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Uncertainty quantification of phase boundary in a composition-phase map via Bayesian strategies
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Phase boundary indicates the conditions of transition between phase regions, which is a key constituent
of a phase diagram. We propose an approach to determine the phase boundary and its uncertainty in a
phase-composition map based on the data from high-throughput experimentation. Bayesian logistics regression
combined with the domain knowledge of phase diagrams was applied in the approach. For a typical ternary
isothermal section, both the linear and nonlinear phase boundaries as well as the vertices of a ternary tie
triangle were modeled to quantify the uncertainty with consideration of a couple of affecting factors such
as data-point density, noise in the data, data coverage, etc. The effectiveness of the present approach was
demonstrated by the Fe-Cr-Ni isothermal section data from database and the Fe-Co-Ni composition-phase map
data by experiment. Moreover, the uncertainty of the phase boundary in the ternary system can be further
reduced by incorporating the available data from the subbinary systems. The data-driven nature of the developed
approach can further guide the efficient implementation of high-throughput experiments and provide confidence
measures for decision-making in materials design and further Computer Coupling of Phase Diagrams and
Thermochemistry (CALPHAD) method modeling.
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I. INTRODUCTION

Phase diagrams are crucial and fundamental for the de-
velopment of materials [1]. A phase diagram is a graphical
illustration of the substance phase regions in a space, ei-
ther a composition space or a temperature-pressure space,
etc. Experimental determination of a phase diagram is cum-
bersome for it requires determining the thermodynamic
equilibrium state in the space point to point. Modeling by
Computer Coupling of Phase Diagrams and Thermochemistry
(CALPHAD) method [2] relies heavily on reliable experimen-
tal data. However, experimental data are limited, especially for
the complicated alloy systems due to the time-consuming and
labor-intensive nature of the work. Thus, efforts are devoted
to accelerating the construction of the phase diagram, particu-
larly for a complicated alloy system.

Early in the 1960s, Kennedy et al. [3] pioneered to deter-
mine isothermal sections of ternary alloy phase diagrams in a
rapid way using deposited films with a composition spread.
Other related attempts have been reviewed in Ref. [4] by
Wong-Ng. One of the key techniques in these attempts is
using a piece of thin film with a composition spread instead
of a uniformly fixed composition. Such a piece of thin film
is called a combinatorial materials chip or a materials library
[5–12]. Combinatorial materials-chip method, which simply
classifies phase region in the composition (X) space by one
chip, has shown great potential in the experimental deter-
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mination of phase diagrams. This method features synthesis
and point-by-point high-throughput structure and chemical
characterizations of a chip with a composition spread; thus,
the phase boundaries can be determined from the dataset of
characterization (Fig. 1). Phase boundary is the key geometric
features of a phase diagram in 2D space, and a phase diagram
can be constructed once all phase boundaries are determined.
Unlike the conventional way, the combinatorial materials-chip
method is data intensive so that machine-learning algorithms
can be applied to make the best usage of data. In addition, data
generated in such a way are comprehensive and systematic,
which naturally suits the machine-learning algorithm. Recent
works have reported a machine-learning–based classification
approach for the efficient construction of phase diagrams
[13–15]. Among various algorithms, Bayesian logistic regres-
sion can determine the phase boundary based on the data
points located on both sides of the boundary, which are gen-
erated by the characterization of the combinatorial materials
chip. Besides, it can provide the probability distribution of the
phase boundary and thus provides critical information for the
design and optimization of materials.

It is realized that there is a certain degree of uncertainty
in any experimentally determined phase boundary. Uncer-
tainty in the experimentally determined composition-phase
map by combinatorial materials-chip method derives from
several sources, including random and systematic errors in
the x-ray-diffraction (XRD) and x-ray fluorescence (XRF)
spectroscopy measurements. For instance, the determination
limit of a phase in XRD is ∼ 3%, depending on the structure,
grain size, signal-to-noise ratio, etc. Besides, the density of
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FIG. 1. Schematic diagram of constructing a composition-phase map of a ternary system by the combinatorial materials-chip method. By
identifying the XRD patterns and XRF spectra point by point, a composition-phase map is obtained (shown on the right-hand side) (for details
please refer to the previous work [7]).

data points during mapping, the unequal data coverage in the
phase region, the form of phase boundary, and the accuracy
of the machine-learning algorithm are all sources of uncer-
tainty. While these uncertainties are known in the construction
of a composition-phase map, quantification of the uncer-
tainty of the phase boundary in a composition-phase map is
infrequently addressed rigorously. Understanding and quan-
tification of the uncertainties provide a confidence measure for
decision-making in materials design and further CALPHAD
modeling.

To quantify the uncertainty in the phase diagram, uncer-
tainty sampling has been employed [13,14]. Paulson et al.
[16] provided a method to quantify the uncertainty of the
location of invariant points and the phase diagram. Besides,
probability distributions for phase fractions, compositions,
activities, sublattice site fractions, and Gibbs energies can all
be accessed. In another work, Bayesian model averaging and
an error-correlation–based model fusion approach have been
used for probabilistic calibration of CALPHAD model param-
eters against the available data in the case of the Hf-Si binary
system [17]. Besides, a method based on Markov chain Monte
Carlo (MCMC) has been used to assess the diffusivity error
in molecular dynamic simulations of a Ni/Al nanolaminate
bilayer in the context of Bayesian statistics [18].

In this study, a method based on Bayesian statistics is
developed to determine and evaluate the uncertainty of all pos-
sible phase boundaries under the principle of the Gibbs phase
rule and cross rule in 2D space. MCMC Metropolis-Hastings
(M-H) algorithm [19] was used to seek an approximate solu-
tion to the posterior distribution. Mathematical models based
on Bayesian statistics have been established to determine the
probability density of two different types of phase boundaries
and the vertices of a ternary tie triangle. The determined prob-
ability distribution or credit interval of the phase boundary
is a quantitative description of the uncertainty of the phase
boundary. Even the points located far away from the boundary
play a role in the probability-density distribution of the phase
boundary.

This approach was first demonstrated using a known
Fe-Cr-Ni isothermal section phase diagram where the data
were generated using the THERMO-CALC software. Then, high-
throughput experimental data of the Fe-Co-Ni ternary system

were used as a case study of the approach. In addition,
known binary phase-diagram data were incorporated into the
approach to reduce the probability distribution of the phase
boundaries. It is shown that the present approach is efficient
in constructing the phase diagrams and offers fruitful informa-
tion for further thermodynamic modeling and an active design
of experiments.

II. METHODOLOGY

The Bayesian theorem states that given some data D and a
model M, the relationship between the posterior distribution
of the model parameter vector θ and the observed data is

P(θ |D, M ) = P(D|θ , M )P(θ | M )

P(D|θ M )
. (1)

P(θ |D, M ) is the posterior distribution of the parameters.
P(D|θ, M ) is the conditional probability of the data given
the model and associated parameters. P(θ |, M ) is the prior
for the model parameters. P(D|M ) is the marginal likelihood
describing the probability of the data being generated by the
model [20]. Though the Bayesian theorem gives a method
to calculate the posterior distribution of the parameters from
the priors, it is however difficult to evaluate the posterior
distribution in an exact way for many problems. A numerical
method—MCMC—-is thus employed to seek an approxi-
mate solution to the exact posterior distribution. Open-source
PYMC3 PYTHON package was utilized for probabilistic calibra-
tion of the parameters in this work [21].

A. M-H algorithm

The M-H algorithm [22], which makes successive jumps
in parameter space according to the proposal distribution, is
a common method employed to sample the posterior distribu-
tion. Whether the sampled parameter vector in each iteration
can be accepted or rejected depends on the M-H ratio r:

r = min

{
1,

π (θ ′)q(θ ′, θ )

π (θ )q(θ, θ ′)

}
. (2)

Here, π is the target distribution, q is the conditional distri-
bution, and θ and θ ′ are the model parameter vector. Sampled
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parameter vector will be accepted if r exceeds a uniformly
distributed random number between zero and one. When the
parameter vectors are sampled by the MCMC M-H algorithm,
qualitative measures of convergence of the chains for the
parameters are conducted by the Gelman-Rubin statistic [23].

B. Gelman-Rubin statistic

In the context of Gelman and Rubin, it is assumed that
h Markov chains have been simulated independently, each
of length n. If the chains have achieved convergence, the
inference is made by computing the sample mean and variance
of each chain. In the case of convergence, the obtained h
inferences should be similar. λi j is the function of interest
evaluated at the jth observation from chain i.

λ̄i = 1

n

n∑
( j=1)

λi j, λ̄ = 1

h

h∑
i=1

λ̄i. (3)

λ̄i is the mean of the ith chain. λ̄ is the mean of all sampled
parameters. The mean of the h within-sequence variances is
given by

W = 1

h

h∑
i=1

1

n − 1

n∑
j=1

(λi j − λ̄i )
2
. (4)

The between-sequence variances are given by

B = n

h − 1

h∑
i=1

(λ̄ − λ̄i )
2
. (5)

Then, the marginal posterior variance V is estimated by a
weighted average of W and B:

V̂ = n − 1

n
W + 1

n
B. (6)

In general, for any finite n, the within-sequence variances
W should be an underestimate of V, as the individual se-
quences have not had time to range over all of the target
distribution, resulting in less variability [24]. Then, the po-
tential scale reduction is estimated by

R̂c =
√

V̂

W
. (7)

As n increases, V̂ decreases and W increases. The R̂c the
threshold for the Gelman-Rubin diagnostic to declare conver-
gence is <1.1 for most cases.

III. MODELING OF A TYPICAL TERNARY
ISOTHERMAL SECTION

In the combinatorial materials-chip method, the
composition-phase map of a ternary system is constructed
by point-to-point high-throughput structural and chemical
characterizations and classification of the XRD patterns.
While the techniques to classify the XRD patterns were
discussed in detail elsewhere [25], the results of the
classification show a map of the phase region (including
order-disorder transition) of each data point. A typical
composition-phase map of a ternary system or an isothermal

section consists of three types of phase regions according
to the Gibbs phase rule [degree of freedom F = 3 − P
(number of phases)]: single-phase region, two-phase region,
and three-phase region (Fig. 2). Based on the Gibbs phase
rule and the law of adjoining phase regions, there are thus
two types of phase boundary: the linear boundary separating
the two-phase and three-phase regions and the nonlinear
boundary between the single-phase and two-phase regions
[Fig. 2(a)]. Besides, there are also vertices of a ternary tie
angle according to the cross rule, where two linear boundaries
and two nonlinear boundaries meet [Fig. 2(a)]. Mathematical
models are developed to evaluate the uncertainties of two
types of phase boundaries as well as the vertices.

A. Linear boundary

To evaluate the uncertainty of the linear boundary, the
boundary from the upper left corner to the lower right corner
of Fig. 2(b) was modeled by 400 points evenly distributed in
a unit square according to the following relationships:

Ti (xi, yi ) = 1 if xi + yi − 1 > 0

Ti (xi, yi ) = 0 if xi + yi − 1 < 0, (8)

where (xi, yi ) is the index Cartesian coordinates of the ith data
point. Here, Ti = 1 or 0 stands for different phase regions.
Independence of the data points is assumed and thus, the
likelihood function L is the product of n Bernoulli trials as
follows:

L =
i=n∏
i=1

PTi
i (1 − Pi )

(1−Ti ), (9)

Pi = 1/[1 + exp(−Zi )] , (10)

Zi = a1 + a2xi + a3yi . (11)

Z represents the model of boundary, which is chosen based
on the available knowledge about this boundary, i.e., in the
linear form [Eq. (11)]. Usually, the priors are chosen based
on the best available knowledge about the parameters and
the relationships between parameters. In this model, uniform
distribution U was selected as there is no available knowledge
about the parameters; uniform distribution U (−10, 10) was
assigned for the set of parameters (a1, a2, a3).

Next, the MCMC M-H algorithm was employed to eval-
uate the posterior distributions of the parameter. Figure 3
displays the convergence behavior of the set of parameters
(a1, a2, a3) for 20 chains with each chain recording 500
sampled values of the parameter. The paths of two chains
are highlighted in black and red for the sake of visibility in
Figs. 3(a)–3(c). The convergence of each chain was assessed
by the Gelman-Rubin statistic (R̂c threshold = 1.1). The R̂c

was estimated to be 1.023 78, 1.0115, and 1.046 96 for a1, a2,
and a3, respectively. To examine the posterior distribution of
the parameters more clearly, kernel-density estimated (KDE)
distributions of each parameter are plotted in Figs. 3(d)–3(f).
Kernel-density estimation is the process of estimating an un-
known probability-density function using a kernel function.
Here, the Gaussian kernel was employed.
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FIG. 2. (a) Isothermal section of a model ternary system. Bayesian credible intervals (BCIs) of the two types of boundaries simulated by
400 evenly distributed points: (b) linear boundary and (c) nonlinear boundary. (d) BCIs of the vertices of a ternary tie triangle (750 evenly
distributed points).

The Bayesian credible intervals (BCIs) of the boundary
were obtained by randomly sampling the posterior distribu-
tions of the model parameters and computing the desired
model predictions. As shown in Fig. 2(b), the model fits the
linear boundary well, and the prediction from the Bayesian
statistical nearly reproduces the true boundary and exhibits
tight uncertainty intervals, verifying the effectiveness of the
method.

B. Nonlinear boundary

To model the nonlinear boundary, the evenly distributed
400 points in a unit square were generated according to the
following relationships denoting different phase regions:

Ti (xi, yi ) = 1 if x2
i + yi − 1 > 0

Ti (xi, yi ) = 0 if x2
i + yi − 1 < 0. (12)

Similar to the linear boundary, the likelihood function L is
the product of n Bernoulli trials [Eq. (9)], the only difference
is that the form of the boundary should be changed as follows:

Zi = a1 + a2xi + a3x2
i + a4yi . (13)

When the boundary is nonlinear and no more knowledge
can be applied, an initial fitting of the boundary should be
conducted. For simplicity, a quadratic polynomial was then
selected [Eq. (14)]. Uniform distributions U (−10, 10) were
applied to the set of parameters (a1, a2, a3, a4), similar to
that in the linear boundary case [Eq. (11)].

According to Fig. 2(c), the BCIs of the nonlinear boundary
coincided well with the true model, demonstrating the robust-
ness of the method. Next, the effect of data-point density is
discussed as follows.

C. Gaussian noise and mapping density

To simulate the random error in a real experiment,
Gaussian noise of N (0, 0.052) was applied to the data points
in the nonlinear boundary case. Ti stays the same as in Eq. (13)
before noise has been applied for the Cartesian coordinate of
each point. Figure 4(a) depicts the situation when the noise is
applied, showing that the result from the Bayesian statistics
coincides with the true boundary well in most parts of the
boundary. This indicates the robustness of the method. Com-
pared with the case without Gaussian noise, the uncertainty
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FIG. 3. Sequences of 20 chains from the M-H algorithm over 500 iterations for the parameters (a) a1, (b) a2, and (c) a3 (two randomly
selected chains are highlighted in black and red). KDE distributions for the parameters (d) a1, (e) a2, and (f) a3.

increased slightly because the noise itself is a certain kind of
uncertainty [Fig. 4(b)].

Since the composition-phase map is constructed by map-
ping a combinatorial materials chip point to point, the effect of
mapping density on the uncertainty of the boundary is further
studied. For simplicity, the linear boundary was considered.
In the aforementioned section, 400 data points were evenly
distributed in the unit square. In this section, the uncertainties
of the linear boundary with 100 and 225 points per unit area
were calculated and compared with that of 400 points per

unit area. According to Figs. 5(a), 5(b), and 2(b), the BCIs of
the boundary decrease as the mapping density increases. The
distribution of 2σ in Fig. 5(c) shifts upward with decreasing
mapping density, whose value is in reverse proportional to
the square root of the mapping density. Since the model and
priors for the parameter vector were the same regardless of the
mapping density in the Bayesian analysis, it can be understood
that the increased mapping density could offer more priors
for the analysis, resulting in less uncertainty. Moreover, this
result also indicates that in the process of the experiment, the

FIG. 4. (a) BCIs of the nonlinear boundary obtained from the data points with Gaussian noise. (b) Comparison of the 2σ distribution along
the x axis with and without Gaussian noise.
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FIG. 5. BCIs of the boundary obtained from the data points with different mapping densities: (a) 100 points per unit area; (b) 225 points
per unit area. (c) Distribution of the 2σ along the x axis.

uncertainty of the phase boundary in the composition-phase
map could be controlled to an acceptable level by rationally
controlling the mapping density.

D. Data-point coverage in the vicinity of the boundary

Compared with the traditional method where only a small
number of data points can be acquired, a large number of data
points can be collected on a small substrate by the combi-
natorial materials-chip approach. To further benchmark the
advantage of the combinatorial materials-chip approach, the
uncertainties of the boundaries with different data-point cov-
erage were calculated in this section. The data-point coverage
in the vicinity of the boundary is defined as the maximum
distance normal to the boundary (D) [Fig. 6(a)]. For sim-
plicity, the linear boundary was considered for demonstration
purposes. The spacing between the data points was the same
as in Fig. 2(b) (i.e., 400 points per unit area).

The effect of the D on the uncertainty of the boundary
is obvious when D is within 0.141 [Figs. 6(a)–6(c)]. The
2σ shifts upward as D decreases [Fig. 6(f)], suggesting that

all the data points are useful in determining the boundary
even though some of them are some distance away from
the boundary. However, the weight of the data point on the
uncertainty of the boundary depends on its distance to the
boundary. When the D is larger than 0.141, the change of σ is
not obvious [Figs. 6(d) and 6(e)], suggesting that information
on the data points near the boundary within a certain range is
enough to determine the location of the boundary accurately
and there is no need to know the distribution of data points in
all the phase regions. Hence, this can guide the mapping of
a combinatorial materials chip so that the data acquisition is
both efficient and effective to determine a boundary.

E. Vertices of a ternary tie triangle

To model the vertices of a ternary tie triangle where four
phase boundaries meet (Fig. 2), the 2D space of the unit
square is partitioned into four regions: 1 three-phase region,
2 two-phase regions, and 1 single-phase region by 2 linear
boundaries and 2 nonlinear boundaries. The 750 data points
were classified into four regions [Fig. 2(d)] according to the
following relationship:

Ti (xi, yi ) = 1 if (yi < xi ) and (yi < 1 − xi ) else Ti (xi, yi ) = 0

Si (xi, yi ) = 1 if
(

yi > 1 − xi

2
− x2

i

)
and (yi > 2.5xi − x2

i − 0.5) else Si(xi, yi ) = 0, (14)

where (xi, yi ) is the index Cartesian coordinates of the ith data
point. The region of each data point is determined by Ti and Si

according to the following table (Table I).
As shown in Fig. 2(d), the three-phase region is neigh-

bored by the two-phase regions with two linear boundaries.
The boundary between the single-phase region and the two-
phase regions is nonlinear, which is similar to Fig. 2(c). The
likelihood function L is changed into

L =
i=n∏
i=1

PTi
i (1 − Pi )

(1−Ti )
i=n∏
i=1

QSi
i (1 − Qi )

(1−Si ) , (15)

Pi = 1/(1 + exp (− min (Ai, Bi ))), (16)

Ai = −(
a1x1 + a2x2

1 + a3y1
) + a1xi + a2x2

i + a3yi, (17)

Bi = −(
a4x1 + a5x2

1 + a6y1
) + a4xi + a5x2

i + a6yi, (18)

Qi = 1/(1 + exp(−min(Ci, Di ))), (19)

Ci = −(a7x1 + a8y1) + a7xi + a8yi, (20)

Di = −(a9x1 + a10y1) + a9xi + a10yi, (21)
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FIG. 6. (a)–(e) BCIs of the boundaries with different D (maximum distance normal to the boundary). (f) Distribution of 2σ along the x axis.

where n is the number of the data point; (x1, y1) is the
vertex of the ternary tie triangle in Fig. 2(d). The model
guarantees the boundaries meet at the same point (x1, y1). Ai

and Bi represent the model of the two nonlinear boundaries
in Fig. 2(d). The min(Ai, Bi ) is to determine whether the ith
data point locates above the two boundaries simultaneously.
If Ai and Bi are both larger than 0, it can be speculated that
the ith data point should locate above the two boundaries.
Ci and Di represent the model of the two linear boundaries
in Fig. 2(d). Uniform priors U (−10, 10) were applied to
the set of parameters (a1, a2, a3, a4, a5, a6, a7, a8, a9, a10)
and uniform prior distributions U (0.3, 0.7) were applied to the
set of parameters (x1, y1).

The calculated BCIs agree well with the ground truth of the
phase boundaries [Fig. 2(d)]. Unlike the models in Figs. 2(b)
and 2(c) where there is a single boundary in each case, the
model here deals with four boundaries and one intersect-
ing simultaneously. The significant discrepancy in Fig. 2(d)

TABLE I. Classification of data points according to Ti and Si in
Eqs. (17) and (18).

Ti Si Region

0 1 Single-phase
0 0 Two-phase
1 0 Three-phase

compared with the previous models is that there exists an
inflexion point for the BCIs of the boundary. This inflexion
point is the vertex of a ternary tie triangle. The probability-
density distribution of the vertex can also be determined from
the sampled (x1, y1) directly (Fig. 7). It is found that the
ground truth of the vertex locates within the predicted BCIs,
suggesting the effectiveness of the model.

IV. CASE STUDY AND DISCUSSION

In this section, the before-established method and model
are further employed to quantify the uncertainty of the phase
boundary in a ternary isothermal section of the Fe-Cr-Ni sys-
tem and a Fe-Co-Ni composition-phase map experimentally
determined by the combinatorial materials-chip method.

A. Fe-Cr-Ni ternary isothermal section

The Fe-Cr-Ni ternary isothermal section at 800 ◦C was
obtained using the THERMO-CALC 2021A with the FEDEMO4.0
database. To simplify the problem, part of the phase diagram
was selected, with Ni from 15 to 100%; Fe and Cr, from
0 to 85% [Fig. 8(a)]. In this portion, there are four phase
regions (i.e., the fcc single-phase region, the body-centered-
cubic (bcc) + fcc two-phase region, the fcc + σ two-phase
region, and the fcc + σ + bcc three-phase region) with four
boundaries plus a vertex of a ternary tie triangle. According to
the phase regions calculated by the THERMO-CALC [Figs. 8(b)
and 8(c)], 380 and 100 data points were uniformly generated
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FIG. 7. The vertex point (x1, y1) plotted for 1000 sampled pa-
rameter sets with 68 and 95% BCIs.

in the composition space. BCIs of the boundaries and vertex
can be determined from the model established in Eq. (16).
Comparing Fig. 8(b) with Fig. 8(c), the BCIs of the bound-
aries increase with the decreasing number of data points even
though the true boundaries locate within the determined BCIs.
The BCIs are relatively large at the edge of the composi-
tion triangle due to the decreased effective data-point density,
which is consistent with the situation described in Fig. 5. It is
also found in Fig. 8(c) that the BCIs are so large that the three-
phase region cannot be confidently identified. This illustrates
a lower limit of the data-point density to distinguish a phase
region. Similarly, the probability-density distribution of the
vertex point exhibits the same trend: the distribution range of
68 and 95% uncertainty intervals increases with decreasing
data points [Figs. 8(d) and 8(e)].

B. Fe-Co-Ni composition-phase map

The Fe-Co-Ni system and its subbinary systems relate to
some key applications in materials science and engineering.
There are three-phase regions in an experimentally deter-
mined composition-phase map of the Fe-Co-Ni chip heat
treated at 700 °C: the bcc single-phase region, the bcc + fcc
two-phase region, and the fcc single-phase region [Fig. 9(a)].
Details of the experimental procedure and the corresponding
results were reported in a previous paper [7]. On one chip, 336
data points were characterized. In addition, a thermodynamic
assessment of the Fe-Co-Ni system has been reported recently
[26], which can be employed as a reference to illustrate the
effectiveness of the method.

C. Phase-boundary determination

Unlike in the model systems, a suitable form of the formula
for the boundary should be found before computing the BCIs.
In many actual systems, analytical equations for the phase
boundary between the single-phase region and the two-phase

coexisting region cannot be established because of the excess
Gibbs free energy. Polynomial models are then employed for
cases where analytical equations do not exist. To further make
use of the domain knowledge in materials science to guide
the selection of the polynomial for the boundary, a simplified
model was employed within the framework of thermodynam-
ics [Fig. 9(b)]. First, the α phase is assumed to be an A-rich
regular dilute solution and the β phase to be a regular solid
solution, though there is significant solubility of Co in bcc-Fe
below the Curie temperature. The results of this simplified
model are only used to provide a reference for the selection of
polynomials. The chemical potentials (partial molar quantity)
μ of components A, B, and C for α solid-solution phase can
be described as follows:

μα
A = 0Gα

A + RT ln xα
A , (22)

μα
B = 0Gα

B + Iα
AB + RT ln xα

B , (23)

μα
C = 0Gα

C + Iα
AC + RT ln xα

c , (24)

where xα
A , xα

B, and xα
c are the mole fraction of A, B, and C

in the α phase, respectively. R is the gas constant and T is
the absolute temperature. 0Gα

A, 0Gα
B, and 0Gα

c indicate the
molar Gibbs energy of the pure components A, B, and C,
respectively. Iα

AB and Iα
AC are the binary interaction parameters.

Under the normal solution approximation, they are constants.
For β solid-solution phase, the chemical potentials μ of

components A, B, and C are as follows:

μ
β
A = 0Gβ

A + RT lnxβ
A + Eμ

β
A, (25)

EμA = Iβ
AB

(
1 − xβ

A

)
xβ

B + Iβ
AC

(
1 − xβ

A

)
xβ

C − Iβ
BCxβ

B xβ
C , (26)

μ
β
B = 0Gβ

B + RT ln xβ
B + Eμ

β
B, (27)

EμB = Iβ
BC

(
1 − xβ

B

)
xβ

C + Iβ
BA

(
1 − xβ

B

)
xβ

A − Iβ
ACxβ

A xβ
C , (28)

μ
β
C = 0Gβ

C + RT ln xβ
C + Eμ

β
C , (29)

EμC = Iβ
CA

(
1 − xβ

C

)
xβ

A + Iβ
CB

(
1 − xβ

C

)
xβ

B − Iβ
ABxβ

A xβ
B , (30)

where the meaning of the parameters is similar to that de-
scribed before. It is known that when the two phases are
in equilibrium, the chemical potential of all the components
in the α phase and β phase are equal. Then, the following
equations can be derived:

0Gβ
A + Eμ

β
A + RT ln xβ

A = 0Gα
A + RT ln xα

A , (31)

0Gα
B + Iα

AB + RT lnxα
B = 0Gβ

B + RT ln xβ
B + Eμ

β
B , (32)

Kα/β
B = xα

B

xβ
B

= exp
0Gβ

B − 0Gα
B − Iα

BA + Eμ
β
B

RT
, (33)

0Gα
C + Iα

AC + RT lnxα
C = 0Gβ

C + RT ln xβ
C + Eμ

β
C , (34)

Kα/β
C = xα

C

xβ
C

= exp
0Gβ

C − 0Gα
C − Iα

CA + Eμ
β
B

RT
. (35)

For a dilute solution where xα
C << 1 and xα

B << 1, the
following equations can be established:

ln xα
A = ln

(
1 − xα

B − xα
C

) ≈ −xα
B − xα

C . (36)
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FIG. 8. (a) Fe-Cr-Ni ternary isothermal section at 800 ◦C generated by THERMO-CALC. Calculated BCIs of the phase boundary for the
portion of the Fe-Cr-Ni system indicated by the dashed triangle in (a) with a different number of data points: (b) 100 and (c) 380 (the phase
boundaries from THERMO-CALC are superimposed in the plot). (d), (e) The 68% and 95% BCIs of the vertex with 100 and 380 data points
respectively.
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FIG. 9. (a) Manually constructed compositionphase map from the Fe–Co–Ni chip heat treated at 700 ◦C with 336 data points (blue dots:
bcc; black dots: fcc; red dots: fcc+bcc). (b) A simplified thermodynamic model for the Fe–Co–Ni ternary system.

Then, based on the above equations, the formula for the
phase boundary between the α+β two-phase coexisting re-
gion and the β single-phase region can be established. Here,
only xβ

A , xβ
B , and xβ

C are the independent variable.
0Gβ

A − 0Gα
A + Eμ

β
A + RT ln xβ

A

= RT

(
−xβ

B e
0Gβ

B− 0Gα
B−IαAB+ E μ

β
B

RT − xβ
C e

0Gβ
C − 0Gα

C −IαAC + E μ
β
C

RT

)
.

(37)

Taylor expansion was employed to further simplify the
above formula. The formula of the boundary can be summa-
rized as follows:

C1 + Eμ
β
A + RT

⎛
⎝−xβ

B − xβ
C +

(
xβ

B + xβ
C

)2

2

⎞
⎠

= RT

(
−C2

(
1 +

Eμ
β
B

RT

)
xβ

B − C3

(
1 +

Eμ
β
C

RT

)
xβ

C

)
,

(38)

C1 = 0Gβ
A − 0Gα

A , (39)

C2 = e
0Gβ

B− 0Gα
B−IαAB

RT , (40)

C3 = e
0Gβ

C − 0Gα
C −IαAC

RT . (41)

For the isothermal section of a ternary system, C1, C2, T,
and C3 are all constant. Thus, the formula of the boundary
between the β single-phase region and the α+β two-phase
region can be expressed as the polynomial of the xβ

B and xβ
C .

Based on the above analysis, the form of the phase bound-
ary is as follows:

Zi = a1 + a2xi + a3x2
i + a4yi + a5y2

i + a6xiyi + a7x3
i

+ a8x2
i yi + a9xiy

2
i + a10y3

i . (42)

Similar to the previous analysis, xi and yi index the position
of the data point. Ti = 1 if the data point belongs to fcc

single-phase region; otherwise, Ti = 0. Here, uniform priors
U (−10, 10) were assigned for the parameters. Parameters
were all diagnosed to converge.

Figure 10(a) shows the calculated BCIs of the boundary
between the fcc single-phase region and the bcc + fcc two-
phase region. Similarly, the BCIs of the boundary between
the bcc single-phase region and the bcc + fcc two-phase
region can also be computed in this way. The calculated
intervals agree fairly well with the manual identification
results.

D. Incorporating the data from binary systems

Meanwhile, Fig. 10(a) shows that the BCIs of two different
phase boundaries are relatively large, especially at the edge of
the composition triangle. This is due to lack of data in the
experiment. To fix this deficiency, additional effort is made to
reduce the BCI of the phase boundary. The difference between
the classical statistical models and Bayesian statistical models
lies in whether prior information is employed [27]. Bayesian
statistical model attaches great importance not only to the use
of sample information but also to the prior information. Then,
it is expected that the deviation between the prediction and
the actual end of truth would decrease if more priors about
the phase diagram could be added to the model. It is realized
that the ternary phase diagram should match the binary phase
diagrams at the edge of the composition triangle. Therefore,
the phase-boundary points of the binary systems available
in the ASM ALLOY PHASE DIAGRAM DATABASETM were used
to help determine the location of the phase boundary of the
ternary composition-phase map in the present case.

Though the phase-boundary points of the binary systems
are available in the ASM database, the results of different
investigations show a certain diversity. Probability-density
distribution was employed to describe the location of the
phase boundary accurately. Assuming the position of the
phase boundary in the ASM database follows a uniform distri-
bution, all the available data were collected from the database.
For example, in the Fe-Ni system at 700 ◦C, the Fe contents
at the boundary between the fcc single-phase region and the
fcc + bcc two-phase region are 8.43% [28], 12.00% [29],
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FIG. 10. (a) Calculated BCIs of the phase boundaries based on the experiment data points. (b) Calculated BCIs of the phase boundaries
based on the experiment data points and the known binary phase-diagram data from the database (the phase boundaries from the ASM ALLOY
PHASE DIAGRAM DATABASETM are superimposed to the maps).

9.80% [30], 10.01% [31], 11.30% [32], 10.60% [33], 10.40%
[34], and 10.10% [35], respectively. Then, parameters for the
uniform distribution can be calculated as follows:

â = nNn − Mn

n − 1
b̂ = nMn − Nn

n − 1
, (43)

Nn = min(x1, x2, , , xn)Mn = max(x1, x2, , , xn) , (44)

where â and b̂ are the unbiased estimation of a and b; n
is the length of the collected number. Nn and Mn are the
minimum and maximum value for the collected data, respec-
tively. Based on the above formula, â and b̂ are calculated
to be 0.07 and 0.12, respectively. Similarly, the position of
the phase-boundary points located on the Fe-Co edge in the
ternary composition-phase map can also be determined in a
similar way, where â and b̂ are estimated to be 0.82 and 0.86,
respectively [36–40].

Applying the phase-boundary distribution information on
the Fe-Ni and Fe-Co edges from the ASM database as
prior, the two-phase boundaries in the Fe-Co-Ni ternary
composition-phase map are much closer to the reported results
in the ASM database and locate within the largely reduced
BCIs [Fig. 10(b)]. This also suggests a feasible method for
how to estimate the phase diagram from a composition-phase
map of a combinatorial materials chip, i.e., by introducing
more known information of the related phase diagrams as
prior knowledge into the model.

In much literature and handbooks, the phase boundary
is expressed as a single line. The uncertainty range offered
by the developed method is a more quantitative description
of the position of the phase boundary. It is recognized that
our knowledge or understanding of the position of the phase
boundary can be easily restricted by many factors, such as
incomplete degree of equilibrium, mapping density, unequal
data coverage, noise in the characterization, etc. An uncer-
tainty range offers more practical guidance compared with
just one single line for decision-making in engineering. It
should also be noticed that the BCIs of the boundary between

the bcc single-phase region and bcc + fcc region almost cover
all the regions of the bcc single-phase region in Fig. 10,
which should be contributed to the unequal data coverage as
described in the previous section. Based on previous analysis,
this problem can be overcome by increasing the mapping
density. Alternatively, reducing the composition gradient of
the film in the geometric region can also attain this purpose.
Under the same mapping density in the geometric space, a re-
duced composition gradient will cause an increased mapping
density in the composition space. Moreover, the quantita-
tive information related to the phase boundaries can be
used for further CALPHAD modeling to optimize the model
parameters.

V. CONCLUSIONS

A method based on Bayesian statistics is developed to
determine and evaluate the uncertainty of two types of phase
boundaries as well as the vertices of a ternary tie triangle in the
isothermal section of the ternary system under the principle of
the Gibbs phase rule. The quantitative relationship between
mapping density and uncertainty is established, and the re-
sult is of great significance for conducting high-throughput
experiments. Other factors that affect the uncertainty, such
as noise in the data and data coverage, are also investigated.
Moreover, the uncertainty of the vertices of a ternary tie tri-
angle can be quantified within the framework of the model.
Fe-Cr-Ni and Fe-Co-Ni ternary systems are used as two typ-
ical examples showing that the phase boundaries and their
BCIs can be determined satisfactorily from the classified data
points. The uncertainty of the phase boundary in the ternary
isothermal section can be further reduced by incorporating
the data from the corresponding binary systems as priors.
The present approach can be applied to other kinds of other
high-throughput characterization methods, like optical char-
acterization or electrical characterization, in a straightforward
manner to establish the composition-structure or property re-
lationship.
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