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One-dimensional magnetism and Rashba-like effects in zigzag bismuth nanoribbons
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Discoveries of low-dimensional quantum materials have renewed interest in some of the fundamental phe-
nomena, such as magnetism and Rashba-type spin orbit coupling. In particular, exploring these phenomena by
themselves and/or in combination within one-dimensional (1D) systems is of interest for fields as disparate as
spintronics and biology. For example, a better understanding of Rashba-type spin orbit coupling in 1D systems
may be used to explain spin-selective electron transport in long helical molecules. In this paper, using first
principle calculations, we show that each edge of a zigzag nanoribbon composed of a bismuth (Bi) bilayer is a
truly 1D structure that naturally combines both 1D magnetism and Rashba-type spin orbit coupling in a single
system. In particular, we study the combined effects of exchange and spin-orbit coupling in nanoribbons that are:
(i) ideal freestanding, (ii) placed on a hexagonal boron nitride substrate, and (iii) decorated with N atoms. The
edges of the Bi zigzag NRs can display ferromagnetic, antiferromagnetic, or noncollinear ordering, resulting in
a broken quantum spin Hall state. The interplay of Rashba and exchange effects in different magnetic phases can
result in different spin-dependent transport regimes.
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I. INTRODUCTION

The Rashba effect refers to the spin-splitting in electronic
bands due to spin-orbit coupling (SOC) that appears in the
case of broken structural inversion symmetry in a crystal
(due to the presence of a surface or an interface) [1,2]. The
discovery of topological insulators has reinvigorated inter-
est in the Rashba effect, with its potential to advance the
field of spintronics, wherein Rashba-type SOC plays a key
role in the generation and manipulation of spin currents [3].
Although the Rashba effect is normally associated with 2D
systems (surfaces, thin films, layered structures), it has also
been experimentally realized in 1D systems, such as gold
(Au) chains on the vicinal Si(111) and Si(557) surfaces [4,5],
platinum nanowires on a Si(110) surface [6], lead NRs on a
Si(553) surface [7], Bi zigzag chains on an InAs(110)-(2×1)
surface [8], on the edges of Bi island on a Si(111) surface [9].
New and interesting physical aspects emerge when 1D Rashba
systems are subjected to an external magnetic field. If, for
example, a 1D system has an electronic spectrum that consists
of two spin-resolved parabolic bands (shifted relative to each
other in k space), then applying an external magnetic field
perpendicular to the intrinsic Rashba spin-orbit field opens a
gap at the crossing point of the bands. As a result the system
can be transferred into a helical liquid state, provided that
the Fermi level is within the gap. Such a helical liquid state
was experimentally realized in the GaAs/AlGaAs quantum
wire, where a quantized conductance with opposite spins
propagating in opposite directions was clearly observed [10].
Similar physical arguments explain why electrons of certain
spin can traverse the helix-shaped molecules in biological
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systems more easily in one direction than in the other [11].
In addition, the 1D Rashba system in a helical liquid state is a
key ingredient for producing Majorana fermion bound states
[12–15].

As noted by Takayama et al. [9], the quantum wires
(nanowires) grown on semiconductor surfaces, or systems
such as the Au chains on vicinal Si surfaces, are only quasi-
1D and not true 1D Rashba systems. In all wires of this
sort, structural inversion asymmetry (SIA) and corresponding
Rashba spin-orbit coupling stem either from the underlying
substrate or from the asymmetry between the opposite edges,
and are not associated with single edges [16]. In contrast, the
edges of a 2D topological insulator can be viewed as truly
1D Rashba systems due to the existence of topological edge
states. Among the 2D topological insulators, the most known
and studied is the Bi (111) bilayer, which exhibits giant spin
splitting due to the fact that Bi is a heavy element with a
large spin-orbit coupling. It has been suggested that applying
a magnetic field or adding magnetic impurities to the bilayer
will break the time-reversal symmetry and therefore can lead
to new physical properties like dissipationless spin transport
[9].

There are good reasons, however, to think that collective
magnetism can exist in Bi structures without any exter-
nal magnetic fields and any foreign magnetic impurities.
Indeed, the recent discovery of ferromagnetic-like anoma-
lous Hall effect in bismuth crystals suggests that magnetism
in the system can be induced due to the presence of sur-
faces and grain boundaries [17]. This is consistent with
the first-principles calculations [18] showing that the sur-
face magnetization in Bi thin films due to the unsaturated
Bi atoms with dangling bonds. In addition, Jin et al. [19]
showed that (ferro)magnetism in Bi bilayers can be induced
upon adsorption of the nitrogen (N) atoms on one side and

2475-9953/2023/7(2)/026204(12) 026204-1 ©2023 American Physical Society

https://orcid.org/0000-0002-6884-6737
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevMaterials.7.026204&domain=pdf&date_stamp=2023-02-22
https://doi.org/10.1103/PhysRevMaterials.7.026204


IVAN I. NAUMOV AND PRATIBHA DEV PHYSICAL REVIEW MATERIALS 7, 026204 (2023)

hydrogen atoms on the other side of the bilayer. Although
the edges of Bi (111) nanoribbons are 1D systems, unlike
the 3D and 2D Bi structures that were considered in other
works [17–19], one can expect that Bi nanoribbons can also
display magnetism due to similar reasons. According to the
first-principles calculations for free-standing bismuth NRs
[20], such a magnetism does exist at the perfect (ideal) zigzag
edges, when the atoms are constrained to their bulk positions.
The magnetism is induced due to unpaired electrons in the
dangling bonds of the edge atoms (one electron/edge atom).
However, when allowed to relax or undergo reconstruction,
these edges become nonmagnetic (NM) due to the pairing of
electrons in dangling bonds at the NR edges [20,21]. Although
such a relaxation/reconstruction occurs in free-standing NRs,
it can be inhibited when the Bi bilayers are strained and/or
placed on a substrate due to various substrate effects, includ-
ing the substrate friction [22,23]. We demonstrate that this is
indeed the case when the Bi (111) zigzag NRs are put, for
example, on a hexagonal boron nitride (hBN) monolayer. In
this case, the NRs retain their geometry and magnetic order.
Even stronger magnetism appears when the zigzag edges are
decorated with N atoms.

Although we demonstrate two scenarios under which the
Bi nanoribbons display collective magnetism, the main pur-
pose of this paper is to use a Bi nanoribbon as a prototype
structure to explore interesting physics emerging from the
combined Rashba and exchange interactions in 1D systems.
In Bi (111) NRs, these effects act locally at the opposite edges
and manifest themselves via the ±k asymmetry, an opening of
a band gap (or pseudogap), spin textures with a net magnetic
moment, along with the other features of the edge band struc-
ture. Such effects are most easily understood in free-standing,
as-created (ideal) NRs, in which various properties are not
modulated due to different sources of perturbations such as
defects, adatoms, strain, and/or substrates. Hence, we first
study the combined “Rashba + exchange effects” in isolation
within the aforementioned as-created NRs, while eliminating
other sources of perturbation. In these 1D magnetic Rashba
systems, we show that the tuning of electronic chemical po-
tential results in different regimes of spin-dependent transport.
This is of interest to the field of spintronics and has not been
discussed yet in the context of 1D Rashba systems. We then
demonstrate practical scenarios under which magnetism at
the edges can be retained by either placing NRs on the hBN
substrate or by decorating it with with N atoms.

II. METHODS

We used density functional theory to study effects of
Rashba SOC in combination with magnetism within three
structures—Bi (111) zigzag NRs with open edges, NRs placed
on the hBN substrate and NRs decorated with N atoms. These
spin-resolved ab initio calculations were carried out by using
the projector-augmented wave method [24] as implemented
in the Vienna ab-initio simulation package (VASP) [25]. We
adopted the PBE generalized gradient approximation (GGA)
to describe the exchange-correlation potential [26]. In all cal-
culations, spin-orbit coupling (SOC) was taken into account.
The kinetic energy cutoff was set to 400 eV. Bi (111) zigzag
NRs were created such that they were of finite width in the

y direction and of infinite length in the x direction, with a
supercell containing 32 Bi atoms for the freestanding NRs. As
periodic boundary conditions were used, we added a vacuum
gap of 25 Å in both the y and z directions to ensure negligible
interaction with the images. A 24×1×1 Monkhorst-Pack k-
point grid was used for the Brillouin zone sampling of the
supercells. To calculate the edge energy (per length) εedge in
free-standing Bi (111) NRs with different edge structures, we
cut the NR of interest into two equal parts along the central
vertical plane in order to produce two more edges of a given
type, one for each half. Then the edge energy εedge was calcu-
lated according to the formula

ENR = 2Ehalf + εedge2L, (1)

where ENR is the total energy of the NRs, Ehalf is the energy
of a half of the NRs, and L is the lattice parameter along the
NRs. We believe that such an approach is more accurate than
the standard one based on the reference to the bulk energy
(per atom) because as defined above, both ENR and Ehalf

are calculated keeping the same supercell lattice parameters
and k-point grid. Since the Klein edge structure dimerizes,
to calculate its formation energy we used a 2×1 supercell
containing 64 and 32 Bi atoms for the total NR and its half,
correspondingly.

We also considered two scenarios—presence of substrates
and adsorption of N atoms—in which the Bi NRs display a
magnetic ground state (even after relaxation). To simulate the
Bi/hBN heterostructure, we used the (1×1) Bi on (

√
3 × √

3)
hBN commensurate structure to create the supercell, which
consisted of 24 Bi atoms and a total of 96 substrate atoms
(i.e., B and N atoms). Although initially commensurate, in the
process of relaxation the simulated heterostructures became
incommensurate in the y direction (i.e., along the direction
of NR’s finite width), while the commensurability along the
infinite x direction was retained. For the N-decorated Bi NRs,
the zigzag edges decorated with N atoms were simulated as
Klein (or “bearded”) edges, in which each N atom is attached
to each edge Bi atom.

III. RESULTS

A. Competing edge structures of free-standing Bi bilayers

Here, we consider the relative stability of the zigzag
edge-derived structures in the freestanding Bi bilayers, which
previously have been identified as the most stable ones [20,21]
(Fig. 1). According to Ref. [21], the Bi (111) zigzag nanorib-
bons favor the shear distorted edge (SE), which, however, is
only slightly lower in energy (by 0.7 meV per edge atom)
than the relaxed edge (RE). On the other hand, according to
Ref. [20], the lowest energy structure is the one that undergoes
a 2×1 reconstruction, which can be viewed as a dimerized
Klein edge (DKE). Thus, the question that naturally arises
is: “What is the most stable edge structure of Bi bilayers?”
Our calculations summarized in Table I show that out of
the three edge terminations, DKE has the lowest formation
energy. At the same time, RE and SE are almost degener-
ate in energy, in agreement with Ref. [21]. Surprisingly, the
difference between the formation energies of DKE and RE ter-
minations (18.1 meV per edge atom) is twenty times smaller
than that predicted by Peng et al. [20]. This is a significant
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FIG. 1. (a) Side and top views of the Bi (111) NRs with the
zigzag relaxed edges (REs). (b) The top view of the structure with
the shear distorted edges (SEs). The black vertical arrows indicate
the shear distortions. (c) The side and top views of the edge structure
with the dimerized Klein edges (DKEs).

discrepancy in results, which can be attributed to the authors
[20] not accounting for the SOC when determining relative
structural stability. Indeed, as shown by Jeong et al. [21],
the presence of SOC greatly affects the stability of different
edge structures since the existence of topologically protected
gapless edge states tends to inhibit Peierls-like distortions
and 2 × 1 reconstructions. Hence, our result showing a small
difference between the formation energies of DKE and RE
in Bi bilayers is more accurate. This is also consistent with
the experimental observations [9,20,27,28]. The edges with
a zigzag geometry, which we call RE in this paper, have
been experimentally observed at the boundaries of single Bi-
bilayer islands that form on Bi (111) surfaces of bulk crystals
and/or thin films [that, in turn, are grown on a Si(111) or
NbSe2 substrate] [9,20,27,28]. Typically such islands appear

TABLE I. Formation energies (in meV per edge atom) for dif-
ferent edge structures of Bi zigzag NRs. Presented are both absolute
values and relative to DKE.

Edge structure Absolute values Relative to DKE

RE 513.1 18.1
SE 512.4 17.4
DKE 495.0 0

in the shape of truncated triangles with alternating longer and
shorter edges, with both of the edge terminations propagating
along the zigzag orientations [20,27,28]. In Ref. [27], the
longer (shorter) edges were named type A (type B) edges. The
shorter type B edges, which form on the thin films, have been
identified as the reconstructed DKEs [20,28], while the type
A edges have been identified as the zigzag type (i.e., as RE)
[27]. Since the type A (RE) edges are longer, one expects that
in experiment, they are energetically more favorable or at least
comparable to the DKEs, in contrast to the prediction by Peng
et al. [20]. Hence, our calculation, which account for SOC,
correctly show that RE and DKE terminations are comparable
in energy. In fact, since Bi-bilayer islands in experiments were
placed on substrates, it is clear that the substrates with trigonal
or hexagonal symmetries tend to favor the RE structure over
the DKE structure. Thus, in many practical situations the
zigzag edge structure of the Bi NRs will be preserved. This
is exactly what we find when we place the Bi NRs on the
hBN substrate (to be discussed in detail later). It should be
added that all three edge structures—RE, SE, and DKE—are
nonmagnetic and display a quantum spin Hall (QSH) state, in
which the edge bands (both topological and trivial) connect
the bulk valence and conduction bands continuously.

B. “Rashba + exchange” effects at perfect zigzag edges

In order to study “Rashba + exchange” effects in a true
1D structure, we first consider an ideal as-created Bi (111)
zigzag NRs. In these NRs, we fix the atomic positions to
those in an infinite 2D Bi bilayer with the equilibrium in-
plane lattice parameter of 4.340 Å. For this as-created zigzag
nanoribbons, we found three stable spin configuration, de-
pending on different initializations of the atomic magnetic
moments. The NM solution corresponds to a QSH state and
is the one reported in literature for Bi-NRs studied under
different situations [20,29–34]. The other two solutions for the
as-created (ideal) NRs are magnetic. To date these magnetic
solutions had not been considered in literature. In analogy
with graphene NRs [35], we call them antiferromagnetic
(AFM) and ferromagnetic (FM). Both of the magnetic struc-
tures are lower in energy than the paramagnetic structure
(by ∼17 meV per edge atom). Figure 2(a) shows the band
structure of the NM nanoribbon (QSH state). The edge bands
are plotted in green and orange colors, while the black color is
used for the bulk states. The spectrum is gapless because the
edge bands connect the valence and conduction bulk bands
at � and meet each other at the X point, the time-reversal
invariant momentum (TRIM). The double degeneracy of the
edge bands comes from the fact that there are two equivalent
edges. The degenerate states from the opposite edges have
opposite spins as can be seen by comparing the edge states
in panel (b) with (d) and those in panel (c) with (e) within
Fig. 2. Also note that the states on each edge are spin-split,
with the upper and lower bands in Figs. 2(b)–2(e) tending
to have opposite spins at a given k, especially near the �

point. Thus, the edge states show spin splitting due to the
Rashba effect. This Rashba effect is local in the sense that
it is associated with the in-plane potential gradient at each
edge. The system, however, possesses inversion symmetry I ,
which is global, as well as time-reversal symmetry T . The
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FIG. 2. Band structures of the nonmagnetic (NM) Bi (111) zigzag bilayer NR. (a) The edge bands localized on the left and right edges of
the NRs are indicated by the green and orange circles, respectively. The bulk states are represented by the black curves. The edge states from
the opposite sides are degenerate. Note that the gap between the edge bands and the bulk conduction bands is due to the finite width of the
considered NR, which contains 16 zigzag chains. This gap should ultimately close for wider NRs, according to bulk-surface correspondence
in 2D topological insulators. [(b)–(e)] Spin-resolved band structures for the edge bands localized on the left [(b),(c)] and right [(d),(e)] sides.
The panels (b) and (d) correspond to the ±Sy, while panels (c) and (e) to ±Sz spin projections; the ±Sx projections being small. Colors code
the expectation values of the spin projections.

combination IT ensures double degeneracy for arbitrary wave
vector k: ε(k,↑) = ε(k,↓).

In the NM state, the spin polarization S of the spin-split
topological surface states rotates in the y−z plane in a helical
manner as one traverses the Brillouin zone along the k vector
(parallel to the x axis) as can be seen in Figs. 2(b)–2(e).
The character of rotation is very similar to that reported in
Refs. [30,31]. In contrast to the typical 2D Rashba systems
where the z-component of S is zero, here this component is
large, especially near � and midway between the � and X
points. This difference between 2D and 1D Rashba systems
can be understood by considering the nonrelativistic Hamilto-
nian operator of the spin-orbit coupling,

HSO = h̄2

2m2c2
(∇V × p) · σ, (2)

where m and p are the mass and momentum of the electron,
c is the velocity of light, ∇V is the gradient of the potential,
and σ is the Pauli matrix vector. For the 1D systems being
considered here, this formula can be rewritten as

HSO = h̄2

2m2c2
(∇Vρ × k‖) · σ, (3)

where ∇Vρ is the gradient of the potential perpendicular to the
periodic direction (x) of the nanoribbon, k‖ is the momentum
along the NR. In the NRs, the gradient ∇Vρ not only has an

out-of-plane component (which is the only component in 2D
systems) but also an in-plane component due to the existence
of the edges. As a result, the momentum k‖ couples not only
with the Pauli matrices σx and σy, but also with with σz.

Along with the NM solution, we also obtained two
magnetic solutions corresponding to AFM and FM spin align-
ments. The distributions of magnetization along the x, y, and
z directions in these magnetic phases are shown in Fig. 3.
It turns out that in the case of the AFM phase, only the
My and Mz components of the total magnetic moment M at
each edge are nonzero, with the Mz component being the
dominant one (∼0.3μB). These nonzero y and z components
are ordered antiferromagnetically between the edges, hence
the label “AFM”. In fact, there are two equivalent AFM states
and two equivalent FM states; they are symmetry related and
can be obtained from each other by reversing all magnetic
moments. In the FM case, all the spin components at the two
edges are aligned with each other. In contrast to the AFM case,
here the total magnetic moment on the edges M is noticeably
larger in magnitude (∼1.1 μB), and lies in the x−z plane, with
a very small absolute value for My. As seen in the band
structures [Figs. 4(a) and 4(b)] for AFM configurations, the
fourfold degeneracy at the X point is lifted, and a gap �Eex of
about 0.5 eV appears between two doubly-degenerate levels.
This splitting in the energy bands is due to the exchange
interaction. The edge bands are asymmetric with respect to the
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FIG. 3. Spin densities of the NR with the open edges corresponding to AFM (left panel) and FM (right panel) solutions. Blue (yellow)
color indicates the negative (positive) isovalues in the isosurface plots.

origin (k = 0) because the system is no longer invariant under
both I and T symmetries if they are considered separately. In
addition, as noted earlier, there are two equivalent solutions
for the AFM case. For one solution, the maximum of the edge
band in orange, for example, is shifted from � to the right
[Fig. 4(a)], but for the other solution to the left [Fig. 4(b)]. In
either case, though both I and T are broken, their combination
IT is respected. Hence, just like in the case of NM solution,
the bands are doubly degenerate since I and T both transform
k to its inverse −k [36–38]. Moreover, since I also inverts
the left and right edges of the NR, the double degeneracy can

be written as ε(k, R ↑) = ε(k, L ↓), where the labels L and R
indicate the left and right edges [compare orange and green
curves in Figs. 4(a) and 4(b)].

Similar to the AFM solution, for the FM case the fourfold
degeneracy at the X point is also lifted due to the exchange
interaction [Fig. 5(a)]. However, unlike the AFM solution, the
edge bands between � and X are nondegenerate. This is owing
to the fact that in the FM case, although the inversion symme-
try, I , is preserved, the simultaneous symmetry, IT , is broken
due to the broken time-reversal symmetry [36–38]. The pres-
ence of I , makes the band structure symmetric relative to �:

FIG. 4. [(a),(b)] Band structures of the magnetic Bi (111) zigzag bilayer NR for the AFM stable self-consistent spin configurations. The
edge bands localized on the left and right edges of the NRs are indicated by the orange and green circles, respectively. The bulk states are
represented by the black curves. Two different band structures (a) and (b) correspond to two equivalent AFM solutions with opposite spin
moments. Similar to the NM case, for the AFM structure, the edge states from the opposite sides are degenerate. To emphasize this, the orange
circles in panels (a) and (b) are made larger to stand out. The oblique black arrows indicate the shift of the bands along the k axis relative to
those in the nonmagnetic phase [see Fig. 2]. (c) Schematic diagram showing Rashba effect in Bi zigzag NRs acting locally at each edge, where
the potential gradients or electric fields develop. This is in contrast with the ordinary 1D systems, where such fields are usually associated with
the nonequivalent edges (d).
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FIG. 5. Band structure for the Bi (111) zigzag bilayer NR with the FM configuration, without (a) and with [(b),(c),(d)] spin projections.
In the panel (a) the edge bands localized on the left and right edges of the NRs are indicated by the orange and green circles, respectively.
The panels (b), (c), and (d) correspond to the ±Sx , ±Sy, and ±Sz spin projections, respectively. Colors code the expectation values of the spin
projections.

ε(k, R ↑) = ε(−k, L ↑) [compare orange and green curves in
Fig. 5(a)]. These curves cross each other at the inversion-
invariant momenta, �, –X, X, since for them −k = k. As the
ferromagnetic order develops, it shifts the bands localized on
a particular edge along or against the k vector, so that, for
example, ε(k, R ↑) �= ε(−k, R ↑). This is similar to what was
observed in the AFM case.

The shift of the edge bands relative to � in the AFM and
FM phases is a result of the interplay between the Rashba and
exchange effects [39]. In the AFM case, the magnetic moment
at each edge is directed mostly along the z (or –z) direction,
i.e., perpendicular to the k vector. In such a situation, the
bands should shift along the k vector [39], and this is indeed
the case. The bands with the opposite spins at the opposite
edges shift in the same direction. This fact actually means that
the Rashba effect in our systems operates locally at each edge,
where the potential gradients and electric fields develop. This
is shown in the schematic diagram in Fig. 4(c), and it is in
contrast to what takes place in ordinary trivial 1D systems,
where the Rashba SOC is usually induced by SIA associated
with the nonequivalent edges [see Fig. 4(d)].

In Fig. 5, along with the edge-resolved band structure
[Fig. 5(a)], we also plot spin-resolved band structures in the
FM phase [Figs. 5(b)–5(d)]. These band structures augment
the real-space information provided by Fig. 3 for the FM
phase and help to understand the corresponding distributions
of magnetization and total magnetic moments. Both the left

and right edge valence bands can be seen in Figs. 5(b) and
5(d) to have mostly negative spin components Sx and Sz when
the k traverses from –X to X. Hence, at both edges, the x
and z components of total magnetic moment M are negative
and are relatively large in magnitudes. On the other hand,
the same bands tend to switch their Sy component upon the
reversing the k vector [Fig. 5(c)]. This explains why the y
component of the total magnetic moment at both edges, al-
though negative, is relatively small in magnitude. The detailed
information provided in edge- and spin-resolved band struc-
tures [Figs. 5(a)–5(d)], along with the real-space spin-density
plots [Fig. 3 ] point towards a possibility of different transport
regimes in Bi NRs (see the discussion in Sec. III E).

C. “Rashba + exchange” in Bi nanoribbons
placed on the hBN monolayer

We now consider an experimentally-relevant situation
when a Bi NR is placed on a substrate, such as an hBN mono-
layer. The corresponding heterostructure can be described by
a (1×1) Bi on (

√
3 × √

3) hBN moiré supercell, with a very
small lattice mismatch of an only about 0.2–0.3%. Although
there are infinite possibilities corresponding to the horizontal
shifts of the Bi bilayer relative to the hBN monolayer, we
considered three types of starting alignments (i.e., stacking
orders before relaxation) between the two components—Bi
and hBN—of the composite. These three stacking orders
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FIG. 6. Separations between the neighboring chains of Bi atoms, straight and parallel to x, in the y direction in the relaxed Bi/BN(N)
heterostructures obtained without (a) and with (b) the inclusion of SOC at a = 4.340 Å. The pairs of chains are counted in the direction from
the left edge to the right. The horizontal dash lines are guides for the eye showing the distances in the middle of the NRs. (c) Spin density
(its dominant y component) for the Bi/hBN(N) heterostructure with the FM configuration and corresponding to panel (a). Blue (yellow) color
indicates the negative (positive) isovalues in the isosurface plots. The total magnetic moments of the heterostructure is [0.00,−0.60,0.46] μB.
(d) Top view of the heterostructure. The grey circles indicate N atoms and green–B atoms.

correspond to all Bi atoms of the bilayer, before structural
relaxation, directly on top of: (i) the B atoms in hBN [referred
to as Bi/hBN(B)], (b) N atoms [referred to as Bi/hBN(N)],
and centers of hBN hexagons [referred to as Bi/hBN(H)].
When all atoms are allowed to relax, we find that only the
outmost Bi atoms and their nearest neighbors change their
positions noticeably. The relative stability of the different
stacking orders depends on whether or not SOC is taken
into account. Without the inclusion SOC, Bi/hBN(B) is the
lowest energy structure, while the lowest energy structure
is found to be Bi/hBN(N) once SOC is included in the
calculations.

Interestingly, all the relaxed Bi/hBN structures found with-
out the inclusion of SOC in calculations exhibit both FM and
AFM magnetic ordering. However, the magnetism disappears
in going to the optimized structures obtained with SOC. In
order to understand why the heterostructure relaxed with and
without the SOC effects display different magnetic properties,
we compared the respective structures for relaxed Bi/hBN(N)
composite [obtained for a = 4.340 Å, lattice constant for an
isolated bilayer sheet]. Figures 6(a) and 6(b) show how far
the neighboring chains of Bi atoms, straight and parallel to x,
are separated from each other in the y direction (i.e., across
the NRs). One can clearly see that the SOC effects lead to
more pronounced edge relaxations and thus, to the quenching
of the magnetism at this particular a.

Our explanation above for the loss of magnetism when
SOC is included in the calculations, also indicates that in-
creasing the distances between dangling bonds at the edges
can be a way to retain magnetism in the composite. We
find that this is indeed the case and in spite of SOC, Bi
bilayer placed on hBN retains its magnetism if it is stretched

by a small amount (by 2% or more). It should be added
that the slight straining of the free standing Bi-bilayer NRs
does not result in magnetism. Hence, we find that we need
a combination of both strain (whether present intentionally
or unintentionally) and substrate effects to obtain magnetic
structures.

We now concentrate on an unstrained ferromagnetic
Bi/hBN(N) heterostructure, obtained without the inclusion
of SOC [corresponds to Fig. 6(a)]—it exhibits similar band
structure as the ones stretched and relaxed with the inclusion
of SOC. This heterostructure has a total magnetic moments
of [0.00,−0.60,0.46] μB, and its distribution of magnetization
along the y direction is presented in Fig. 6(c). The corre-
sponding band structure resembles that for the FM phase in
free-standing systems (cf. Figs. 7 and 5). Now, however, the
(two) edge bands localized at the left (right) side of the NR
cross each other approximately at one/half of the way from
–X to � (from � to X). The other differences come from the
fact that now the inversion symmetry I is broken: The opposite
edges of the NRs become inequivalent because one edge ter-
minating in the upper Bi atoms within the buckled Bi bilayer
is now closer to the vacuum, whereas the opposite edge, which
terminates with the lower Bi atoms, is closer to the substrate
layer. As a result, the band structure is no longer symmetric
relative to to the origin, resulting in ε(k, R ↑) �= ε(−k, L ↑).
Moreover, the pairs of edge bands from the opposite edges
do not cross any longer at the X and � points. The crossing
point of the two lower bands shifts from −X to the right. At
the � point, small energy gaps of ∼17 and 27 meV open up
for the pair of edge-derived valence and conduction bands,
respectively. These energy gaps can be understood as gaps be-
tween the bonding and antibonding bands due to hybridization
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FIG. 7. Band structure for the Bi/hBN(N) heterostructure with the FM configuration, without (a) and with [(b),(c)] spin projections. In the
panel (a) the edge bands localized on the left and right edges of the NRs are indicated by the orange and green circles, respectively. Within the
narrow k interval centered on �, where the orange and green circles are replaced by black ones, the states are not well localized and spread
over the entire NR width as k → � (see the main text). The panels (b) and (c) correspond to the ±Sy and ±Sz spin projections, respectively.
(d) Charge density plot for the highest-energy state at the � point, which is results from hybridization between the edge states and is delocalized
over the entire region between the two edges.

between the right and left edge states. Such a hybridization is
especially pronounced within the narrow k interval centered
around �, as shown in Fig. 7(a) by replacing orange and green
circles by black ones. Within this interval, the wavefunctions
are no longer localized to one of the edges as seen in Fig. 7(d),
which is plot of one of these hybridized state (highest energy
state) at the � point. It can be seen to be delocalized over the
region spanning between the two edges.

D. Zigzag nanoribbons decorated with N atoms

As mentioned earlier, the magnetic structures for the as-
created NRs are lower in energy than the paramagnetic
solution (by ∼17 meV per edge atom) but not significantly.
Therefore, we considered ways in which the magnetic struc-
tures can be stabilized to a greater extent relative to the NM
solution. One possible way to achieve this is by adsorbing
nonmagnetic atoms, such as nitrogen, on the edges [19,40]. To
study the effect of N-atom decoration, the Bi atoms along the
edges were passivated with N atoms, transforming the zigzag
edges into Klein (or “bearded”) edges. Upon relaxation, the
Bi-N bond was found to be 1.97 Å with a variation of about
±0.02 Å for different stable spin configurations. As in the
previous case of open edges, the self-consistent calculations
yielded three stable and metastable spin configurations, which
we denote as NM, FM and FM-AFM. Both of the magnetic
structures are significantly lower in energy than the NM struc-
ture (by 650 meV per N atom), whereas the FM structure
is lower than the FM-AFM structure by 10 meV. In the FM
phase, all three components of the total magnetic moment M
are ferromagnetically ordered between the edges. In the case

of the FM-AFM structure, however, we obtain a noncollinear
magnetic ordering. In this case, only the Mx components phase
are parallel to each other, while the other two—My and Mz—
are antiparallel. In both the FM and FM-AFM phases, the Mx

component is relatively small in magnitude.
In what follows, we will discuss the lowest energy solution

(FM) in greater detail. Figure 8(a) shows the band structure of
the nonmagnetic N-decorated nanoribbons. Figure 8(a) shows
that: (i) the edge bands span the bandgap as well as connect
the valence and conduction bands and (ii) there are an odd
number of edge-bands crossings (at EF ) between the � and X
points. This strongly supports the presence of the QSH state in
the decorated NR. Hence, we find that the edge bands, which
originate from the dangling bond states, are transformed into
topological surface states due to the topological nature of Bi
bilayers. The introduction of ferromagnetic order changes the
band structure dramatically opening up a noticeable band gap
at EF (∼0.2 eV) and splitting the fourfold degenerate energy
levels at the X point [see Fig. 8(b)] due to the exchange
interaction. In addition, just as in the case of NR with open
edges, although the inversion symmetry I in the FM phase
is preserved, IT is broken due to the broken time-reversal
symmetry. This lifts the degeneracies between � and X points.
The edge bands localized at the opposite sides are shifted in
the opposite directions relative to � [compare the bands in
orange and green in Fig. 8(b)]. The shift, however, is notice-
ably smaller as compared to that for FM bare/undecorated
NR despite the fact that the magnetic moment of the FM
N-decorated nanoribbon is significantly larger [∼4 μB per
supercell]. This can be explained by the fact that the band
shift is controlled not only by the magnitude of magnetization
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FIG. 8. Band structure for the Bi (111) zigzag bilayer NR decorated with nitrogen atoms, for the (a) NM and (b) FM states. In (b), the
bands drawn with orange (green) circles are localized at the left (right) edge of the decorated NR.

and gradient of the edge potential but also by the SOC of
the outmost atoms [41]. Here, the outmost atoms are nitrogen
with relatively weak SOC. The calculated magnetic moment
of ∼4 μB per supercell (or equivalent to 2 μB per N atom) is
mostly contributed by the nitrogen atom’s px and pz orbitals,
which are poorly aimed at the nearest Bi atoms and therefore,
only slightly hybridized with bismuth’s p orbitals (in contrast
to py). Figure 9 shows the distributions of magnetization in a
FM nanoribbon whose net magnetic moment is M= [−1.15,
−2.22, 2.90] μB. In magnitude, this is three times the mag-
netic moment calculated for the FM NR without N decoration.
Small contributions to the net magnetic moment also come
from the nearest and next-nearest-neighboring bismuth atoms,
with moments on nearest neighboring Bi atoms antiparal-

lel and those on next-nearest neighboring Bi parallel to the
moments on N atoms. The distributions of magnetization in
Fig. 9 are consistent with the corresponding spin-resolved
band structure shown in Fig. 10. Indeed, the spin polarized
bands across the Fermi level in Fig. 10 show that the x and y
components of the total magnetic moment should be negative,
while the z component positive.

E. Possible transport regimes

Our results reveal that the magnetic Rashba Bi (111) NRs
can exhibit different transport regimes when doped, or sub-
jected to an external electric field. To illustrate this, consider
only the ideal zigzag NRs. If, for example, the chemical

FIG. 9. Spin densities of a NR with the edges decorated with nitrogen, for a FM solution. Yellow (blue) colors in the spin density plots
correspond to positive (negative) isovalues of the plotted quantity. In the cases of x and z magnetizations, an expanded view of the NR edges
are shown on the right.
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FIG. 10. Band structure for the NR decorated with nitrogen atoms with FM spin configuration, showing spin projections. The panels (a),
(b), and (c) correspond to the ±Sx , ±Sy, and ±Sz spin projections, respectively. Colors code the expectation values of the spin projections.

potential μ is tuned to be located within the conduction band
(say, at ∼0.2 eV) in Fig. 5, then the FM phase is forced into
a half-metallic state, resulting in metallic behavior only for
the spin-up electrons (more precisely, with the positive Sx and
Sz spin projections). This corresponds to a completely spin
polarized electric current, which changes in magnitude if its
direction is reversed or in going to the opposite edge, as shown
in Fig. 11. Under a similar doping, the AFM phase becomes
metallic for the spin-down channel on the left edge but for
the spin up channel on the right edge. The magnitude of the
current again changes if its direction is reversed (see Fig. 11).
New and interesting transport regimes can be achieved by
applying an in-plane electric field across the NRs. If, for
instance, such a field is applied to the AFM state, then half-
metallicity can be achieved, similar to the case of graphene
nanoribbons as discussed in Ref. [42]. This also means that the
magnetic properties of the NRs can be controlled by external
electric fields.

When heavily n doped, the FM Bi (111) NRs with N
decoration will behave similar to their FM counterparts with
open edges, as far as their edge transport regime is concerned.
This can be seen from the spin-resolved band structure shown
in Fig. 10. On the other hand, for a smaller extent of n doping,
the edge states will counterpropagate along the same edge
with opposite spins, thus resembling QSH state.

FIG. 11. Schematic of transport in the FM and AFM Bi zigzag
NRs under n doping. The edge states carrying opposite spins are
denoted by red and blue.

IV. DISCUSSION AND SUMMARY

In this paper, we demonstrated that the Rashba and ex-
change effects act locally at each edge of the Bi zigzag NRs
due to the topological edge states. To better understand and
appreciate this result, it is instructive to compare our results
with those obtained for the 1D Rashba magnetic systems
of conventional type, such as graphene zigzag nanoribbons
(ZGNR) in the presence of foreign magnetic elements. As
shown in Refs. [43,44], ZGNR become magnetic by adsorb-
ing, in particular, magnetic gadolinium (Gd) atoms. It was
found that when the Gd atoms are adsorbed right at the center
of the nanoribbon, which preserves the spatial inversion sym-
metry, the Gd-ZGNR does not show any Rashba spin splitting
and the band structure does not shift as the magnetization
direction is changed. In contrast, in our FM phases, reversing
the magnetization also reverses the shift of the bands on each
particular edge, with the green curves in Figs. 5(a) and 8(b)
transforming into orange ones and vice versa, leaving the band
structure effectively unchanged. Further, when the Gd atoms
in a Gd-ZGNR are adsorbed on the asymmetric sites and
break the spatial inversion symmetry, the Rashba effect comes
into play and the band structure exhibits opposite horizontal
shifts for the opposite magnetizations (along [001] and [001̄]).
The shifted bands stem from the hybridized Gd-5d and C-pz

orbitals and are not confined to the edges, as contrasted to Bi
(111) NRs, where such bands are localized at the edges.

This different manifestation of the Rashba effect in Gd-
ZGNRs and Bi (111) NRs (decorated or not) can be explained
in the following way. In ZGNRs with the Gd atom adsorbed
at asymmetric sites, the Rashba-effect is associated with the
transverse electric field, which is caused by the asymmetry
of the NRs as a whole [as in Fig. 4(d)]. On the other hand,
in the Bi (111) counterparts, the Rashba effect is associated
with the local electric fields that are generated at the border
between the edges and vacuum [as in Fig. 4(c)]. Formally,
the Rashba-type effect in Gd-ZGNRs should be considered as
Dresselhaus effect. This is because in the Gd-ZGNRs with the
asymmetric placements of Gd atoms, the inversion symmetry
of the supercell is broken in the same way as the inversion
center in the crystal. In contrast, the Rashba effect in Bi (111)
nanoribbons results from the edge electric fields, which are
analogous to the electric field across the “surface-vacuum” in-
terface, or between two different layers in 2D Rashba systems.
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In summary, our study reveals interesting interplay be-
tween exchange and Rashba effects in Bi (111) bilayer zigzag
NRs, with ideal edges, on a BN substrate and decorated with
N atoms. In order to understand this interplay of exchange
and Rashba effects, these effects were first studied a free-
standing ideal zigzag NRs, eliminating all other sources of
perturbations to the NR properties. Since the ideal zigzag NRs
have a center of symmetry and a mirror plane, it makes it
easier to interpret the results. We found that the ideal NRs
can exist not only in a paramagnetic (or quantum spin Hall)
state but also in two magnetic states (FM and AFM) that
are lower in energy. These magnetic states are analogous
to the ones predicted for zigzag-type graphene NRs [35].
The presence of magnetism significantly modifies the band
structure inherent to QSH state, leading to the ±k asymmetry
and opening up a band gap (or pseudogap). The results for
zigzag NRs are then used as a scaffolding to interpret more
complex and experimentally-relevant systems—Bi/hBN het-
erostructures and Bi nanoribbons decorated with N atoms. We
find that the basic properties of the freestanding as-created
Bi bilayer are retained in these more complicated systems,
which can be realized in experiments. When doped, the

magnetic 1D Rashba systems demonstrate unusual, asym-
metric spin-dependent transport properties Thus, our results
open the possibility for new applications of 1D systems in
electronics. This is especially favorable in view of the fact
that recently the templated growth of 1D nanomaterials using
multiwalled carbon nanotubes have been extended to ribbon-
like morphologies. In particular, ultranarrow TaS2 NRs (with
widths below 3 nm, and lengths greater than 10 nm) have been
successfully synthesized [45].
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