening, there is
no existing analytical calculation to give the precise value
for Ci j . In the theoretical paper on the internal stress
distribution [23], Ci j is calculated only for the shear stress
generated by edge dislocations in isotropic materials in
the coordinate system defined by the Burgers and line di-
rection vectors of the dislocations. In this specific case,
Cshear = π/[2(1 − ν)2)], where ν is the Poisson’s ratio.
According to our experimental results for the case stud-
ied in the paper, Ci j varies significantly (by a factor of
about 5). In the results presented below, we give only
the average of the five formal dislocation densities nor-
malized by Cshear. The issue, however, requires further
investigations.

A typical stress map, stress probability distribution, and the
corresponding second-order restricted moment can be seen in
Fig. 4.

TEM investigations

A TEM specimen was fabricated from the bulk copper
single crystal deformed up to 43.12 MPa resolved shear stress
with the aim of qualitative comparison of dislocation struc-
tures with those obtained from GND density maps. The TEM
lamella preparation was carried out using a FEI Quanta 3D
FEG dual-beam SEM-FIB microscope. The initial fabrication
process was carried out at 30 kV acceleration voltage and
ion currents of 1–30 nA. The final polishing consisted of
low current (0.2−0.5 nA) and low voltage (2−5 kV) ion
polishing. It is noted that to be able to investigate very large
dislocation cells unusually large (20 µm × 20 µm) specimens
were fabricated requiring extra care during the preparation
process [26–28]. Bright field images of the dislocation net-
work were recorded on a 6 × 6 cm2 4k × 4k CETA 16 CMOS
camera with 14 µm pixel size, controlled by VELOX software
in a Titan Themis G2 200 transmission electron microscope
operated at 200 kV (see Fig. 13).

IV. FRACTAL ANALYSIS

The dislocation cell structure developing under unidirec-
tional deformation at ideal multiple slip is known to be a
so-called hole fractal [9] consisting of connected walls and
cell interiors with a power-law-type size distribution. Since
the GND maps obtained by HR-EBSD measurements allow
us to study the dislocation microstructure on a much larger
area than one can do with TEM (applied traditionally for
microstructure characterization), we performed fractal dimen-
sion analysis on the GND maps at different stress levels.

We have applied two different methods, the traditional box
counting and the correlation dimension analysis.

A. Box-counting algorithm

A common algorithm to determine the fractal dimension
of a set is the well-known box-counting algorithm [29]. In the
method, we cover the image with an equidistant grid of lattice
spacing L, and then count the number of boxes N containing
GNDs above a threshold level (for details, see below). The
fractal dimension DH is

DH = d ln(N )

d ln(L)
, (11)

that is obtained by fitting a straight line to the ln(N ) versus
ln(L) plot. (DH is often referred to as Hausdorff dimension.)
The advantage of the method is that it is numerically a cheap,
fast, and fairly precise procedure.

B. Correlation dimension

One can also measure the geometrical randomness of
points through the so-called correlation integral, which may
be estimated for large enough systems with the correlation
sum [30]

C(ε) = 1

N (N − 1)

N∑
i 
= j

H (ε − |ri − r j |), (12)

where ε is the threshold distance, N is the number of nonzero
points, H is the Heaviside step function, ri and r j are the
coordinates of the set points. The correlation integral scales
with the threshold distance as [30]

C(ε) ∝ εDc , (13)

where Dc is the correlation dimension. One can easily see that
for points on a circle, the correlation dimension Dc = 1, for
points on a sphere Dc = 2 and for points evenly distributed in
a sphere Dc = 3. For the analysis of 2D embedded geometri-
cal structures, one may expect that 1 � Dc � 2.

C. Image filtering

The GND maps measured cannot be analyzed with the
method explained above in a straightforward manner. One
issue is that the maps are obviously not binary ones so, one has
to introduce some threshold value above which we consider
the map intensity to be 1 and 0 below. The fractal dimension
obtained may depend on the threshold value chosen. Another
problem we face is that the GND map contains numerous ran-
dom points. They may correspond to individual dislocations
or narrow dislocation multipoles but certainly they should not
be considered during the fractal analysis.

A simple method for global binarization is the so-called
Otsu’s method [31,32]. (It is analogous to Fisher’s discrim-
inant analysis [33] method and equivalent to a globally
optimized k-means clustering method [34,35].) In the simplest
form, it returns a binarized intensity map threshold by max-
imizing the interclass variance. To get this threshold value,
first the probability distribution of the point intensity p(I ) is
calculated numerically with some appropriate binning level
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FIG. 5. Example for αyz maps and GND density maps obtained
with and without smoothing for the sample compressed up to
43.12 MPa. (a) αyz map without smoothing, (b) with smoothing,
(c) GND map without smoothing, (d) with smoothing.

chosen. After this, with a threshold level t the histogram p(I )
is cut into two subhistograms separated by the threshold, and
the quantity

σ 2
w(t ) = P0(t )σ 2

0 (t ) + P1(t )σ 2
1 (t ) (14)

is calculated, where P0 and P1 are the probabilities of the
two classes separated by t , while σ 2

0 and σ 2
1 are variances of

the two classes. The threshold for the image binarization is
selected by minimizing σw(t ).

Otsu’s method performs exceptionally well when the his-
togram obtained on the image has a bimodal distribution and
the background and foreground values are separated by a
deep valley. However, if the image is corrupted with additive
noise or the variation of intensities between background and
foreground are large compared to the mean difference, the
histogram may degrade.

One may observe a fluctuating salt-and-pepper-like noise
on the raw Nye-tensor component maps and GND density
maps (Fig. 5). This prevents the direct applicability of Otsu’s
method. To eliminate this noise, a smoothing window was
applied to the measurable Nye-tensor components. The maps
were convoluted with a circular averaging window of radius
r = 150 nm. The application of a smoothing window results
in a more pronounced dislocation wall structure (Fig. 5). A
globally applied binarization method discussed above may
ignore those dislocation walls, which may have a lower dis-
location density than the thickest dislocation ensembles. To
avoid this problem a multiscale binarization method was de-
veloped. The area map was subdivided into squared subareas
and Otsu’s method was applied separately for each subarea
(Fig. 6). By repeating this algorithm with areas with different
sizes and by adding up the maps binarized with different
scales we could obtain a purely bimodal histogram for the
image (Fig. 6). The effect of the method for the intensity
histograms is seen in Fig. 7. After the multiscale binarization
method explained above, the histogram is clearly bimodal

FIG. 6. (a) Otsu’s binarization method with box size of 1 µm,
(b) 5 µm, (c) the added binary maps at all binarization sizes, and
(d) the map after the final binarization.

allowing to define a threshold level. Those pixels were con-
sidered as dislocation walls which had a higher value than
the intensity value corresponding to the minimum of the his-
togram valley. This method is a powerful tool to obtain not
only the global but also the globally invisible, locally present
dislocation walls (see Fig. 6).

FIG. 7. The histogram before (upper box) and after (lower box)
image filtering.
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D. Burgers vector analysis

As discussed above, only the αiz, i = x, y, z; components
of the Nye tensor can be determined from a HR-EBSD
measurement without any further assumption regarding the
dislocation system (Fig. 13). Therefore, according to Eq. (8)
the vector constructed from the available Nye-tensor compo-
nents

�B = (αxz, αyz, αzz ) (15)

is

Bi =
∑

t

bt
iρ

t cos(ϑ t ), (16)

where ϑ t is the angle between the line direction of the t th type
dislocation and the surface normal vector. To characterize the
type and sign of the dislocation at a given point of the scanned
surface the method introduced in Ref. [36] is followed, that is,
the quantity

ai = cos(ϕi ) = �B · �bi

Bbi
(17)

can be calculated where the index i goes through all the six
Burgers vectors existing in the FCC crystal [36]. Certainly,
one cannot determine the relative population of the different
types of dislocations from �B, but according to the definition
given by Eq. (17) if the ρt density of one of the Burgers
vectors is dominantly larger than the other ones, the absolute
values of the corresponding ai are close to 1. Therefore, ai

values can help to describe the type of dislocations at the sam-
ple surface. To visualize this, the product of the ai value and
the local GND density was calculated at each measurement
point and plotted for the six possible Burgers vectors. (Typical
results can be seen in Fig. 16.)

V. RESULTS AND DISCUSSION

As a first step, x-ray line profile measurements with {020}
Bragg reflection were performed on the (010) surface of the
six samples deformed up to different stress levels. According
to earlier investigations on deformed Cu single crystals ori-
ented for ideal multiple slip [17] for this reflection � = 0.783.
The intensity distributions were analyzed with the restricted
moment method explained earlier. Both the second- and the
fourth-order restricted moments were evaluated.

As can be seen in Fig. 8, the Taylor linear relation between
the square root of the dislocation density and the resolved
shear stress is fulfilled. A relatively small deviation can be
seen at lowest τ ∗ = 17.43 MPa stress level. They are defi-
nitely larger then the accuracy of the determination of formal
dislocation density. The deviations can be attributed to the
fact that for the small deformation level in stage II, the dis-
location population may differ from the one obtained in the
investigations presented in Ref. [17]. As a consequence, the
contrast factor can be somewhat different from the one used.
The results are in agreement with the earlier investigations of
Székely et al. [11]. However, as mentioned earlier, the x-ray
detector used in the measurements reported here has a much
better signal-to-noise ratio than the one used earlier, resulting
in a much more improved accuracy of the current study.

FIG. 8. The
√〈ρ〉 − τ ∗ relation, where 〈ρ〉 is the average dislo-

cation density measured by x ray and τ ∗ is the resolved shear stress.

In Fig. 9, the v4(q)/q2 restricted moments are plotted for
the undeformed and the six deformed samples. It can be seen
even without any curve fitting that the asymptotic part of the
curves tend to a constant value that increases monotonically
with the applied stress. Since the asymptotic value of the
v4(q)/q2 is proportional to the average dislocation density
this is in accordance with the results discussed above. It is
remarkable, however, that the maximum values of the curves
normalized with the asymptotic value are not monotonous
with the stress. It has a clear maximum at 36.11 MPa stress
level. After performing the fitting of the function given by
Eq. (4), the σ value defined by Eq. (5) can be determined.

In agreement with the phenomenological feature men-
tioned above, the σ versus τ curve exhibits a sharp maximum
at τ = 36.11 MPa (see Fig. 10) corresponding to the stage
II to stage III transition stress level (see Fig. 1). (For the
undeformed sample, it is assumed that the dislocation network
is nearly homogeneous, so the fluctuation is zero.) The results
obtained are in agreement with the ones reported earlier on the
same material [11].

As suggested earlier by Mughrabi and coworkers [37,38],
the dislocation system can be envisaged as a composite of hard
dislocation walls with dislocation density of ρw and soft cell

FIG. 9. The v4(q)/q2 versus q curves at different compression
levels. The corresponding resolved shear stresses are indicated in the
upper right corner.
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FIG. 10. The σ (τ ∗) function is represented, where σ is the aver-
age dislocation density fluctuation.

FIG. 11. The apparent dislocation density ρapp
w as a function of

the resolved shear stress.

FIG. 12. The GND density maps obtained on samples deformed
up to (a) 17.43, (b) 26.5, (c) 36.11, (d) 43.12, (e) 55.04, and (f)
67.22 MPa.

FIG. 13. Maps of the (a) α13, (b) α23, and (c) α33 components,
(d) the GND, the (e) σ22, and (f) a TEM picture obtained on the
sample deformed up to 43.12 MPa. Notice that the scale and the
observation site on the TEM picture is different than on the other
ones.

interiors with dislocation density ρc. Within this model,

〈ρ〉 = f ρw + (1 − f )ρc (18)

and

〈ρ2〉 = f ρ2
w + (1 − f )ρ2

c , (19)

where f is the volume fraction of the cell walls. Since accord-
ing to earlier investigations [37,38], f is in the order of 0.1,
and ρw is an order of magnitude higher than ρc, the second
term in 〈ρ2〉 can be neglected so

〈ρ2〉 ≈ f ρ2
w. (20)

With this, the quantity ρ
app
w = 〈ρ2〉/〈ρ〉, that can be deter-

mined directly from the x-ray line profile, is

ρapp
w = ρw

1

1 + (1− f )ρc

f ρw

. (21)

If the dislocation content in the cell interiors is much smaller
than in the cell walls, i.e., (1 − f )ρc 
 f ρw then the apparent
dislocation density ρ

app
w ≈ ρw. According to Fig. 11 in stage

II, ρ
app
w increases monotonically and at the stage II to III

transition stress level it has a maximum. In stage III, at large
enough stress it tends to saturate.

Based on the x-ray line profile results, it can be concluded
that during stage II the dislocation distribution becomes more
and more inhomogeneous, dense dislocation walls are formed
with an increasing ρw dislocation density. At a given defor-
mation level, however, the dislocation density in the walls
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FIG. 14. The dislocation densities obtained from the stress
probability distribution (black curve) and from the Nye’s tensor
components (green curve) versus the dislocation density obtained by
x-ray line profile analysis.

reaches a maximum level, dislocation annihilation prevents
the further increase of the dislocation density. This process
is called dynamic recovery [37]. In stage III, new walls
and an increase of the dislocation density in the cell inte-
riors is needed to accumulate more dislocations. According
to Fig. 11, for large enough stress levels the term (1 −
f )ρc/ f /ρw is in the order of unity (ρapp droops down to about
the half of its maximum value).

As seen above, XPA is a rather powerful method to de-
termine some average statistical properties of the dislocation
microstructure but certainly it is not able to say anything about
the actual dislocation morphology.

Besides the traditionally applied TEM [39], the relatively
recently developed HR-EBSD method offers another perspec-
tive to directly study the dislocation microstructure. A big
advantage of the HR-EBSD is that a much larger area can
be studied than by TEM. Moreover, the sample preparation is
much easier. Figure 12 shows the GND maps obtained on the
six deformed samples. At each deformation level, a clear cell
structure can be seen with increasing volume fraction of the
cell walls. In Fig. 13, the maps of the three αiz components,
the GND density, the stress component σyy, and a TEM picture
obtained on the sample deformed are plotted. Similar pictures
were obtained for the other stress levels studied.

According to Fig. 13, as assumed earlier [37,38], long-
range internal stresses develop in the cell interiors. Unlike
XPA, HR-EBSD is a direct method to determine the local
stress state of the sample, so the result obtained is direct
evidence of the presence of long-range internal stresses.

The dislocation density was also determined from the stress
maps by the restricted moment analysis of the internal stress
distribution. To reduce the error, the average of the ρ∗

i j values
were calculated for the five independent components of the
stress tensor. The results obtained are plotted in Fig. 14. As
seen, there is correlation between the ρσ average dislocation
density obtained from the stress maps and the 〈ρ〉 density
found by the XPA, but the relation is clearly not linear. One
can also note that in some points (for example, in the fourth),
a higher difference is present. This is probably due to the
local nature of the HR-EBSD but also due to the fact that the
measurements were carried out on different samples, not on
the same surface and place. Moreover, the Ci j geometrical
factor may vary with stress and due to the finite volume

FIG. 15. In the upper image, the correlation dimension Dc is
presented versus the Hausdorff-dimension DH obtained by box
counting. In the down figure, the average dislocation density fluc-
tuation is shown in function of the Hausdorff-dimension.

illuminated by the electrons, we cannot detect the small dislo-
cation dipoles (see above). So, the HR-EBSD internal stress
analysis is a possible method for the determination of the
dislocation density, but the issue requires further investigation
to be able to produce dislocation density values with high
precision.

The average GND density ρGND defined by Eq. (9) was also
determined from the Nye’s tensor maps. According to Fig. 14,
as a general trend ρGND increases with increasing deformation,
but due to the large dislocation density fluctuation, to get
more precise GND density values, one should perform EBSD
measurements on a very large area that was not possible with
the setup used.

After the image binarization with the method explained
above, the fractal dimensions of the ρGND maps plotted in
Fig. 12 were also determined by both the box-counting (DH )
and correlation dimension (Dc) analysis. The results obtained
are plotted in Fig. 15. It is found that Dc ≈ 0.95DH , so the two
methods give the same fractal dimension within experimental
error. This consistent correlation confirms the formation of a
special dislocation structure with noninteger (fractal) dimen-
sion. It is, however, a nontrivial and somewhat unexpected
result that the fractal dimension is decreasing with increasing
relative dislocation density fluctuation σ . In other words, in
the stage II deformation regime, the fractal dimension de-
creases with increasing stress level but it starts to increase in
stage III. So, like the relative dislocation density fluctuation,
the fractal dimension also has an extremum value at the stage
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FIG. 16. The ρGND · ai, i = 1...6 maps obtained on the sample
compressed up to 43.12 MPa.

II to III transition. This means that the factal dimension is not
controlled directly by the average dislocation density but the
relative dislocation density fluctuation. This behavior has a
rather important implication for the general form of the theory
of dislocation patterning. A proper theory should predict the
dislocation density fluctuation, not only the average disloca-
tion density. In Sec. IV D, a method was outlined to analyze
Burgers vectors based on the projection of vector �B to the
different possible Burgers vectors [36]. For the sample de-
formed up to 43.12 MPa the different ρGND · ai maps obtained
are plotted in Fig. 16. Similar behavior is found for the other
samples. As seen, some of the walls have a positive (red) or
negative (blue) net Burgers vector while the other ones are
more dipole like with a positive net Burgers vector on one
side and a negative one on the other side.

This picture somewhat refines the composite model pro-
posed by Mughrabi et al. [37,38]. In the original form of
the model, the sources of the long-range stress are the two
dislocation walls allocated on the two sides of a cell wall. The
dislocation walls are formed by the reaction of dislocations
in two slip systems, resulting in a Burgers vector parallel to
the surface of the cell wall, i.e., the GND structure imagined
is dipolelike. However, an elongated region with finite length
d having a net Burgers vector can also generate long-range

internal stress within the connected d × d sized area. So, the
sources of the long-range stresses are not necessary dipolelike
walls as assumed earlier.

VI. SUMMARY AND CONCLUSIONS

Copper single crystals oriented for (100) ideal multiple
slips were compressed uniaxially up to different stress levels.
The dislocation microstructures developing in the samples
were studied by XPA and HR-EBSD.

The main conclusions are:
(1) It is shown that HR-EBSD offers an efficient method

to study dislocation microstructures with much less sample
preparation effort than TEM conventionally applied.

(2) The presence of the long-range internal stress de-
veloping in the cell interiors is directly seen by HR-EBSD
measurements. Moreover, the stress maps can be directly mea-
sured.

(3) Some of the walls have a positive or negative net
Burgers vector while the other ones are more dipolelike with
positive net Burgers vector on one side and negative one the
other side;

(4) According to x-ray line profile investigations on com-
pressed Cu single oriented for ideal multiple slips, the relative
dislocation density fluctuation exhibits a sharp maximum at
stage II to III transition stress level;

(5) The most important finding of the investigations is
that the dislocation cell structure is well described by a hole
fractal with fractal dimension decreasing monotonically with
the relative dislocation density fluctuation. So, it is directly
controlled by the level of fluctuations developing in the sys-
tem.

The results obtained can be directly compared to the pre-
diction of the theoretical models, so they can help to inspire
and validate them. Finally, it is important to emphasize that
there are still a lot of issues that should be addressed. One
very important question is related to size effect, especially
the formation of cells in micropillars, that may lead to unique
interesting results. Moreover, it would be important to study
in situ the cell formation process.
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