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Stacking-dependent topological magnons in bilayer CrI3
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Motivated by the potential of atomically thin magnets towards achieving tunable high-frequency magnonics,
we detail the spin-wave dispersion of bilayer CrI3. We demonstrate that the magnonic behavior of the bilayer
strongly depends on its stacking configuration and the interlayer magnetic ordering, where a topological band
gap opens in the dispersion caused by the Dzyaloshinskii-Moriya and Kitaev interactions, classifying bilayer
CrI3 as a topological magnon insulator. We further reveal that both the size and the topology of the band gap in
a CrI3 bilayer with an antiferromagnetic interlayer ordering are tunable by an external magnetic field.
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I. INTRODUCTION

Emergent two-dimensional (2D) magnetic materials [1]
provide an exciting platform to study collective spin ex-
citations, i.e., magnons. CrI3, the archetypal 2D van der
Waals (vdW) ferromagnet [2], has recently been suggested
to host magnon modes in the highly sought-after terahertz
regime [3–5], showing promise for the development of faster
and more energy-efficient data processing applications [6].
Moreover, due to the 2D nature of the material, its spin-
wave properties are highly susceptible to tuning, e.g., by
strain, buckling, defect engineering, gating, and/or vdW
heterostructuring [5].

Recently, several bulk materials, including CrBr3 [7], CrI3

[8,9], CrSiTe3 [10], and CrGeTe3 [10], have been identified
as topological magnon insulators (TMIs), characterized by
bulk magnon bands with a gap at the Dirac point and topo-
logically protected edge states. The magnonic band gap is
attributed to the antisymmetric exchange interaction—more
often called the Dzyaloshinskii-Moriya interaction (DMI)
[11,12]—arising from the lack of inversion symmetry be-
tween next-nearest-neighboring (NNN) Cr atoms. In contrast,
bulk CrCl3 [13,14], where the DMI is weak, is classified as
a magnon Dirac material (MDM), characterized by a Dirac
point in the dispersion, showing a linear band crossing at the
Brillouin zone edge.

However, it remains an open question whether the topo-
logical features of the aforementioned materials will persist
down to the monolayer limit. Early theoretical work suggested
that honeycomb ferromagnetic (FM) monolayers could be
classified as either MDMs or TMIs depending on whether any
NNN DMI is present in the material [15–20]. Nonetheless,
recent work identified Kitaev interactions as an alternative
mechanism potentially able to open a topological band gap in
FM honeycomb materials [21,22], suggesting that the absence
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of DMI is not the sole criterion for predicting the topo-
logical properties of such materials. Similarly, in magnetic
honeycomb bilayers, a DMI-induced topological behavior of
magnons is predicted [20,23–25], including the formation of
Dirac magnon nodal-line loops [23] and the opening of a
topological band gap, which contributes to a magnon Hall
effect and a spin Nernst effect [20,24,25].

Several recent works [26–29] attempted to characterize the
magnonics of monolayer CrI3 using ab initio calculations
and demonstrated the appearance of a small, possibly topo-
logical, band gap caused by the spin-orbit coupling (SOC),
suggesting that the material is a TMI. However, more work is
required before full understanding of the magnonics in CrI3

is achieved. In this paper, we deploy a multiscale approach,
combining ab initio calculations with numerical simulations
based on a Heisenberg model and linear spin-wave theory,
to characterize the magnonic properties of CrI3 monolayers
and bilayers, reveal the topological magnon modes present
in these systems, and show that the (topological) magnonic
properties of the bilayer are strongly affected by its stacking
order and its interlayer magnetic ordering.

The paper is organized as follows. In Sec. II, we describe
the computational methodology used in this paper. We discuss
the Heisenberg Hamiltonian that models the magnetic interac-
tions in CrI3, explain how the parameters that characterize this
Hamiltonian will be derived from first principles, and, finally,
sketch how the spin-wave dispersion is computed. Subse-
quently, in Sec. III, we apply this methodology to monolayer
CrI3, confirming the presence of a small topological band
gap with nonzero Chern numbers in the material’s spin-wave
dispersion. Afterwards, in Sec. IV, we consider bilayer CrI3 in
three different stacking orders, each exhibiting significantly
different magnonic behavior. Specifically, we investigate the
AA stacking and AB stacking (rhombohedral) discussed in
the literature [20,23,24], as well as the experimentally very
relevant AB′ stacking (monoclinic), the spin waves of which
have—to the best of our knowledge—not been theoretically
investigated to date. We find that all three stacking versions
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of bilayer CrI3 exhibit either FM or antiferromagnetic (AFM)
interlayer ordering, with intralayer ferromagnetism. In the
case of a FM interlayer ordering, we observe a band gap in
the spin-wave dispersion with stacking-dependent topological
properties. We attribute the origin of the gap to a combination
of DMI and Kitaev interactions that are modulated by the
stacking order. Furthermore, we show a significant influence
of the interlayer magnetic ordering on the resulting magnonic
behavior. Specifically, the topological nature of the bands
becomes trivial in AFM-ordered bilayers. Additionally, we
show that magnonic dispersion of AFM-ordered bilayers is
susceptible to tuning by an external magnetic field, lifting
the degeneracy between branches, which decreases the size
of the magnonic band gap and leads to a nontrivial topology
of the bands in the AB′ stacking, or introduces nodal-line
loops in the AA-stacking case. Finally, Sec. V summarizes
our findings and gives an outlook on some future challenges
and opportunities within the field.

II. COMPUTATIONAL METHODOLOGY

We model the magnetic interactions of the system under
study using a Heisenberg spin Hamiltonian of the following
form:

Ĥ = 1

2

∑
i, j

ŜiJi j Ŝ j +
∑

i

ŜiAiiŜi + μB

∑
i

B · giŜi, (1)

in which the spins are three-dimensional (3D) vectors Ŝi =
(Ŝx

i , Ŝy
i , Ŝz

i ) expressed in Cartesian coordinates. The first and
second terms of this Hamiltonian describe the exchange in-
teraction and the single-ion anisotropy (SIA), respectively,
which are characterized by the 3 × 3 matrices Ji j and Aii. The
DMI is characterized by a vector Di j with components that
can be calculated from the off-diagonal elements of the ex-
change matrix as Dx

i j = 1
2 (J yz

i j − J zy
i j ), Dy

i j = 1
2 (J zx

i j − J xz
i j ),

and Dz
i j = 1

2 (J xy
i j − J yx

i j ) [30,31]. Notice that Di j = νi j |Di j |
with νi j = −ν ji = ±1, where the sign of the latter depends
on the hopping direction of the considered spin pair. The
exchange term is now written as

Ĥex = 1

2

∑
i, j

[∑
α′

Jα′
i j Ŝα′

i Ŝα′
j + Di j (Ŝi × Ŝ j )

]
, (2)

with α′ = {α, β, γ } being the local eigenbases that diagonal-
ize the symmetric part of the exchange matrices. To consider
the exchange anisotropy, we define the Kitaev constant as
Ki j = Jγ

i j − Ji j with Ji j = (Jα
i j + Jβ

i j )/2 being the isotropic ex-
change constant [32], leading to the following expression for
the exchange Hamiltonian:

Ĥex = 1

2

∑
i, j

[
Ji j Ŝi · Ŝ j + Ki j Ŝ

γ

i Ŝγ

j + Di j (Ŝi × Ŝ j )
]
.

The symmetric SIA matrix Aii accounts for the interaction
of the magnetic orbitals with the surrounding crystal field
and contributes to the magnetic anisotropy of the material.
In crystals with a threefold, fourfold, or sixfold rotational
symmetry around the out-of-plane axis, most elements of the
matrix are redundant, and the SIA can be characterized by a
single parameter Azz

ii instead of the full SIA matrix [30,31].

The last term of Eq. (1) accounts for the Zeeman interaction
when applying an external magnetic field B, where gi ≈ 2
is the g factor and μB is the Bohr magneton. In CrI3, the
magnetic dipole-dipole interaction is expected to be small
in comparison to its out-of-plane magnetic anisotropy and
will therefore not be included in the Heisenberg Hamiltonian
[5]. Finally, also notice that CrI3 has a magnetic moment of
μ = 3 μB per chromium atom and thus a spin of S = 3

2 .
To obtain the elements of the exchange and SIA matrices,

we use the four-state energy mapping (4SM) methodology
[30,31], in which we calculate the energies of several spin
configurations of the system from first principles using den-
sity functional theory (DFT) and map these energies on their
corresponding Heisenberg Hamiltonians, setting up a system
of equations from which the magnetic parameters can be
derived. The implementation of the needed DFT calculations
is thoroughly discussed in Sec. SI of the Supplemental
Material [33].

The spin-wave dispersion relations are calculated numer-
ically using the open-source code SPINW [43], in which we
have implemented our Heisenberg Hamiltonian. This code
is based on linear spin-wave theory, which is a good ap-
proximation assuming that spin fluctuations are small. This
condition is comfortably satisfied at low temperatures, signif-
icantly below the critical temperature (Curie or Néel) of the
long-range magnetic order at hand. Numerical diagonalization
of the Heisenberg Hamiltonian in reciprocal space yields the
spin-wave dispersion.

III. MONOLAYER

A. Crystal structure and magnetic parameters

The crystal structure of monolayer CrI3 is depicted in
Figs. 1(a) and 1(e). Monolayer CrI3 comprises one honey-
comb layer of chromium atoms sandwiched between two
layers of iodine atoms, where each chromium atom is octa-
hedrally coordinated with six iodine atoms, and each iodine
atom connects two chromium atoms through an ≈90◦ Cr-I-Cr
bond. After structural relaxation using DFT, we find an in-
plane lattice constant of a = 6.919 Å.

To characterize the magnetic interactions in CrI3, we per-
form a 4SM analysis in order to obtain the elements of the
exchange and SIA matrices. In Table I, we report the average
nearest-neighbor (NN) and next-nearest-neighbor (NNN) in-
tralayer exchange, Kitaev, and DMI parameters for monolayer
CrI3. A full summary of the exchange parameters of all the
individual pairs can be found in Sec. SIV of the Supplemental
Material [33]. Notice that third-nearest-neighbor (3NN) and
higher-order exchange terms are not taken into account as
their influence on the spin-wave dispersion is negligible [33].

From the calculated parameters, it becomes clear that both
the NN and the NNN exchange interactions are anisotropic
and FM, with the NN one delivering the dominant contribu-
tion. In agreement with the literature [45,46], we find that the
material’s out-of-plane magnetic anisotropy originates mainly
from the NN exchange anisotropy, with a smaller contri-
bution of 〈Azz

ii 〉 = −0.08 meV due to the SIA. The SIA is
characterized by a single parameter owing to the material’s
threefold rotational symmetry. The NN interactions deliver no
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FIG. 1. Crystal structure of monolayer and bilayer CrI3. Top view [(a)–(d)] and side view [(e)–(h)] of monolayer (1L) CrI3 [(a) and (e)]
and bilayer (2L) CrI3 with an AB stacking [(b) and (f)], AB′ stacking [(c) and (g)], and AA stacking [(d) and (h)]. For the sake of clarity, atoms
of the same type are assigned a different color in the top and the bottom layer. In the bottom (top) layer, the chromium and iodine atoms are
depicted with blue (dark blue) and yellow (orange) spheres, respectively. The unit cell is marked with a solid black line. All crystal structures
were plotted using VESTA [44]. (i) depicts the corresponding first Brillouin zone and high-symmetry points for 2D systems with a hexagonal
lattice.

net contribution to the DMI since the inversion symmetry of
the material is upheld. However, this symmetry is not present
between NNN sites, resulting in a small yet nonzero DMI.
Notice that, in CrI3, the DMI, the Kitaev interaction, and the
SIA all originate from the large SOC arising due to the heavy
iodine ligands [32,45,46].

B. Spin-wave dispersion

Figure 2(a) depicts the spin-wave dispersion of monolayer
CrI3 along the high-symmetry directions of the first Brillouin
zone. Two distinct branches are present, as is expected for
a unit cell containing two magnetic atoms. At the � point,
the dispersion shows a Goldstone gap due to the magnetic
anisotropy of the material. The gap has a size of �� =
0.43 meV and is an essential prerequisite for the existence
of long-range magnetic order in 2D systems at finite temper-
atures [45]. The latter can be seen by considering the total
number of magnons excited at temperature T , which is given
by

N =
∫ D(ωk )

eh̄ωk/kBT − 1
dωk, (3)

where D(ωk ) is the magnon density of states, which is con-
stant in 2D, kB is the Boltzmann constant, and ωk are the
spin-wave frequencies. When the dispersion is gapless, i.e.,
in the absence of magnetic anisotropy, this integral will di-

TABLE I. Magnetic parameters for monolayer CrI3. Summary of
the most important magnetic parameters in monolayer CrI3, includ-
ing the exchange and Kitaev constants Ji j and Ki j and the size of the
DMI vectors |Di j |. Values are given in meV.

JNN KNN |DNN| JNNN KNNN |DNNN|
−4.35 1.49 0.00 −0.74 0.17 0.06

verge for ωk = 0, preventing long-range 2D magnetic order at
nonzero temperature in accordance with the Mermin-Wagner
theorem [47].

The lower energy “acoustic” branch displays quadratic be-
havior near the � point and is associated with an in-phase
precession of the spins [see Fig. 2(b)], while the higher-energy
“optical” branch is associated with an out-of-phase preces-
sion of the spins [see Fig. 2(c)]. The two branches meet at
the K point, where they are separated by a small band gap
of �K = 0.15 meV. At the K ′ point we find a gap of the
same size, since the sublattice symmetry is upheld. The origin
of this Dirac gap is partially attributed to the NNN DMI
and partially to the Kitaev interactions. The determined band
gap is smaller than but comparable in size to those given
in Ref. [27] and Ref. [29], which report band gaps of 0.30
and 0.47 meV, respectively. Differences might be attributed
to the use of different methodologies and ab initio param-
eters. However, these theoretically predicted band gaps all
differ significantly from the experimentally observed one of
2.8 meV in bulk CrI3 [9] (currently, there are no measure-
ments for monolayer CrI3 available). Note that some recent
work [26] found a band gap of 2 meV, which is significantly
closer to the experimental value. The origin of this discrep-
ancy between theory and experiment is still open to debate;
however, magnon-phonon interactions [28]—whose effect is
not captured in our model—are suggested to be responsible
for the enhancement of the band gap. Despite the quantitative
differences, our results show a good qualitative agreement
with the earlier-mentioned works.

At the K point (λ = 3a/2), the spins will precess at 120◦
angles to each other, as is shown in Figs. 2(d) and 2(e)
for the lower and higher branch, respectively. If one only
considered a purely isotropic NN exchange, these two states
would be energetically degenerate resulting in a Dirac point.
However, introducing Kitaev interactions and/or a NNN ex-
change term which includes a nonzero DMI component lifts
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FIG. 2. Spin-wave dispersion of monolayer CrI3. (a) Spin-wave dispersion along the high-symmetry directions of the first Brillouin zone.
A small Dirac gap of �K = 0.15 meV is present at the K point. Corresponding Chern numbers are indicated for each band. (b) and (c) display
the spin-wave modes at the � point for the lower and higher branch, respectively. (d) and (e) display a schematic top view of the spin-wave
modes at the K point for the lower and higher branch, respectively.

the mutual degeneracy between the modes resulting in a band
gap.

More specifically, the magnonic band gap is attributed to
the NN Kitaev interactions and the out-of-plane component
of the NNN DMI. The size of the latter, which is intrin-
sically present in CrI3, is rather small (|Dz

i j | = 0.03 meV),
also resulting in a small band gap. However, external tuning
that breaks the inversion symmetry, e.g., the presence of a
substrate, electric gating, or (nonuniform) strain, might induce
additional DMI that could potentially increase the size of the
band gap. In fact, by (artificially) increasing the DMI in our
simulations, we verified that the band gap can be “tuned.” As
shown in Sec. SV of the Supplemental Material [33], the band
gap scales almost linearly with the NNN DMI when all the
other parameters are kept constant. Tuning the magnonic band
gap in 2D materials under external stimuli poses an interesting
direction for future research, as the size of the band gap can
influence other material properties such as the magnon Hall
conductivity. However, note that increasing the DMI may lead
to noncollinear magnetization textures, e.g., spin cycloids or
magnetic skyrmions, which will fundamentally change the
magnonic behavior in the material [48,49]. Moreover, when
the DMI is set to zero in our calculations, the band gap does
not fully vanish, suggesting that there is a second mechanism
at work, which we identify to be the Kitaev interaction be-
tween NN spins. In Sec. SV of the Supplemental Material
[33], we show that one can tune the band gap by artificially
changing Ki j , and we present a phase diagram showing how
both the size and topology of the band gap vary as a function
of Dz

NNN and KNN. However, one should bear in mind that
varying the strength of the Kitaev interaction also influences
the overall shape of the dispersion, whereas changing the DMI
mainly influences the dispersion around the K point.

C. Topology

Nontrivial band topology arises only in systems where
nonzero Chern numbers predict the existence of edge states.
The Chern number is a topological invariant with an integer
value that is defined for the nth band as

Cn = 1

2π i

∫
BZ

�nk d2k, (4)

in which the Berry curvature can be calculated as

�nk = i
∑
n′ �=n

〈n|∂k Ĥk|n′ 〉〈n′|∂k Ĥk|n 〉
(λnk − λn′k )2 , (5)

with λnk and |n〉 being the eigenvalues and eigenvectors, re-
spectively, of the Heisenberg Hamiltonian Ĥk in reciprocal
space. For systems that are gapless or show a trivial band
gap, the Chern numbers vanish. In this paper, we calculate
Chern numbers according to the link-variable method detailed
in Ref. [50] for a discretized Brillouin zone (BZ). Applying
this approach to the magnonic dispersion of monolayer CrI3,
we find Chern numbers of Cn = ±1 for the upper and lower
band, respectively, as shown in Fig. 2, classifying the material
as a TMI with a nontrivial topological band gap. We attribute
the origin of the topology to the breaking of time-reversal
symmetry due to the spontaneous magnetization of CrI3 [51].
Thus we can conclude that the topological nature of the bands
persists in monolayer CrI3, albeit with a significantly smaller
band gap compared with bulk CrI3 [9].

IV. BILAYER

A. Crystal structure and magnetic parameters

Bilayer CrI3 can be constructed by stacking two mono-
layers on top of each other in a commensurate manner. The
three different stacking orders that we consider in this paper
are shown in Fig. 1. In analogy to Sivadas et al. [52], we
refer to those stacking orders as AB (rhombohedral), AB′
(monoclinic), and AA. The former two stackings correspond
to the low-temperature and the high-temperature phases of
CrI3, respectively [53]. In the AB stacking, the layers are
stacked in such a way as to place the chromium atoms in one
layer above the void in the chromium honeycomb of the adja-
cent layer, analogously to a Bernal-stacked graphene bilayer
[Figs. 1(b) and 1(f)]. The AB stacking can be transformed
into an AB′ stacking by sliding one of the layers by a third
of the lattice vector along the zigzag direction [Figs. 1(c) and
1(g)]. Alternatively, by sliding one of the AB-stacked layers
by a third of the lattice vector along the armchair direction,
we obtain an AA-stacked bilayer, in which each atom in the
top layer is placed exactly above its bottom layer counterpart
[Figs. 1(d) and 1(h)].
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TABLE II. Summary of the most important structural and magnetic parameters in bilayer CrI3, including the lattice constant a and interlayer
distance d , the average exchange and Kitaev constants 〈Ji j〉 and 〈Ki j〉, the average size of the DMI vectors 〈|Di j |〉, the DFT energy difference
between the bilayer with an AFM and a FM interlayer ordering, and the average SIA.

〈JNN〉 〈KNN〉 〈|DNN|〉 〈JNNN〉 〈KNNN〉 〈|DNNN|〉 EAFM − EFM 〈Azz
ii 〉

a (Å) d (Å) (meV) (meV) (meV) (meV) (meV) (meV) (meV) (meV)

AB 6.915 3.400 −4.49 1.45 0.07 −0.62 0.13 0.03 12.13 −0.07
AB′ 6.914 3.430 −4.49 1.45 0.07 −0.64 0.15 0.02 −0.06 −0.07
AA 6.908 3.505 −4.42 1.44 0.07 −0.65 0.15 0.03 0.84 −0.08

As shown in Table II, the different stacking orders
show relatively similar lattice constants and interlayer dis-
tances. However, changes in interatomic distances and
(super)superexchange bonding angles result in a different
interlayer magnetic coupling, such that the AB and AA stack-
ings prefer a FM ordering between the layers while the AB′
stacking slightly favors an AFM one. The latter is indicated
in Table II by the DFT energy difference between AFM and
FM phases. We found similar results in simulations using
the Landau-Lifshitz-Gilbert (LLG) equation in SPIRIT [42]
and the Metropolis Monte Carlo algorithm in SPINW [43]. In
agreement with earlier theoretical work [52,54–56], we find
that the overall ground state of the system is a FM-ordered
AB-stacked bilayer. At first sight, the calculated FM ground
state is at odds with experiment [2,57–60], where an AFM
state is observed for even-layered CrI3; however, recent work
by Thiel et al. [57] suggests that the FM interlayer ordering
might be the ground state for freestanding CrI3, in agreement
with most DFT studies, while encapsulation of CrI3 causes
a structural and magnetic phase transition to a state with an
AFM interlayer ordering. In Sec. SII of the Supplemental
Material [33], we discuss the stacking dependence of the
interlayer ordering in more detail.

In Table II, we also summarize the predominant magnetic
parameters for the CrI3 bilayers calculated with the 4SM
method. A full overview of all the calculated parameters for
each specific pair can be found in Sec. SIV of the Supplemen-
tal Material [33]. For all stacking orders, the NN intralayer
exchange interaction is anisotropic and strongly FM. This
anisotropy, together with the SIA, causes the spins to prefer an
out-of-plane orientation. Due to the rotational symmetry in the
AB and AA stackings, the SIA matrix is reduced to only one
parameter Azz

ii . In the AB′-stacked bilayer, this symmetry is
absent requiring a calculation of the full SIA matrix; however,
Azz

ii will still be the dominant parameter, as most of the other
matrix elements are very small or vanish.

To quantify the interlayer coupling, we calculated the inter-
layer NN and NNN exchange matrices for all stackings. For
the AB′ stacking, we also calculate the 3NN interlayer ex-
change; for the other stackings this contribution is negligible
as is demonstrated in Sec. SIV of the Supplemental Material
[33]. In the AB- and AA-stacked bilayers, all NN and NNN in-
terlayer exchange interactions are FM. However, the exchange
parameters for the AB stacking are significantly stronger than
for the AA stacking, resulting in a stronger preference for a
FM ordering. In contrast, for the AB′-stacked bilayer, there is
a competition between the NN exchange, which is FM, and
the NNN and 3NN exchange interactions, which are AFM.
Overall, this results in a weak AFM interlayer ordering, which

is in agreement with earlier theoretical and experimental stud-
ies [2,52,54–61].

Interestingly, the sublattice symmetry is broken in the AB
and AB′ stackings, leading to a difference in out-of-plane
exchange interactions �Jzz = |Jzz

A − Jzz
B | between sublattices

A and B of 0.92 meV for the AB stacking and 0.04 meV
for the AB′ stacking. Note that Jzz

A and Jzz
B are the sum of

the out-of-plane exchange components of all interacting spin
pairs in a unit cell. The difference �Jzz is substantial for the
AB stacking because one sublattice has six stronger interlayer
NNN interactions while the other sublattice has one weaker
interlayer NN coupling and only three interlayer NNN inter-
actions. For the AA stacking, there is no exchange difference
since the sublattice symmetry is preserved.

The intralayer Kitaev constants in the bilayers are similar
in size compared with the monolayer. For the AB and AB′
stacking, the NN Kitaev interaction is anisotropic, leading to
different values for each bond, which is attributed to sym-
metry breaking due to the stacking. Since the NN Kitaev
interaction is much stronger than the NNN and the interlayer
ones, it is the only contribution having a significant influence
on the spin-wave dispersion.

Unlike the monolayer system, the NN intralayer DMI is
now nonzero and originates from the inversion symmetry
breaking due to stacking. Similarly to the monolayer case,
a nonzero NNN DMI arises. In all stackings, the interlayer
DMI will be very small or completely absent, having a limited
influence on the dispersion.

B. Spin-wave dispersion of bilayers with FM interlayer order

Using the magnetic parameters calculated with the 4SM
method, we compute the spin-wave dispersion for the three
stacking orders considered in this paper. In Fig. 3, we display
the results for bilayer CrI3 with different stackings, all with the
FM interlayer ordering. In a bilayer, the unit cell contains four
magnetic atoms, leading to four branches in the dispersion,
two “acoustic” and two “optical” ones. The corresponding
spin-wave modes at the � point of each branch are indicated
in Fig. 3(d). The energy difference between these different
modes is proportional to the strength of the interlayer cou-
pling, hence the large separation for the AB stacking.

Each stacking shows a Goldstone gap at the � point,
signaling that FM order is stable in each of them at fi-
nite temperatures. The gaps have sizes of �� = 0.44 meV,
�� = 0.34 meV, and �� = 0.35 meV for the AB, AB′, and
AA stackings, respectively. In the AB and AA stackings, we
observe direct magnonic band gaps close to the K point of
�K∗ = 0.37 meV and �K = 0.07 meV, respectively. Similarly
to the monolayer, we attribute the origin of these gaps to a
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FIG. 3. Spin-wave dispersion for bilayer CrI3 with a FM interlayer ordering in different stacking configurations. (a), (b), and (c) Spin-wave
dispersion along the high-symmetry directions of the first Brillouin zone for the AB-, AB′-, and AA-stacked bilayers, respectively, with a FM
interlayer ordering. In the AB and AA stackings, a direct magnonic band gap opens close to the K point. In the AB′ stacking, there is an indirect
band crossing. Corresponding Chern numbers are indicated for single bands, and composite Chern numbers are indicated for degenerate bands.
(d) schematically displays the corresponding spin-wave modes at the � point for each band.

combination of NNN DMI and NN Kitaev interactions. In the
AB′ stacking, there is an indirect band crossing, as is often
seen in semimetals, and thus no band gap. Notice that the band
gaps do not occur exactly at K but are shifted to K∗ due to
the breaking of in-plane honeycomb symmetry caused by the
interlayer coupling [29]. For the AB stacking we see a shift
of K − K∗ = (−0.005, 0.021) 2π

a . In the AB′ stacking, we see
shifts of (0.037,−0.019) 2π

a and (0.008,−0.005) 2π
a for the

n = 2 and n = 3 bands, respectively. In the AA stacking, there
is no shift. The first Brillouin zone contains two inequivalent
high-symmetry points K and K ′ [Fig. 1(i)]. In the AB and
AB′ stackings, where the sublattice symmetry is broken, we
see a different behavior of the dispersion at each point. In the
former, a band gap of only 0.05 meV opens close to the K ′
point (compared with �K∗ = 0.37 meV). In both the AB and
AB′ stackings, we see shifts from the the K ′ point to the K ′∗
point of roughly the same size but in the opposite direction. In
the AA-stacked bilayer, the sublattice symmetry is preserved,
resulting in exactly the same dispersion at both the K and K ′
points.

C. Spin-wave dispersion of bilayers with AFM interlayer order

By comparing the dispersion of the bilayers with FM inter-
layer ordering with the dispersion of the bilayers with AFM
interlayer ordering (Fig. 4), it becomes clear that there is a
strong dependence of the magnonic properties of CrI3 on the
interlayer ordering. First and foremost, notice that for the AA

and AB stackings, there is a region close to the � point where
the acoustic branches are zeroed. Consequently, there is no
gap at the � point, and the integral in Eq. (3) will diverge,
signaling that AFM order is unstable in these stackings at
nonzero temperatures. However, in the AB′ stacking, there is
a gap of �� = 0.30 meV, meaning that AFM order is stable in
the monoclinic phase, which is in agreement with experimen-
tal observations [2,53,57–60]. Furthermore, also notice that,
in contrast to the FM-ordered bilayers, we see a degeneracy of
the two acoustic branches and the two optical branches. Only
at the K point are there notable energy differences between
the bands.

The dispersions of the bilayers with AFM interlayer or-
der are characterized by band gaps of �K∗ = 1.04 meV and
�K ′∗ = 0.97 meV for the AB stacking, with shifts of (K −
K∗) = −(K′ − K′∗) = (−0.005, 0.009) 2π

a , and by band gaps
of �K∗ = �K ′∗ = 0.11 meV for the AB′ stacking, with shifts
of (K − K∗) = −(K′ − K′∗) = (−0.005,−0.008) 2π

a . At the
K and K ′ points in the AA-stacking case, there is no band
gap, but instead one finds a Dirac cone combined with two
anticrossing branches.

D. Topology

When two or more bands are degenerate, crossing or
touching, it is no longer possible to assign individual Chern
numbers to each band. Instead, we define a composite Chern
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FIG. 4. Spin-wave dispersion for bilayer CrI3 with an AFM interlayer ordering in different stacking configurations. (a), (b), and (c) Spin-
wave dispersion along the high-symmetry directions of the first Brillouin zone for the AB-, AB′-, and AA-stacked bilayers, respectively,
with an AFM interlayer ordering. In the AB and AB′ stackings a direct magnonic band gap opens close to the K point; meanwhile in the
AA-stacked bilayer we observe a Dirac point. Corresponding composite Chern numbers are indicated for the bands and are all equal to zero.
(d) schematically displays the corresponding spin-wave modes at the � point for each band.

number Cn⊕n′ , jointly shared by the degenerate bands, and
calculated as detailed in Ref. [62].

As shown in Fig. 3, there is a strong dependence of
the Chern number on the stacking configuration in the FM-
ordered bilayers. Although we are expecting a nontrivial
topology of the band gaps in the FM bilayers, caused by the
breaking of time-reversal symmetry due to the spontaneous
magnetization, only the AA stacking shows nonzero Chern
numbers. Thus the AA-stacked CrI3 bilayer can be classified
as a TMI. In the AB′ stacking there is no band gap; hence the
Chern number is undefined, and the bands are not topological.
In the AB stacking, all Chern numbers are equal to zero,
meaning that the band gap is of trivial nature. We attribute
the lack of topology in the latter stacking to the exchange
difference �Jzz, caused by the breaking of sublattice symme-
try, which is very large for the AB stacking. In Sec. SV of
the Supplemental Material [33], we show that by artificially
reducing �Jzz in our simulations, which also decreases the
size of the band gap at the K point and the K ′ point, we can
induce a topological phase transition to a state with nonzero
Chern numbers of C1⊕2 = +1, C3 = −1, and C4 = 0, which
confirms the influence that sublattice symmetry can have on
the topology of magnonic bands [20].

In bilayers with AFM interlayer order, the bands are
two-by-two degenerate, meaning that one can only define
composite Chern numbers. In the case of AA stacking, there
is no band gap; thus the Chern number is undefined, and the

bands display no topological behavior. The composite Chern
numbers for the other two stackings turn out to be zero for
all considered bands, which can be related to the conservation
of effective time-reversal symmetry in AFM materials, as the
layers are time-reversed copies of each other [51]. However, in
the next section, we will show that breaking this symmetry by
an applied magnetic field leads to emergent topological states
with nonzero Chern numbers.

E. Effect of an external magnetic field

In this section, we explore whether the magnonic dis-
persion and band topology of bilayer CrI3 can be tuned by
applying an out-of-plane external magnetic field.

In the case of a monolayer or the bilayers with FM in-
terlayer order, there is only a trivial effect due to an applied
magnetic field. Namely, the whole dispersion will uniformly
shift up or down depending on the orientation of the applied
field with respect to the magnetization. Notice that a very
large, oppositely oriented field can flip the magnetization,
which changes the sign of the Chern number of each band,
meaning that the propagation direction of the magnonic edge
states reverses.

In contrast, for bilayers with AFM interlayer order, an
external magnetic field will lift the degeneracy between
branches, shifting two branches up and two branches down
in energy, and leading to additional interesting features in the
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FIG. 5. Spin-wave dispersion for an AB′-stacked CrI3 bilayer
with an AFM interlayer ordering under the influence of an external
magnetic field. The left and right panels compare the dispersion near
the K point and that near the K ′ point, respectively, for an applied
magnetic field of B = 1.9 T. Under the influence of the magnetic
field, blue bands have shifted up and red bands have shifted down in
energy.

dispersion. Similar band shifts were observed by Cenker et al.
[4], who reported the splitting of degenerate Raman peaks
in the optical branches of an AFM-ordered monoclinic CrI3

bilayer, after applying an external magnetic field. However,
note that applying a magnetic field to AFM-ordered bilayers
should be done carefully, as the interlayer magnetic state will
switch to the FM one for sufficiently strong fields. Here,
we calculate the spin-wave dispersion for the different stack-
ing scenarios under sufficiently small applied field, where
AFM interlayer order is safely stable (see Sec. SIII of the
Supplemental Material [33]). The AFM-AB phase is very
sensitive and changes into a FM interlayer order even for very
weak applied field; hence it is excluded from our calculations
in this section.

In the case of an AB′ stacking, the size of the band gap
will decrease after applying the magnetic field, reaching a
minimum of 0.01 meV for a field of B = 1.9 T, as shown in
Fig. 5. In the right panel, one sees that, as the bands approach
each other, they do not entirely touch or cross; instead we
observe band inversion combined with a small band gap.
Band inversion is an effect often also present in electronic
topological insulators [63] and is typically caused by the SOC.
For fields applied in the opposite direction, we see analogous
behavior, as now the other two bands are shifted upwards and
the previous two are shifted downwards. For fields larger than
B = 1.9 T, the AFM interlayer ordering changes to a FM one
(see Sec. SIII of the Supplemental Material [33]).

In Fig. 6, we show the influence of an external magnetic
field with a magnitude of B = 1.6 T on the dispersion of
an AFM-ordered AA-stacked CrI3 bilayer. Applying the field
shifts the Dirac node upwards or downwards depending on
the polarity of the field, which leads to the formation of a
closed Dirac magnon nodal-line loop at the crossover point
of the red and blue bands in Fig. 6. The latter is a closed
one-dimensional loop around the K point where two bands
cross, exactly analogous to the nodal lines described for Dirac
semimetals [64]. Decreasing the field leads to a smaller shift
of the branches, resulting in nodal-line loops with a smaller

FIG. 6. Spin-wave dispersion for an AA-stacked CrI3 bilayer
with an AFM interlayer ordering under the influence of an external
magnetic field. The left and right panels compare the dispersion at
the K point for applied fields of B = 0 T and B = 1.6 T, respectively.
Under the influence of the magnetic field, blue bands have shifted up
and red bands have shifted down in energy, forming magnon nodal
lines at the crossing points of the red and blue curves.

radius. For fields larger than 1.6 T, the AFM interlayer order-
ing changes to a FM one (see Sec. SIII of the Supplemental
Material [33]).

As mentioned earlier, in the absence of an applied field,
all AFM bands show composite Chern numbers equal to zero,
meaning that the band gaps have a trivial topology. Interest-
ingly, after applying the magnetic field on the AB′-stacked
bilayer, nonzero Chern numbers emerge as C1,4 = +1 and
C2,3 = −1. In other words, by applying a magnetic field,
which breaks the effective time-reversal symmetry of the
material, a topological phase transition can be induced. In
contrast, for the AA stacking, the (composite) Chern numbers
remain undefined after applying the magnetic field, as the
Dirac cone stays present.

V. CONCLUSIONS

We characterized the magnonic dispersion for intrin-
sically ferromagnetic monolayer and bilayer CrI3 using
linear spin-wave theory combined with a Heisenberg model
parametrized from first principles. We showed that the
monolayer is characterized by a small Dirac gap in the
spin-wave dispersion, sourced to a specific combination of
next-nearest-neighbor (NNN) DMI and nearest-neighbor Ki-
taev interactions. Nonzero Chern numbers are associated
with the bands, indicating the topological nature of the band
gap and suggesting that monolayer CrI3 is a topological
magnon insulator (TMI). In bilayer CrI3, still with dominantly
ferromagnetic intralayer interactions, we demonstrated a
dependence of the dispersion on the geometric stacking order
and the interlayer magnetic ordering, opening a band gap for
the AB stacking (for both FM and AFM interlayer order), the
AB′ stacking (only AFM), and the AA stacking (only FM);
meanwhile the FM-ordered AB′ stacking shows an indirect
band crossing, and the AFM-ordered AA stacking exhibits a
Dirac point. Similarly to the monolayer case, we identified
the DMI and Kitaev interactions as the leading causes behind
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the opening of the band gap, both being modulated by the
stacking order. The latter contradicts earlier work on bulk
CrI3 which claimed that only the NNN DMI, and, thus, not
the Kitaev interaction, lies at the origin of the Dirac gap [9].
Interestingly, we found that the Chern number, and conse-
quently the magnonic band topology, depends on the stacking
configuration and the interlayer magnetic order, vanishing for
all studied cases except in the FM-ordered AA bilayer. Thus,
depending on the stacking order and the interlayer magnetic
order, bilayer CrI3 is classified as either a topological magnon
insulator, a trivial magnon insulator, or a magnon Dirac ma-
terial. Finally, we showed that the dispersion of the bilayers
with AFM interlayer order can be tuned by an external out-of-
plane magnetic field, changing both the size and the topology
of the band gap for the AB′-stacked bilayer and introducing
closed nodal-line loops in the dispersion of the AA bilayer.

The here-demonstrated presence of tunable band gaps of
possibly topological nature in bilayer CrI3 recommends it
as a TMI that can serve as a platform to investigate tun-
able magnon Hall and spin Nernst effects in 2D. Our results
could be verified experimentally by investigating the thermal
magnon Hall effect in monolayer and bilayer CrI3. Both the
DMI and Kitaev interactions originate from the spin-orbit
coupling, which is relatively strong in CrI3 and thus lies at

the origin of the topological band gap. If one wants to achieve
a gapless spin-wave dispersion, we suggest looking at 2D
magnets with a weaker SOC, e.g., CrBr3 or CrCl3, which
are good candidates to host a Dirac point in the monolayer
limit. In order to further tailor the magnonic band gap, one
can induce and tune the DMI in CrI3, or other 2D magnets,
by external stimuli such as gating, (nonuniform) strain, het-
erostructuring, etc. Furthermore, our work demonstrates that
stacking vdW monolayers, be it in regular bilayers or, in future
work, multilayers and (moiré) heterostructures, poses a viable
route to achieve broadly tunable magnonic properties in 2D
materials and van der Waals homo- and heterostructures.
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014457 (2020).

[31] H. Xiang, C. Lee, H.-J. Koo, X. Gong, and M.-H. Whangbo,
Dalton Trans. 42, 823 (2013).

[32] C. Xu, J. Feng, H. Xiang, and L. Bellaiche, npj Comput. Mater.
4, 57 (2018).

[33] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevMaterials.7.024421 for additional tables, fig-
ures, and discussion of our results, which includes Refs.
[2,22,30,34–42,44,52,54,55,57–60].

[34] G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
[35] G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
[36] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
[37] P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
[38] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,

3865 (1996).
[39] S. Grimme, J. Comput. Chem. 27, 1787 (2006).
[40] S. Steiner, S. Khmelevskyi, M. Marsmann, and G. Kresse, Phys.

Rev. B 93, 224425 (2016).
[41] S. L. Dudarev, G. A. Botton, S. Y. Sevrasov, C. J. Humphreys,

and A. P. Sutton, Phys. Rev. B 57, 1505 (1998).
[42] G. P. Müller, M. Hoffmann, C. Dißelkamp, D. Schürhoff, S.

Mavros, M. Sallermann, N. S. Kiselev, H. Jónsson, and S.
Blügel, Phys. Rev. B 99, 224414 (2019).

[43] S. Toth and B. Lake, J. Phys.: Condens. Matter 27, 166002
(2015).

[44] K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272
(2011).

[45] J. L. Lado and J. Fernández-Rossier, 2D Mater. 4, 035002
(2017).

[46] C. Bacaksiz, D. Šabani, R. M. Menezes, and M. V. Milošević,
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