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Dislocations as natural quantum wires in diamond
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We study the electronic properties of the glide set of dislocations in diamond from first principles using hybrid
exchange correlation functionals and find that the atomic-scale dislocation core states give rise to a prototypical
one-dimensional (1D) band structure, i.e., natural quantum wires. The position and character of the core states
varies strongly with local structure, where mixed dislocations with dangling bonds exhibit a 1D metallic band
with a characteristic 1D density of states (1/

√
E ). This 1D Fermi gas is spatially localized to a single atomic

diameter orbital chain along the dislocation core. When the dangling bonds within the core are reconstructed, the
1D metallic band disappears. In contrast, pure edge dislocations in diamond reveal a 1D semiconductor with a
direct band gap of 3.21 eV. These calculations provide a possible explanation to the long-standing observation of
a blue luminescence band correlated with dislocations in diamond. This opens the door to using dislocations as
1D quantum phases with functional (electronic and optical) properties arising from the atomic-scale core states.
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I. INTRODUCTION

Low-dimensional quantum materials have attracted sig-
nificant attention because of their distinct properties from
bulk. Despite extensive research on low-dimensional mate-
rials, major challenges in using them remain related to their
fabrication and storage [1]. Dislocations—one-dimensional
(1D) defects in crystals—are similar to low-dimensional ma-
terials, in the sense that the different bonding environment at
their core leads to local and distinct properties from those in
their surrounding crystal. They can be used as templates for
creating conducting nanowires in insulating materials [2–5] or
ferromagnetic nanowires in antiferromagnetic materials [6].
Moreover, dislocations are embedded in the solid, and as
such are environmentally protected by their host. This is in
contrast to existing low-dimensional quantum materials, such
as metallic or semiconducting nanowires, which degrade in
short time due to their instability [7].

Research on the effects of dislocations on the electronic
properties of semiconductors dates back to 1953. First, Shock-
ley reported that dangling bonds at the core of dislocations
in germanium (Ge) and silicon (Si) should give rise to levels
lying in the forbidden band gap [8]. Later, Read created a
model for defect states, which assumed dislocations in Ge
as acceptor type [9]. Another model proposed by Labusch
and Schröter claimed that 1D defect states could be accep-
tor or donor type [10]. Even though dislocations in simple
tetrahedrally bonded semiconductors (Si, Ge, etc.) have been
investigated by a variety of theoretical and experimental meth-
ods [11–14], no unique and explicit model for the electronic
states associated with dislocations in the band gap is adapted.
For more than 40 years, most efforts to get insight into the
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position of dislocation states in the gap resulted in ambiguity
[15]. The main challenges in the analysis and interpretation of
experimental data were attributed to the presence of networks
of various type of dislocations, kinks and jogs, deformation-
induced point defects, and the ubiquitous interaction between
dislocations and point defects [15,16]. On the other hand,
theoretical calculations could not clarify inconsistent experi-
mental data because of once-limited computational power and
finite size effects. Most theoretical researchers concluded their
work by highlighting that correct positioning of defect levels
can only be determined using realistic Hamiltonians and large
numbers of atoms in calculations [17–20].

Despite the fair amount of work produced in the past,
there is still a lack of complete understanding of the elec-
tronic properties of dislocations in elemental semiconductors.
Recently, thanks to increases in computing power [21] and
modern electronic density functional theory (DFT) codes,
first-principles calculations of dislocations, using realistic
functionals and large simulation systems, are now possible
[22,23]. Here, we present a systematic first-principles study
of partial dislocations in diamond with accurate positioning
of their energy levels with respect to the host crystal’s band
structure. The electronic band structure of dislocations as
well as the anisotropic carrier mobility in directions parallel
and perpendicular to the dislocation line are calculated. The
results show that metallic and semiconducting dislocations
arise in diamond. 1D metallic bands are revealed within the
core of unreconstructed (30◦) partial dislocations, with a char-
acteristic 1D density of states (1/

√
E ). This 1D Fermi gas is

spatially localized at a single-atom-wide pz orbital chain along
the dislocation line. In contrast, unreconstructed pure edge
dislocations in diamond are 1D semiconductors with a direct
band gap of 3.21 eV. Interband transitions within the latter
theoretically explain the origin of the blue band luminescence
in diamond, which the literature widely report to be correlated
with dislocations [24–28]. These results prove that it is the
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core states of the dislocations themselves in diamond that give
rise to functional (electrical and optical) properties, rather than
their distortion of the surrounding bulk diamond states. This
opens the door to considering dislocations as 1D quantum
phases.

In the rest of this paper, we first describe the computational
setup. Next, we report the energetics of all calculated core
configurations, as well as the ground state electronic prop-
erties of each configuration obtained using realistic hybrid
functionals. Finally, carrier effective masses are calculated
and discussed.

II. COMPUTATIONAL METHODS

DFT calculations are performed with the Vienna ab initio
Simulation Package (VASP) [29] using projector augmented
wave pseudopotentials [30]. Exchange correlations are treated
by hybrid functionals with a Hartree-Fock mixing parameter
α of 0.18 parametrized by Heyd, Scuseria, and Ernzerhof [31]
to eliminate the band gap underestimation problem of DFT.
Incorporating a 0.18 fraction of Hartree-Fock exchange recov-
ered underestimation from 4.10 to 4.95 eV within the limits
of computational resources. A plane-wave cut-off energy of
550 eV is used with a k-point density of 0.1 Å−1 for structural
relaxations. Full periodic boundary conditions are used with a
quadrupolar arrangement of dislocations using a triclinic sim-
ulation cell containing two dislocations with opposite Burgers
vectors. The simulation cell consists of 576 atoms with a
separation of ≈20 Å between the two dislocations and is
oriented along [1 1 2], [1 1 1], and [1 1 0] corresponding to the
x, y, and z directions, respectively. Two sets of supercells with
single and double lattice translation periods are used along the
[1 1 0] dislocation line direction to study core reconstruction.

The predominant slip system in the diamond cubic crystals
is {111}〈110〉. A dislocation is titled as glide (shuffle) when
slip takes place between closely (widely) spaced {111} planes.
We only consider the glide set of dislocations since they are
glissile (capable of gliding) and the most stable [32]. The dis-
locations are introduced by displacing all atoms according to
the elastic displacement field of the corresponding dislocation
using anisotropic elasticity theory [33]. All atomic positions
are subsequently optimized until forces are smaller than 10
meV/Å−1.

To be able to directly compare the defective and perfect
(bulk) simulation cells, the electrostatic potential in these cells
need to be aligned [34] via

EVBM = EPerfect
VBM + V Bulklike

av − V Perfect
av .

Here, EVBM and EPerfect
VBM correspond to the valence band

maximum of the defective and the perfect cell, respectively,
V Bulklike

av is the average potential in the bulklike region of
the defective cell and V Perfect

av is the average potential of the
perfect cell. The alignment procedure eliminates the shifts
due to an arbitrary choice of zero average potential in DFT
and correctly positions all the VBMs obtained from different
calculations to a common reference position; in this case,
EPerfect

VBM . In the defective cell, atoms with volumetric strain
values smaller than 10−4 are considered bulklike and are used
to compute V Bulklike

av . For obtaining the band structure along
the [1 1 2] direction, band unfolding is performed with the

TABLE I. Energy difference between the reconstructed and un-
reconstructed partial dislocations obtained by allowing double lattice
periodicity (DP) and single lattice periodicity (SP) along the line
direction.

(EDP − ESP)/atom (eV)

30◦ Shockley partial −0.046
90◦ Shockley partial −0.025

fold2Bloch code using 15 equidistant k points [35]. Effective
mass calculations were performed with curve fitting and the
finite difference method.

III. RESULTS AND DISCUSSION

Previous studies [36,37] compared the relative stability
of the glide set of dislocations in diamond and suggested
that dissociation of the 60◦ glide dislocation into 90◦ and
30◦ Shockley partials lying on the same {1 1 1} glide plane
is energetically favored. Therefore, we only investigate the
electronic structure of Shockley partials with two types of
reconstruction, i.e., “single period” (SP) and “double period”
(DP), in this paper. We do not consider higher orders of pe-
riodicity reconstructions since doubling the period eliminated
all the dangling bonds at the core region.

Table I presents the energy per atom for different relaxed
dislocation core configurations. The corresponding relaxed
core configurations are shown in Fig. 1. SP 30◦ partial dis-
locations have dangling bonds at their core as shown in
Fig. 1(a). Doubling the lattice periodicity along the dislocation
line allows for pairing dangling bonds of every second atom
with their neighbors [Fig. 1(b)] and reduces the energy by
46 meV/atom. In the case of the 90◦ partial dislocation, all
the core atoms in both DP and SP dislocations are fourfold
coordinated with highly distorted bonds as shown in Figs. 1(c)
and 1(d). Although no dangling bonds occur in either type of
dislocation, the DP configuration is more favorable than the
SP by ∼25 meV/atom. The bonds are up to 15% stretched
in the SP configuration and up to 11% stretched in the DP
configuration with respect to the relaxed C-C bond length
(1.54 Å) in perfect bulk diamond. Thus, strain in the SP
core is released through the bond rearrangement, enhancing
the stability of DP 90◦ partials. The small energy differences
between the SP and DP glide set of dislocations imply that the
structure adopted (DP or SP) can be altered depending on the
environment, for example, by local strains, doping, or thermal
excitation. Therefore, we consider all of these core configu-
rations for electronic structure calculations. Next, we study
the dislocation band structures and analyze the correlation
between their electronic properties and core geometries. The
electronic structure of defect-free diamond in an oblique cell
configuration, comparable to dislocation supercells, is used as
the reference.

Figures 2(a)–2(c) present the electronic band structures
obtained along the dislocation line direction [1 1 0] for the
reference and 30◦ dislocation dipole supercells. Our results
reveal defect related states in DP 30◦ are localized and located
rather close to the conduction band (CB) edge in comparison
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FIG. 1. Relaxed dislocation core structures of the glide set of Shockley partials in diamond. The relaxed core structure of (a) single period
30◦, (b) double period 30◦, (c) single period 90◦, and (d) double period 90◦ Shockley partial dislocations. For each structure, the top figures show
the top view of the (1 1 0) plane and the bottom figures show the (1 1 1) glide plane. The stacking fault region associated with each partial is
shaded. The location of dislocations on the top figures are marked with a red ⊥ sign. The new bonds formed during core reconstruction are
marked by red ellipses. Reconstructed bonds are showed in red circles for double period 30◦ type.

FIG. 2. Calculated electronic band structures along the dislocation line direction [1 1 0] for (a) the reference perfect (defect-free) supercell,
and the supercell with (b) SP 30◦ and (c) DP 30◦ Shockley partial dislocation dipoles. (d) Calculated total electronic density of states for SP
and DP 30◦ dislocation dipole supercells in reference to the perfect supercell. Band decomposed charge density distributions for (e) the blue
colored deep defect level in the band structure of the SP 30◦ dislocation dipole supercell and (f) the red colored shallow defect level in the DP
30◦ dislocation dipole supercell. Locations of dislocation dipoles on figures are marked with green ⊥ and 	 signs. Dashed lines on each panel
show the conduction band minimum and the valence band maximum of the perfect bulk diamond as a reference.
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FIG. 3. Calculated electronic band structures along the dislocation line direction [1 1 0] for (a) the reference perfect (defect-free) supercell,
and the supercell with (b) SP 90◦ and (c) DP 90◦ Shockley partial dislocation dipoles. (d) Calculated total electronic density of states for
SP and DP 90◦ dislocation dipole supercells in reference to the perfect supercell. Band decomposed charge density distributions for (e) the
blue colored deep defect level in SP 90◦ dislocation dipole supercell and (f) the red colored shallow defect level in DP 90◦ dislocation dipole
supercell. Locations of dislocation dipoles on figures are marked with green ⊥ and 	 signs. Dashed lines on each panel show the conduction
band minimum and the valence band maximum of the perfect bulk diamond as a reference.

to defect states in SP 30◦. On the other hand, the SP 30◦ partial
gives rise to an extremely broad defect state overlapping with
the valence band and extended through the gap up to the
proximity of the conduction band due to a row of dangling
bonds propagating along the dislocation line. These midgap
states are found to be half filled, which implies both acceptor
and donor activity is possible depending on the position of
the Fermi level. Disappearance of the midgap states in the
DP reconstruction is attributed to the elimination of these
dangling bonds. It should also be noted that two degenerate
defect states are observed in each case due to the existence of
two dislocations in the supercell.

Density of states (DOS) plots are shown in Fig. 2(d), re-
vealing that the presence of dislocations gives rise to not only
a defect state in the gap region but also shifts in the valence
and CB edges for the SP 30◦ partial. Moreover, the atomic
origins of induced defect states are investigated through band
decomposed charge density analysis [Figs. 2(e) and 2(f)], with
the defect states and corresponding partial charge densities
color-coded. It is evident that these states are located in the
dislocation core region, and that the degree of spatial localiza-
tion for the SP 30◦ reconstruction is larger than that of the DP
30◦.

Figures 3(a)–3(d) exhibit that neither the SP nor the DP re-
constructions in 90◦ partial dislocations induce midgap states
well separated from the valence band (VB) and CB edges of

bulk diamond. However, the SP 90◦ core, with higher strain,
gives rise to a relatively dispersive conduction band compared
to the DP 90◦. Similar to the case of the 30◦ dislocations, the
decomposed partial charge densities show that the dislocation
states are localized around their core regions in real space
[Figs. 3(e) and 3(f)]. This observation is consistent with the
fact that localized defect states are created by dangling bonds
which are absent in either structure of the 90◦ partial disloca-
tions.

Notice that the top of the valance band edges are shifted to
higher energy levels for both the 30◦ and 90◦ partials in com-
parison to the bulk diamond reference [Figs. 2 and 3(a)–3(c)].
We found that these shifted bands are occupied and localized
around the stacking fault region between the two dislocations.

We also calculate the band structure along the x direction
([1 1 2]), which is perpendicular to the dislocation line. Band
folding effects arise in this case due to having more than
one lattice translation along the x direction of the 8 × 1 × 1
supercell. Note that, in the case of DP supercells, the double
periodicity is considered as the new translation vector along
the line due to reconstruction.

Figure 4 shows the unfolded band structures. Because the
position of the valence and conduction band edges are affected
by folding along the x direction, we unfolded all the band
structures for comparison. For SP 30◦ partials, dispersionless
electronic states (i.e., flat bands) are observed along the x
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FIG. 4. Calculated electronic band structures for (a) perfect, (b) SP 30◦, (c) DP 30◦, (d) SP 90◦, and (e) DP 90◦ dislocation dipole supercells,
unfolded into the Brillouin zone of the primitive cell using the fold2Bloch code [35]. Top figures are the unfolded band structures along the
dislocation line direction [1 1 0]. Bottom figures are the unfolded band structures along the Burgers vector direction [1 1 2]. Color bars represent
the Bloch spectral weight. Since the Bloch spectral weights of defects are in the range of [0,2], a gray scale color bar (bottom) is used for
defect states that are well separated from the VB and CB of the SP 30◦ and 90◦ dislocation dipole supercells.

direction implying confinement of carriers in real space along
this direction [Fig. 4(g)]. On the contrary, the half-filled defect
state having metallic conductivity along the line direction is
quite dispersive [Fig. 4(b)].

Figure 5 shows the partial DOS and the charge density plot
along the dislocation line of the SP 30◦ partial dislocation.

FIG. 5. (a) Orbital resolved partial density of states for SP 30◦.
(b) Charge density plot along the dislocation core of SP 30◦. (Black
balls represent the atoms lying on the glide plane.)

It is evident that these states largely consist of pz orbitals;
the charge density is localized along the line direction show-
ing an array of overlapping pz orbitals. Heavily localized
charge density along the dislocation line combined with the
dispersive band structure, demonstrate that 1D conduction
takes place along the line direction within atomically narrow
channels. These 1D metallic bands exhibit a DOS reduction
of 1/

√
E at the conduction-band-like bottom, and vice versa,

at the valence-band-like top of the band. Similar ideal 1D
Fermi gases have been previously generated using scanning
tunneling microscopy to arrange metallic atoms into chains;
however, they degrade quickly on a surface [38]. Our results
suggest that ideal quantum wires made from naturally occur-
ring line defects in wide band gap materials may overcome
these limitations.

Next, we quantify the carrier effective masses in the di-
rections along and perpendicular to the dislocation line by
calculating the effective masses in both directions. When there
exists a localization, the effective mass approximation is not
valid. However, we have already shown that the dangling
bond wave functions extending along the dislocation line are
heavily delocalized in that direction for SP 30◦. Therefore,
we compute the effective masses of carriers within the defect
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TABLE II. Calculated effective mass values in units of m0 along
different crystallographic directions of bulk diamond in literature and
in this work.

Parameter Literature (bulk) This work

m[1 1 1]
hh 0.56 [39] 0.56

m[1 1 0]
hh 2.12 [5], 1.34, 0.653 [40] 1.57

m[1 0 0]
hh 0.40 [39]

m[1 1 1]
lh 0.53 [39] 0.28

m[1 1 0]
lh 0.23 [39], 0.263 [40] 0.20

mt
e 0.36 [39,41] 0.45

ml
e 1.40 [39,41] 1.09

states along the line direction for SP 30◦ m[1 1 0]
e,defect to be equal to

0.15mo at the � point and m[1 1 0]
h,defect to be equal to 0.17mo at the

Brillouin zone edges, using a simple curve fitting as explained
in Sec. II.

Table II shows the calculated carrier effective masses in
bulk diamond for reference, revealing that there is a far higher
mobility of holes along the dislocation line direction com-
pared to a perfect diamond crystal. Similarly, defect states of
SP 90◦ dislocations are delocalized along the line direction
but localized along the perpendicular direction [Figs. 4(d) and
4(i)]. The effective mass of carriers within the defect states
along the line direction for SP 90◦ is calculated as m[1 1 0]

e,defect to
be equal to 1.01mo at the � point. When compared with ref-
erence band structures [Figs. 4(a) and 4(f)], no midgap states
are observed along both line and perpendicular directions for
any of the dislocations with DP reconstruction [Figs. 4(c), 4(h)
4(e), and 4(j)].

The unfolded band structures in Fig. 4 also provide insight
into the anisotropic optical properties possible in dislocated
diamond. Bulk diamond [Figs. 4(a) and 4(f)] exhibits a large
indirect band gap of 4.95 eV. However, in the case of pure
edge dislocations, (SP 90), a much smaller direct band gap
of 3.21 eV is seen in our calculations. This implies the on-
set of optical absorption at 3.21 eV in dislocated diamond,
and likely, luminescent emission of photons at, or slightly
below this energy assuming some excitonic (e-h) coupling
occurs. The literature on the optical properties of diamond
is quite extensive, and it is widely reported that the broad
blue band emission in diamond (centered at 2.8 eV) arises
from dislocations [24–28]. Cathodoluminescence (CL) stud-
ies show blue emission in diamond arising exactly at the
location of dislocations. Although CL can localize the lumi-
nescence to the vicinity of dislocations, it was not clear if
radiative recombination was occurring in the core dislocation
states themselves, or in the bulk diamond states around the
dislocations. The latter could occur, for example, if point
defects, or strain-generated carrier trapping and recombina-
tion pathways develop near the dislocations. CL excites a
large population of hot carriers, well above the band edges

and as a result, cannot determine the absorption onset of
the blue emission. But later, Iakoubovskii and Adriaenssens
examined photoluminescence excitation (PLE) spectroscopy
and identified an absorption onset for the blue band emission
centered at 3.0 eV. These results demonstrated that excitation
of photocarriers in the bulk states of diamond (≈5.5 eV) is not
needed to drive the blue band emission. The band structure in
Fig. 4(d) provides a straightforward explanation for the blue
band CL and PLE emission data, indicating that the 2.8 eV
emission band arises from band-to-band recombination in the
core states of pure edge dislocations in diamond and with
an absorption onset at 3.21 eV. We note that our calculated
band gap values underestimate the experimental value, e.g.,
4.95 eV compared to ≈5.5 eV for bulk diamnod. Therefore,
while the numbers cannot be directly compared to the experi-
mental measurements, the trend is in good agreement with the
optical literature on diamond. Additionally, the anisotropy of
the band structure also suggests an optical polarization axis
with blue band emission parallel to the dislocation line, i.e.,
electric-dipole transitions along the dispersing band k vector.
Again, literature backs up this prediction with the CL data of
Kiflawi and Lang demonstrating >90% polarization of blue
band emission parallel to dislocation lines.

IV. CONCLUSIONS

Ground state electronic properties of the glide set of par-
tial dislocations in diamond were calculated. We found that
(1) the position and effective mass of dislocation-induced
states depend heavily on the core structure, (2) only mixed
dislocations with dangling bonds have metallic conductivity
through half-filled gap states, (3) 1D conduction along the
line direction of these dislocations is attributed to a chain of
overlapping pz orbitals forming a dispersive band along the
line defect, (4) pure edge dislocations in diamond exhibit a
direct band gap of 3.21 eV providing a theoretical explanation
on the origin of the blue band emission in diamond, and (5)
the DOS for the core states is that of an ideal 1D Fermi gas in
both metallic and semiconducting dislocations. Consequently,
dislocations with undercoordinated core atoms appear to be
naturally formed 1D quantum wires. Core states of disloca-
tions in wide band gap materials like diamond could be used
as an active component in functional materials.

In this study, the geometry and electronic properties of
ideal (straight and clean) partial dislocations are examined.
Jogs, kinks, dislocation nodes, and point defect decorated
dislocations can alter the effects on electronic structure, which
should be investigated thoroughly in the future.
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