
PHYSICAL REVIEW MATERIALS 7, 024413 (2023)
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Masao Obata ,1 Takao Kotani ,2,3 and Tatsuki Oda 1,3

1Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
2Advanced Mechanical and Electronic System Research Center, Department of Engineering,

Tottori University, Tottori 680-8552, Japan
3Center for Spintronics Research Network, Osaka University, Toyonaka 560-8531, Japan

(Received 23 March 2022; revised 24 November 2022; accepted 31 January 2023; published 21 February 2023)

We investigated the electronic structure of a ferromagnetic shape memory alloy Ni2MnGa utilizing an ad-
vanced approach, quasiparticle self-consistent GW , which takes account of electron localization effects without
empirical parameters. The Ni eg orbitals in the cubic phase, which lead to martensite phase transition, were found
to locate on the Fermi level, implying a clear definitive origin of band Jahn-Teller (JT) effect in comparison with
the results obtained by the density functional approach of generalized gradient approximation. From the analysis
of generalized susceptibility in the cubic phase, the instabilities responsible for the modulated structures of
10M, 14M, and 6M were found to be an intrinsic property in the electronic states. These states may stabilize
the modulated one, accompanied by tetragonal local JT distortions. Their property of Fermi surface nesting
sensitively depends on a subtle change in the magnetic moment, corresponding to the experimental fact that
the modulated structure appears depending on temperature and the composition of the magnetic element. The
secondary nesting vector along [110] direction was discussed in relation to a modulation alignment of the
nanotwin boundary.
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I. INTRODUCTION

Ferromagnetic shape memory alloys possess magnetic and
shape memory properties and exhibit significant shape distor-
tions due to external magnetic fields and temperature changes.
The shape memory property requires twin boundaries to relax
the interfacial strain caused by the martensite transition. In ad-
dition, both of their high mobility due to an external magnetic
field and large magnetic anisotropy in the twin boundaries are
the keys to yielding a sizable magnetic field-induced strain
(MFIS). In particular, the Heusler alloy, Ni-Mn-Ga [1–5],
possesses giant MFIS of more than 10% and magnetocaloric
properties [6,7], having a high potential for many techno-
logical applications, such as magnetic actuators, sensors [8],
and refrigerants [9]. The high-temperature phase, austenite
in the L21 structure, undergoes martensitic transformation
upon cooling. Interestingly, several modulated martensitic
structures, namely 6M (pre-martensitic), 10M [10], and 14M
[11], have been observed experimentally [12]. In the latter
two structures, the nanometer scale twinned boundary (nan-
otwin boundary) is a key to the modulation [13]. For the
stoichiometric composition of Ni2MnGa, the 10M structure
is the most stable at low temperatures, while for the nonsto-
ichiometric compositions, the 14M and nonmodulated (NM)
martensitic structures also appear, depending on their com-
position. They tend to appear at room temperature in the
order of 10M, 14M, and NM as the number of valence elec-
trons increases [14]. In these modulated structures, the low
migration energy barrier of the nanotwin boundaries results
in the MFIS. The 6M structure is observed only at a few

Kelvin above the temperature of martensite phase transition,
associated with anomalous softening of the transverse phonon
modes (TA2) along the wave vectors of [110] direction [15].
Since Fermi surface nesting is considered a driving force to
martensitic transformation, the Fermi surface geometry and
generalized susceptibility have been investigated based on
the first-principles approach within local density approxima-
tion (LDA) and generalized gradient approximation (GGA)
[16–23]. The nesting vector appears along the [110] direction,
denoted as [ξ, ξ , 0]2π/a, where a is the lattice constant of
the austenite cubic phase. LDA/GGA calculations yielded a
nesting vector of ξ = 0.4, which was considered an overes-
timation for ξ = 1/3, specifying the 6M structure. Such a
nested electronic structure supports the formation of a charge
density wave (CDW). The incommensurate nesting vector
for the pre-martensite phase was observed together with the
pseudogap at the Fermi level [24].

It is evident from the previous studies above that the
nesting vectors for 10M and 14M have not yet emerged in
theoretical works, forcing researchers to interpret the 10M
and 14M structures as a competition between the Jahn-Teller
(JT) effect and TA2 mode softening [15]. The long history
of research work on Ni2MnGa has not indicated that the
origin of their structural stabilization of 10M and 14M is well
understood.

To understand the mechanism stabilizing the martensite
phases, we need a reliable description of the electronic struc-
ture for Ni2MnGa. On top of the electronic structure, we
can consider entropic effects [6] by the method proposed in
Ref. [25]. Furthermore, we can use the coherent-potential
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approximation (CPA) or supercell calculation to investigate
properties of elastic constant and magnetic moment in the
nonstoichiometric composition [26]. The substitution effects
at the Ga site (Ni2Mn1+xGa1−x) were reported on their mag-
netic and magnetoelastic properties [26]. The authors found
that an antiferromagnetic coupling between Mn atoms on
the Ga sublattice and Mn atoms on the Mn sublattice favors
at the composition of x ∼ 0.25 over the ferromagnetic cou-
pling. The supercell GGA calculations yielded results that
may contradict the experimental facts; for instance, in terms
of internal energy, 10M is more unstable than NM [27],
and the hypothetical two-period 4O structure is the most
stable in several modulated structures [28]. Consequently,
the focus has been on the reliability of LDA/GGA, with
studies applying the GGA+U and meta-GGA methods to
probe the reliability of GGA [29,30]. The results show that
the modulated martensite phase is more energetically stable
than the NM phase, supporting the importance of electron
correlation effects [31,32]. In addition, GGA + U reveals that
the stability of the austenite and martensite phases is highly
dependent on the value of U [29]. However, the validity
of GGA + U has not been fully discussed, as existing re-
search has been solely based on comparisons with specific
experimental values such as crystal structure, bulk modulus,
and magnetic moments [33].

The theoretical facts mentioned in the previous para-
graph suggest that GGA and GGA + U methods are limited
in describing the electronic structure of Ni2MnGa for un-
derstanding the martensitic mechanism. This is somehow
related to the nature of Ni2MnGa where we treat two kinds
of transition metals whose 3d bands are formed around
the Fermi energy. Thus, we need to seek a reliable de-
scription of electronic structures beyond such theories; not
only 3d bandwidths and positions but also the hybridiza-
tion with sp bands. These control the band-energy gain for
phase transitions.

In this paper, we present results based on a reliable
electronic structure calculation via the quasiparticle self-
consistent GW (QSGW) method [34–36]. Among existing
state-of-the-art electronic structure calculations, QSGW is a
general-purpose first-principles method to improve the draw-
backs of GGA and GGA + U . It determines the optimum
independent-particle picture of electrons in a manner of the
self-consistent GW approximation [37]. Since it is established
that QSGW works well for the electronic structure investiga-
tions of various materials, such as oxides and semiconductors
[38,39], it has recently been applied to metals and mag-
netic materials [40–42]. Furthermore, QSGW has even more
advantages over the conventional density functional theory
(DFT) approaches; no empirical parameter such as U and
inclusion of a proper electron correlation due to electron
localization. In the present study, we investigate electronic
structures and magnetic properties of the cubic (austenite)
and tetragonal (martensite) phases in metallic Ni2MnGa. Our
results revealed that a nesting vector appears at the modu-
lations of 6M, 10M, and 14M, depending on the condition
of the rigid-band approach. Results for GGA and GGA +
U are also presented for comparison with QSGW to dis-
cuss its electron correlation effects and differences from the
conventional methods.

II. COMPUTATIONAL DETAILS

This section briefly describes the QSGW method and de-
tails of the computation. First-principles GW calculations
[43], which apply Hedin’s GW approximation [37] to first-
principles calculations, have achieved a lot of success in
analyzing and predicting the electronic structure of semicon-
ductors or insulators. However, the G0W0 approach, widely
used in first-principles GW calculation, is just a perturba-
tion calculation for the self-energy of electrons, often called
the one-shot GW . In the one-shot GW based on the mean-
field Hamiltonian (H0) of LDA/GGA, the Green’s function
(G0) and the screened Coulomb matrix (W0) with a random-
phase approximation calculated from H0’s eigenfunctions and
eigenvalues have been used to evaluate self-energy (iG0W0).
Unfortunately, the one-shot approach suffers from depen-
dence on the starting point, causing an uninvited depletion
of its validity since the starting Hamiltonian (H0) becomes
inaccurate for correlated electron systems, such as localized
d- or f -electron systems [44]. The starting point problem with
metals is rather clear, as the occupied states in the mean-field
Hamiltonian can move up to unoccupied states in the one-shot
GW . Hence, this approach has remained unsatisfactory be-
cause its mean-field potential is inconsistent with the resulting
electronic structure.

QSGW was proposed as a relatively simplified ap-
proach so as to solve these problems by constructing a
better mean-field potential based on the GW self-energy
[35,36]. Updating the mean-field Hamiltonian in the QSGW
framework allows the application of GW calculations to
systems where LDA/GGA is not an appropriate start-
ing point. As a result, the electronic structure can be
substantially improved by such a self-consistent iterative
procedure.

From another point of view, QSGW is for determining the
optimum independent-particle picture within a quasiparticle-
based perturbation theory [39]. Generally speaking, we expect
not only the contribution (off-site), correcting band gap, and
effective mass for semiconductors [38], but also U -type con-
tributions (on-site) in QSGW. These contributions correspond
to two types of nonlocality (off-site and on-site) of self-energy
[42]. Relative to GGA, QSGW tends to make the 3d bands
narrower and being pushed down relative to the anion p bands
[45,46], while the width of anion p bands is usually enlarged
[47].

Figure 1 shows the tetragonally distorted L21 crystal struc-
ture (a and c represent the in-plane and out-of-plane lattice
constants) and its first Brillouin zone (BZ) of Ni2MnGa.
In the present study, the systems of c/a = 1.00, 1.10, 1.20,
and 1.25 were investigated assuming the constant volume
of 98.823 Å3/f.u., which was experimentally obtained in the
cubic phase (c/a = 1.00) [48]. The c/a = 1.20 is close to
the experimental values of 1.207 [49] and 1.18 ± 0.02 [50].
We employed a body-centered tetragonal primitive cell in
the calculation. The tetragonal Bravais lattice (in-plane lattice
constant a′ = a/

√
2) corresponds to the gray area in Fig. 1(a),

and its primitive cell contains two Ni, one Mn, and one Ga
atoms.

The QSGW, GGA + U , and GGA calculations were
performed using a mixed basis all-electron first-principles
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FIG. 1. Crystal structure (a) and first Brillouin zone (b) of
Ni2MnGa. b1, b2, and b3 indicate reciprocal lattice vectors of the
body-centered tetragonal cell.

package ecalj [38,51–54]. The k-point samplings of
16 × 16 × 16 and 8 × 8 × 8 were adopted for the GGA
and GW parts, respectively. All our GGA calculations employ
the Perdew, Burke, and Ernzerhof (PBE) version in the
exchange-correlation functionals [55]. For the GGA + U
calculation [56], we adopted an on-site Coulomb correction
of U = 1.8 eV on Mn atom, which seems to be suitable for
Ni2MnGa so that the optimized lattice parameters become
close to those of experiments [31,32]. This U means an
effective U in Dudarev’s approach [57], coupled with
the projected component onto the 3d orbitals inside their
muffin-tin sphere. The muffin-tin sphere radii were chosen to
be 1.25 and 1.20 Å for Mn/Ga and Ni atoms, respectively.
Self-consistent iterations of the QSGW calculation were
performed until the change in quasiparticle energy eigenvalue
was less than 0.005 eV for all orbitals and k points.

The generalized susceptibility χρ (q) of each spin state can
be written as follows:

χρ (q) = 1

Nk

∑

n,m,k

f ρ

mk+q − f ρ

nk

ε
ρ

nk − ε
ρ

mk+q

, (1)

where q = (qx, qy, qz ) and k = (kx, ky, kz ) represent the wave
vectors in the first BZ, Nk is the number of k points, n and m
are the band indices, ρ is the spin index (↑,↓), ε

ρ

nk are the en-
ergy eigenvalues, and the f ′s are the occupations of the Fermi
distribution function. The total generalized susceptibility χ is
the sum of χ↑ and χ↓ (χ = χ↑ + χ↓). Note that the peak
on the χ (q), corresponding to the Fermi surface nesting, may
indicate a possible instability to the modulation given by its
wave vector q.

For the χ calculation, a k-point sampling of 192 × 192 ×
192 in the cubic BZ was used. For the smearing of the
Fermi surface, an electron temperature of 10 K was adopted

in the Fermi distribution function. We considered the pairs
with energy differences within 6 eV to fully incorporate the
transitions between d channels. This energy cutoff is large
enough to catch the properties of χ because, as shown in
Eq. (1), the pair of energy eigenvalues with a slight energy
difference between the occupied and unoccupied states may
mainly contribute to χ .

Based on the rigid-band model, we investigated a chemical
potential dependence of χ . This model is a useful simple ap-
proximation for studying the changes in electronic properties
with electron/hole doping and magnetic moment changes.
In this approach, we suppose quasiparticle eigenvalues to
be robust to changes in chemical potential. The number
of electrons in the majority (minority) spin state, N↑(N↓),
is calculated as a function of the chemical potential μρ :
Nρ (μρ ) = ∑

nk f ρ

nk(μρ )/Nk. The number of electrons N is
N↑ + N↓ and the magnetic moment M is N↑ − N↓. Using
ε

ρ

nk, we determined the chemical potential (μ↑ and μ↓) of
each spin state for a given set of �n and �m (N = N0 + �n
and M = M0 + �m, where N0 and M0 are, respectively, the
number of electrons and magnetic moment obtained by the
self-consistent calculation). These obtained chemical poten-
tials were adopted in Eq. (1). We mainly investigated within
the following range: −0.5 μB/f.u. � �m � 0.16 μB/f.u. and
�n = 0. The case of large negative �m corresponds to a
model for suppressing magnetic moments due to the effects
of temperature fluctuations; for example, field-induced satu-
ration magnetization is reduced by around 10%(∼0.4 μB/f.u.)
at the temperature of martensitic transformation compared to
that of low temperatures [58–60]. Conversely, one may con-
sider the positive �m for a slight increase in Mn composition.
Some excessive Mn substitution, in which the additional Mn
atom tends to occupy the Ga site, causes antiferromagnetic
couplings in nonstoichiometric compositions, as described in
Refs. [26,61]. Therefore the net magnetic moment does not
increase: a large positive �m is not realistically expected. At
the final stage of the investigation, as reported in Sec. III G,
we took the ranges of −0.2 e/f.u. � �n � 0.6 e/f.u. and
−0.8 μB/f.u. � �m � 0.8 μB/f.u.

Overall, the QSGW calculation is much more computa-
tionally expensive than the standard GGA calculations and
currently does not allow us to access the total internal energy.
Therefore, methods that are based on the total energy func-
tional and adaptable in large systems, such as the GGA + U
method, are also essential for applications. In our investiga-
tion, it is also vital to confirm the accuracy and validity of
GGA + U .

III. RESULTS AND DISCUSSION

A. Overall features of electronic structure

The results of QSGW show a lot of improved features in
the electronic structure. For instance, as shown in Figs. 2
and 3, the Ni 3d eg component of the minority spin state
appears just at the Fermi level for the cubic phase (c/a =
1.00). This can be definitive theoretical evidence for the ex-
istence of phase instability at low temperatures. Compared
with the GGA + U or GGA results, the eigenvalue levels
of the minority spin state shift to higher energies, indicating
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FIG. 2. Total density of states (DOS) calculated by QSGW (solid lines), GGA + U (dotted lines), and GGA (dashed lines) (the vertical
axis of the inset is shown on the right side). The insets show enlarged minority spin components of DOS within a range of −0.8 to 0.8 eV from
the Fermi level.

an increase in exchange splitting and, thus, an increasing
total magnetic moment. This feature implies an increase in
magnetic energy in the advanced theoretical approach. The
energy level shift, appearing at the Fermi level, in the mi-
nority spin state is small but makes a drastic change in the
generalized susceptibility. The change is quantitative, but the
meaning of its result provides a qualitative conclusion in
the martensite phase of 10M or 14M appearing at low tem-
peratures. Such an instability indicated from the investigation
of susceptibility is found to be much more sensitive to the
magnetic moment, implying a close relationship with the
composition of the magnetic element and the external mag-
netic field. The later sections describe details of the results and
discussions.

B. Density of states

Figure 2 shows the total density of states (DOS) for the
majority and minority spin states. This figure notably reveals
a large exchange splitting, indicating the presence of a large

total magnetic moment. Focusing on the vicinity of the Fermi
level, the DOS of the minority spin state sensitively depends
on the structural parameter c/a. The large DOS at the Fermi
level in c/a = 1.00 (cubic phase) separates into occupied and
unoccupied peaks as c/a increases. Such a separation of DOS
peaks near the Fermi level is a consequence of the structural
transformation from the cubic (austenite) phase to the tetrag-
onal phase. This is typical behavior in the band JT effect
[62]. The decrease near the Fermi level in the DOS (c/a > 1)
through the transformation is consistent with what has been
reported experimentally in Ni-Mn-Ga systems [24,63,64].
The results show that, for all values of c/a, there are vis-
ible differences between QSGW and the others (GGA and
GGA + U ).

We particularly focus on two results: The DOS at the Fermi
level for c/a = 1.00. At this point, although QSGW shows
a remarkable peak just on the Fermi level, a corresponding
GGA (or GGA + U ) peak is located at 0.17 eV lower, and its
intensity is smaller than the QSGW. These properties imply
that the QSGW may enhance the instability to the JT dis-
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TABLE I. Total and atomic magnetic moments in μB/f.u. and μB, respectively. The experimental values for the austenite and martensite
phases are in the upper and lower rows of the right column, respectively. Extrapolation with the Stoner model evaluated these values on
austenite phases (Mex,0). See text for details.

QSGW GGA+U GGA Expt.

c/a Mn Ni Ga Total Mn Ni Ga Total Mn Ni Ga Total Total

1.00 3.56 0.61 −0.03 4.74 3.82 0.32 −0.05 4.41 3.42 0.36 −0.05 4.09 4.53 [58], 4.28 [59],
1.10 3.55 0.62 −0.03 4.76 3.82 0.39 −0.05 4.54 3.42 0.43 −0.05 4.23 4.26 [60]

1.20 3.50 0.59 −0.04 4.63 3.80 0.40 −0.06 4.53 3.37 0.44 −0.05 4.20 4.23 [58], 4.16 [59],
1.25 3.44 0.55 −0.04 4.49 3.78 0.37 −0.06 4.44 3.35 0.43 −0.06 4.13 4.04 [60], 4.17 [48]

tortion more than GGA (or GGA + U ). We also observed a
similarity between GGA and GGA + U on that peak. This
is because its electronic states are not formed by the Mn 3d
orbitals. Details will be discussed in Sec. III D.

The other important result of focus is an unoccupied state
at about 2 eV in the minority spin state in all cases of c/a.
This state is identified as the upper state of exchange splitting.
Compared to GGA, QSGW evaluates its location as about
0.4 eV higher. This result can be understood as an under-
estimation of orbital energy in the GGA calculation. The
corresponding peak of GGA + U is rather close to the peak
position of QSGW.

Depending on c/a, the resemblance of GGA + U and
QSGW in the DOS at the Fermi level is altered (see in-
sets of Fig. 2). Since QSGW explicitly incorporates the
electron localization effect, this change suggests that the theo-
retical model for describing electron correlations, including
the choice of parameters (U ), should differ depending on
structural parameters (c/a). In particular, for c/a = 1.20,
the DOS peak on the Fermi level observed in GGA dis-
appears in QSGW and GGA + U . A coincidence of DOS
between GGA + U and QSGW appears near the Fermi level
in the tetragonal phase; for example, the peak position shifted
to the unoccupied side (∼0.15 eV, see Sec. III D) and the
values of DOS and its slope at the Fermi level. This find-
ing implies that the electron localization effect included
in QSGW could be reproduced by the +U correction in
GGA (GGA + U ).

C. Magnetic moments

Table I shows the total and atomic magnetic moments. The
total magnetic moment mainly originates from the Mn atom,
while the Ga atom has a small opposite moment to Mn and
Ni. The total magnetic moment obtained from the GGA cal-
culations agrees with those reported in a previous theoretical
study: 4.11 and 4.14 μB/f.u. for the cubic (c/a = 1.00) and
tetragonal (c/a = 1.25) phases, respectively [30]. Comparing
the results of c/a = 1.25 with those of c/a = 1.00, we also
observed that although the magnetic moment of Mn decreased
for all methods, the magnetic moment of Ni showed a different
trend, namely, a decrease in QSGW and an increase in both
GGA and GGA + U . In the two latter cases, as c/a increases,
the total magnetic moment initially increases, then decreases,
and finally becomes almost the same for c/a = 1.00 and 1.25.
This trend was also shown in the previous study of GGA + U
[65].

Previous experimental results by Ooiwa et al. [58]
suggested that the Stoner model [66] (M2

ex,T = M2
ex,0[1 −

(T/θ )2], where Mex,T is the magnetic moment at temperature
T , and θ is the Curie temperature) is valid below 300 K.
Therefore, they used this model to determine the magnetic
moment (Mex,0) of the austenite phase by extrapolating it to
zero temperature. Table I shows the results obtained using
the same method for the experimental data in Refs. [59]
(data below 300 K) and [60] (data below 270 K) to esti-
mate the magnetic moment (Mex,0) in the austenite phase.
The magnetic moment of the martensitic phase (at nearly
zero temperature) is suppressed compared to the austenite
phase, specifically, by 0.30(=4.53–4.23), 0.12(=4.28–4.16),
and 0.22(=4.26–4.04) μB/f.u. in Refs. [58], [59], and [60],
respectively. Such a property on the magnetic moment is also
observed in QSGW, with a decrease of 0.11(=4.74–4.63) and
0.25(=4.74–4.49) μB/f.u. for c/a = 1.20 and 1.25, respec-
tively. According to the values of atomic magnetic moment,
the suppression is attributed to the Mn and Ni atoms. A similar
trend in suppression was also reported in meta-GGA calcula-
tion with a suppression of 0.09 μB/f.u. (4.17 and 4.08 μB/f.u.
for the cubic and tetragonal phases, respectively) in SCAN −
U (1.8 eV) [30] and, however, is never seen in GGA and
GGA + U , as shown in Table I. Assuming QSGW or meta-
GGA includes an important amount of electron localization
effect, the larger magnetic moment may indicate evidence of
larger strength on electron localization in the cubic phase.

Although c/a dependence of magnetic moment on QSGW
is consistent with experimental trends, the value of the mo-
ment is overestimated compared to the GGA and experiments
(Table I). A tendency for magnetic moment overestimation
has been reported in the QSGW approach [40,45]. Meanwhile,
the GGA often underestimates the magnetic moment in local-
ized electron systems due to the underestimation of exchange
splitting in GGA. QSGW can slightly overcompensate for
such an underestimation, giving a much larger magnetic mo-
ment than GGA. Unlike GGA, GGA + U can compensate for
such an underestimation by the U parameter, yielding a larger
value, as shown in Table I.

QSGW is able to incorporate electron charge fluctuation
effects through screened Coulomb matrix but not spin fluctu-
ation effects. It has been pointed out that such a neglecting
of spin fluctuation leads to an overestimation of magnetic
moment in fcc-Ni metal compared to the experimental values
[45]. The overestimation in the magnetic moment by QSGW
in this work may be due to the same reason. This problem is
possibly overcome by including the spin fluctuation effect in
the GW scheme [67].
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FIG. 3. Band dispersion curves (a) and PDOS (b)–(d) of the majority spin state at c/a = 1.00 with QSGW (solid lines), GGA + U (dotted
lines), and GGA (dashed lines). Similarly, band dispersion curves (e) and PDOS (f)–(h) of the minority spin state. The symbols in the upper
horizontal axis (a), (e) are the corresponding fcc k points. The origin of PDOS for GGA + U (GGA) data is set to the level of 2.0 (4.0)
states/eV atom for Mn and Ni, and 0.5 (1.0) states/eV atom for Ga. The p orbital components of Mn and Ni are exaggerated by five times.

D. Band dispersion curves and partial density of states

Figures 3 and 4, shows the dispersion curves and partial
density of states (PDOS) at c/a = 1.00. The dispersions are
plotted along the symmetry lines of the first BZ shown in
Fig. 1(b). Note that, in the case of c/a = 1.00, the energy
eigenvalues on the specific k points degenerate due to sym-
metry, such as at the X and Z or Y and P points. This
redundant presentation is to make the comparison with the
tetragonal system clearer. The p-orbital-like states, character-
ized by large dispersion, cross the Fermi level in the majority
spin state [Fig. 3(a)], whereas dispersionless states appear
in the vicinity of the Fermi level for the minority spin state
[Fig. 3(e)]. The dispersionless states, substantially consisting
of nonbonding orbitals, contribute a peak structure in the
DOS near the Fermi level. These states mainly comprise the
Ni minority spin state eg (dx2−y2 , d3z2−r2 ) orbitals, while the
t2g (dxy, dyz, dzx ) orbitals are almost occupied.

Compared with GGA, the d bandwidth is narrower, but
the p bandwidth (around −5 eV) is broader in QSGW. This
property is a general trend of QSGW that has been pointed

out in previous studies [68]. In this comparison, a decrease
of QSGW in the d bandwidth comes from a consequence of
the intensely overscreened exchange interaction of GGA. The
latter overscreened nature is based on the uniform electron gas
model, in which the delocalization of electron wave function
is inherently introduced.

From the difference between GGA and GGA + U in
Figs. 3(a) and 3(e), the +U correction shifts the occupied
majority spin states to lower energies and pushes the unoc-
cupied minority spin states to higher energies. As a result, the
minority spin states below the Fermi level are insignificantly
affected by +U . The d orbitals of QSGW in the minority spin
state are generally shifted to higher energies than that of GGA.
The underestimation of exchange splitting in GGA, as pointed
out in the previous section (Sec. III C), is clearly observed.

Figure 4 shows the band dispersion curves and PDOS at
c/a = 1.20 in the same form as Fig. 3. Because of the distor-
tion to the tetragonal cell, the symmetry is reduced from the
cubic phase; thus, t2g separates into e′

g (dyz, dzx ) and b2g (dxy)
orbitals, and eg separates into a1g (d3z2−r2 ) and b1g (dx2−y2 )
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FIG. 4. Band dispersion curves (a) and PDOS (b)–(d) of the majority spin state at c/a = 1.20 with QSGW (solid lines), GGA + U (dotted
lines), and GGA (dashed lines). Similarly, band dispersion curves (e) and PDOS (f)–(h) of the minority spin state. The origin of PDOS for
GGA + U (GGA) data is set to the level of 1.5 (3.0) states/eV atom for Mn and Ni, and 0.5 (1.0) states/eV atom for Ga. The p orbital
components of Mn and Ni are exaggerated by five times.

orbitals. The Ni d3z2−r2 orbital close to the Fermi level in the
cubic phase moves to below the Fermi level while the dx2−y2

moves to above the Fermi level, stabilizing the tetragonal
crystal structure due to the band JT effect. The dispersionless
states on the minority spin state at the N-P line in the first
BZ just above the Fermi level form a van Hove singular-
ity, and a corresponding peak in DOS is mainly observed
as the Ni a1g orbital. These features are exhibited in all of
the present methods, but there are some differences, e.g., the
states on the N-P line described above cross the Fermi level
in GGA but locate about 0.15 eV above the Fermi level in
QSGW and GGA + U . We speculate that such an electronic
state may induce further structural instability. For example,
GGA has slightly overestimated the optimized c/a (1.25 in
Ref. [30], 1.26 in Ref. [69]) compared to the experimental
value (c/a = 1.20). Indeed, Zelený et al. have shown that
the modulated long-period structures such as 4O, 10M, and
14M are more stable than the NM structure by GGA and
GGA + U calculations [31,32]. In such modulated structures,

translational symmetry in the z direction is broken at the twin
boundary, changing the level of Ni a1g orbital and possibly
forming orbital hybridization with the neighboring atoms.

Along with the N-P line, we found a similar state along
the 	-Z line in the minority spin state, appearing around
−0.16 eV in GGA, while a state with a flat dispersion close
to the Fermi level appears in QSGW. The direction to the
Z point from the 	 point in the first BZ corresponds to the
z direction shown in Fig. 1. The main contribution to this
state is the Ni dx2−y2 orbital, which is a nonbonding orbital
toward Ni-Ni in the xy plane. This state comes from the
part of the dx2−y2 orbital that does not significantly move to
higher energy by the band JT effect. This state appears only
in one-dimensional regions on the 	-Z line and does not con-
tribute so much to DOS. Therefore, it hardly affects electronic
instability.

As described in the Secs. III B and III D, there are non-
negligible electronic structure differences between QSGW
and GGA. It is found that some of these differences
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FIG. 5. Generalized susceptibility of the majority spin (a), the minority spin (b), and the total (c) with QSGW, (d)–(f) with GGA + U , and
(g)–(i) with GGA. White dashed lines represent the [110] directions.

with QSGW become smaller by introducing +U (1.8 eV).
However, especially in the cubic phase, a noteworthy differ-
ence remains within the vicinity of the Fermi level between
QSGW and GGA + U . To reproduce an electronic structure
close to that of QSGW by conventional DFT, one of the
possible ways is to employ a few parameters of electron cor-
relation, such as Hubbard U and Hund’s J , appropriately [70].
In such cases, the QSGW may provide a guide for identifying
these parameters. Once the parameters are determined, it is

possible to utilize the virtues of the conventional DFT
approach (total energy, structural optimization, reasonable
computational cost, etc.).

E. Generalized susceptibility

Figure 5 shows the distribution of χρ (q) (ρ =↑,↓) and
χ (q) = χ↑(q) + χ↓(q) of the cubic phase in the qz = 0
plane. The minority spin component (ρ =↓) has a domi-
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FIG. 6. Magnetic moment dependence of generalized susceptibility by (a) QSGW and (b) GGA.

nant contribution, and the overall q dependence originates
from the minority spin component due to a large num-
ber of states around the Fermi level. In QSGW, there is a
strong peak around ξ = 1/5 (q = (ξ, ξ , 0)2π/a), as shown
in Figs. 5(b) and 5(c). This ξ is supposed to be the nesting
vector corresponding to five-period structures such as 10M.
This theoretical result strongly suggests that the Ni2MnGa
possesses instability to the five-period structure known as the
ground state. Note that it can be pointed out that a peak
appears at ξ = 0.23 in SCAN(U = 0) (Fig. 4. in Ref. [30]),
which is slightly larger than 1/5. Interestingly, the second
substantial peak at ξ = 4/5 can be assigned to a periodicity
of 1.25 layers along the [110] direction.

In GGA [see Figs. 5(g)–5(i)], the first peak position shifts
to a larger wave number, and the secondary peak shifts to a
smaller wave number. The present GGA results agree with
previous LDA/GGA results regarding the presence and posi-
tion of two peaks in the [110] direction. For example, there
are peaks at ξ = 0.38 and 0.62 in Fig. 5(i), corresponding to
ξ = 0.42 and 0.59 in LDA [17], ξ = 0.39 and 0.60 in GGA
[30], respectively. Concerned about the peak around ξ = 0.4,
we will discuss our GGA results in the second paragraph
from the last of this section. As we discussed in Sec. III D,
for c/a = 1.00, the states near the Fermi level predominantly
consisting of Ni 3d orbitals are insensitive to the Mn’s U
parameter; GGA + U gives a result similar to that of GGA,
accompanied by peaks at ξ = 0.34 and 0.67. There is a clear
difference in intensity between the peaks for both QSGW
and GGA cases. The peak corresponding to longer period
structures (smaller ξ ) exceeds those of the others (larger
ξ , corresponding to shorter period structures), as shown in
Figs. 5(c) and 5(i). This difference in intensity suggests that
the instability to the long-period structure is more substantial
than that to the short-period structure, promoting the forma-
tion of long-period structures. In contrast, the largest peak
appears at a larger ξ in GGA + U [Fig. 5(f)].

In experimental works, it has been found that a tiny re-
placement at the Ga site (Ga sublattice) with Mn atoms (an
increase in the number of valence electrons) changes the mod-
ulated phase from 10M to 14M [14]. From the first-principles

CPA calculations, which include the mean-field effect, Q. Hu
et al. have demonstrated that the Mn at Ga sites increases the
atomic magnetic moments of Ni and Mn [26]. Specifically,
according to their result, for an increase of 0.1 in the number
of electrons per atom (�n = 0.1 e/a = 0.4 e/f.u.), the whole
magnetic moment on Ni and Mn increases by 0.1 μB/f.u.
This is due to the strengthening of the exchange interaction
between the neighboring magnetic atoms. Note that if we em-
ploy a simple Fermi level shift to the higher-energy side, the
magnetic moment decreases due to the occupation of a minor-
ity spin state. In order to clarify the behavior in the rigid-band
approximation (RBA), we investigated the magnetic moment
dependence of the generalized susceptibility under the fixed
number of electrons (�n = 0).

Figure 6 shows the magnetic moment dependence of χ .
The results of QSGW clearly show the emergence of peaks
at ξ = 1/7, ξ = 1/5, and ξ = 1/3, corresponding to 14M,
10M, and 6M structures, respectively, depending on the sub-
tle changes in the magnetic moment (�m). This emergence
of the peaks indicates that the cubic electronic state inher-
ently has instability to these modulated structures. In contrast,
the GGA calculation shows that the nesting vector (peak
position) is not only so insensitive to �m but also out of
the range of the 10M or 14M structure. Our QSGW result
also shows that the nesting vector decreases (increases) with
increasing (decreasing) �m; for example, the nesting vec-
tor of 10M (�m = 0 μB/f.u.) shifts to that of 14M (�m =
+0.12 μB/f.u.) with an increase in the magnetic moment of
0.12 μB/f.u. This change in the magnetic moment almost
corresponds to �n = 0.1 e/a by referring to the theoretical
results in Ref. [26]. Meanwhile, the 14M phase was exper-
imentally observed at �n = 0.11 e/a [61]. However, in our
results based on RBA, the nesting vector increases with in-
creasing �n unless �m increases (see Sec. III G). This result
implies the following: an increase in the magnetic moment
is necessary to reduce the nesting vector to ξ = 1/7 (corre-
sponding to 14M). In particular, since the Fermi surface of
the minority spin state comprises Ni eg orbitals, the Ni mag-
netic moment possibly plays a role in controlling the nesting
vector.
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FIG. 7. Fermi surface of minority spin state in the extended BZ by (a) QSGW and (b) GGA. The 	 point corresponds to the corners
and center of the cubic. Magnetic moment dependence of the Fermi surface for (c) QSGW and (d) GGA on the surface with kz = 0. Red,
green, blue, and gray arrows in (c) represent (1/7, 1/7), (1/5, 1/5), (1/3, 1/3), and (4/5, 4/5) vectors, respectively. Green and blue vectors in
(d) represent (2/5, 2/5) and (1/2, 1/2), respectively.

As also shown in Fig. 6(a), in contrast with the first peak
mentioned above, the peak around ξ = 4/5 is less sensitive
to magnetic moment changes. This peak can be involved with
the double layers shuffling that appears in the 10M and 14M
structures (see Sec. III H).

Effective couplings of interatomic exchange interaction
should decrease at high temperatures due to the fluctuations
of magnetic moment, which corresponds to a situation where
the magnetic moment declines below the Curie temperature.
There are double peaks at ξ = 1/3 and ξ = 2/3 in the case of
�m = −0.4 μB/f.u., which corresponds to the 6M structure.
Note that the reason why ξ = 2/3 promotes the 6M structure
as well as ξ = 1/3 was demonstrated in Ref. [71]. As shown
in Figs. 5(g) and 5(h), both χ↑ and χ↓ have a peak around ξ =
0.4 in GGA. According to the discussion in Ref. [19], the peak
around ξ = 0.4 has been considered to lead to the softening of
phonon frequency in the [110] direction and to be an indica-
tion of a three-period structure. That work suggested that this
non-negligible difference from ξ = 1/3, corresponding to a
nesting vector for a three-period structure, might be corrected
by considering the suppression of magnetic moment caused
by temperature effects: the peak position of χ↑ tends to move
to ξ = 1/3. We obtained a similar tendency from our GGA
results (not shown here). However, in our χ [Fig. 6(b)], the
largest peak appears around ξ = 1/2 at �m = −0.4 μB/f.u.
due to the contribution of χ↓.

In summary of this section, the χ of QSGW is highly
sensitive to magnetic moment changes: the peak position
(ξ = 1/7, 1/5, 1/4, 1/3, etc.) varies with the moment (see
also Sec. III G). The presence of peaks over such a wide range
is not shown in the GGA calculation. It is interesting to note
that the four-period structure, corresponding to ξ = 1/4, has
experimentally been reported in a Ni-Mn-Sn alloy [72]. The
relationship to our result may be a future problem.

F. Fermi surface

The properties of χ and its magnetic moment dependence
can be understood from the Fermi surface of the minority
spin state shown in Fig. 7. This Fermi surface consists of two
bands, which are mainly contributed from the Ni eg orbitals.
Our result by GGA [Fig. 7(b)] is in good agreement with
those of previous studies [17,30,73], while QSGW [Fig. 7(a)]
results in a larger Fermi surface. Figs. 7(c) and 7(d) show a
cross-section of the Fermi surface at the kz = 0 plane. Accord-
ing to these results, the Fermi surface forms a squarelike shape
centered at the 	 point. As indicated by arrows in Figs. 7(c)
and 7(d), the connections to the surface belonging to the adja-
cent 	 points contribute to Fermi surface nesting. The square
of QSGW is more spacious than that of GGA. Consequently,
the QSGW gives a shorter nesting vector than the GGA.
These squares on QSGW remarkably expand (shrink) with a
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FIG. 8. Magnetization dependence of the nesting vectors for the
�n (e/f.u.) listed in the legend. Neighboring data are connected by
lines for a guide to the eye, but some of them are not displayed to
make the graph clear.

subtle increase (decrease) in the magnetic moment, as shown
in Fig. 7(c), due to the existence of dispersionless minority
spin states much close to the Fermi level. Thus, the peak of
χ appears at ξ = 1/7, 1/5, and 1/3 along the sequence of
magnetic moment magnitudes.

G. Nesting vectors

From Fig. 6, it is identified to assign maximum peak posi-
tions of χ to ξmax for a magnetization. Figure 8 shows the data
plot in the magnetization (�m) vs. ξmax by QSGW for several
typical �n’s within the RBA. Although in this approximation,
the self-consistent fields expected from both �n and �m are
not considered, the plot may indicate an occurrence of possi-
ble instability. As a general trend, the ξmax at the negative �m
decreases to zero and then jumps to larger values (ξmax ∼ 1)
as the �m increases. This jump is caused by a reversal of
intensities between the two peaks of χ shown in Fig. 6(a).
An increase in the �n leads to an increase in ξmax, indicat-
ing a suppression of long-period structural instability. In the
small ξmax region, its change for the �m or �n is significant.
A slight reduction in the number of electrons, for example,
corresponding to Mn-site substitution by Cr [74,75], favors an
instability to longer period structures. In such an instability,
its period increases as ξmax decreases and eventually reaches
infinity at ξmax = 0. This behavior corresponds to the appear-
ance of the NM structure. In this sense, the NM structure can
be attributed to a region where ξmax is close to zero. In Fig. 8,
it is assigned to a region of positive �m, although its weakly
oscillating behavior appears along the horizontal axis due to
the insufficient numerical accuracy of ξmax = 0. In the case of
large positive �n or large negative �m, the ξmax approaches
1/2 associating with two-period structures such as 4O.

The CDW state is usually discussed with a nesting vector.
For example, in Ni2MnGa, some experimental groups have
proposed possible nesting vectors of ξ = 0.46, 0.43 [24,76],
based on their results. These authors implied that their nesting
vectors coincide with those of LDA/GGA. This is true in our
data [Fig. 6(b)], and however, the nesting vector correspond-
ing to those of the experiments does not appear in the QSGW
results of ξ [Fig. 6(a)]. In Fig. 8, it can appear at large negative
�m.

H. Nanotwin boundary alignment

The peak around ξ = 4/5 clearly appears at the self-
consistently determined state (�m = 0 μB), as shown in
Fig. 6(a). Its peak location is relatively insensitive to the effect
of magnetic moment changes. This peak, whose strength is
slightly smaller than those of the peaks around ξ = 1/7 or
1/5, possibly gives an implication of another instability in the
system. The corresponding wavelength expected to be stabi-
lized in the system may assign to 1.25 period (2.5M) along
the [110] direction in real space when introducing the same
ansatz as for the seven-period (14M) or five-period (10M).
Since a lattice modulation with the wavelength corresponding
to such periods is incommensurate, the lattice elastic energy
may increase even though simultaneous structural relaxation
is caused. According to such speculation, it is meaningful
to suppose the existence of double-well potential among the
layers, as shown in Fig. 9(a).

As a result, the 3-2 layer and 2-3 layer may become trans-
ferable to each other. This transfer means a kinetic motion
of the nanotwin boundary in the martensitic phases. At the
finite temperatures that such transfer is expected to appear,
the kinetic motion may pass by a local transition state of layer
configuration such as a 2-2 layer or a 3-3 layer, as depicted
in Fig. 9(b). Energetics of the configurations containing a 2-2
layer or 3-3 layer is interesting so that the mechanism of the
nanotwin boundary shift on martensitic transformation can be
related to the electronic structure. In the present context, the
local structure of a 2-2 layer or 3-3 layer means the transi-
tion state in the kinetic motion of the nanotwin boundary.
We have to note that the solid system of a 2-2 layer or 3-3
layer periodicity has theoretically been discussed as a candi-
date for stable structures or a fluctuation of lattice distortion
[31].

All of the above discussions based on generalized suscepti-
bility are of instability in the electronic structure for the cubic
(austenite) phase. Stability discussions of martensite phases
are required in a physical accuracy comparable to the QSGW
approach. Creation and annihilation of the nanotwin boundary
associated with its kinetic motion are also interesting in the
phase transition among the martensite phases of 10M, 14M,
and NM.

IV. SUMMARY

We investigated the electronic structure and magnetic mo-
ment of the cubic and tetragonal phases of ferromagnetic
shape memory alloy Ni2MnGa by the QSGW method. There
is a large DOS at the Fermi level in the cubic phase (c/a =
1.00) consisting of Ni eg orbitals of minority spin state,
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FIG. 9. Schematic illustration of modulated structures with nanotwin boundaries represented by green horizontal lines. (a) The double-well
potential formed among nanotwin boundary alignments. (b) The 10M structure (left) and the structure after the nanotwin boundary shifts by
an atomic layer (right). The red, blue, and gray spheres represent the Ga, Mn, and Ni atoms.

apparently suggesting structural instability due to the band
JT effect. Such electronic structures near the Fermi level
were insensitive to the U parameter of Mn and were not
well described by the present GGA + U calculation. In the
tetragonal phase (c/a = 1.20), we found the peculiar elec-
tronic states that may destabilize the NM structure; the van
Hove singularity and dispersionless state near the Fermi level.
For both the cubic and tetragonal phases, the QSGW cal-
culation shows the narrower bandwidth for the d orbitals
than the GGA calculation and higher-energy levels of unoc-
cupied orbital in the minority spin state, implying that the
QSGW evaluates a stronger exchange interaction than the
GGA. From the susceptibility analysis, we found that the
electronic structure of the cubic phase inherently has the in-
stability induced by the Fermi surface nesting to modulated
structures of 10M and 14M as well as 6M. These instabilities
were also found to be sensitive to the magnetic moment.
This work will pave the way for a basic understanding of
martensite phase transitions and give new foundations for the

theoretical/computational materials design to magnetic shape
memory alloys.
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