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The crystal structures and phase transitions of NaNbO3 are analyzed with density fonctional theory through
generalized gradient approximation-PBEsol (GGA-PBEsol) and local density approximations (LDA). The
phonon dispersion curves from the high-symmetry cubic perovskite phase are reported to have many unstable
branches, predisposing to several combinations of phase transitions to various distorted structures. The coupling
between the modes and the strain relaxation play a key role in the condensation of the ground state of sodium
niobate. The instabilities at R and M points of the first Brillouin zone and along the line T (connecting the M
and R points) are very important for stabilizing the low-energy phases. Within the GGA-PBEsol approximation,
the ground state is rhombohedral ferroelectric/antiferrodistortive (FE/AFD) R3c, while in LDA it is rather the
orthorhombic FE/AFD Pmc21 structure that stabilizes the lowest energy in this compound. In both calculations,
there is only a small energy difference between the three lowest-energy phases Pmc21 (FE/AFD[110]), Pbcm
(antiferroelectric/AFD), and R3c (FE/AFD[111]), which is a key characteristic of antiferroelectricity. The
GGA-PBEsol approach provides more sensible results than the LDA approximation.
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I. INTRODUCTION

Antiferroelectric (AFE) materials are promising candidates
for a wide range of electronic applications, such as, high-
energy storage capacitors [1], electrocaloric refrigerators [2],
and nonvolatile random access memories [3]. Among them,
NaNbO3 (NNO), known for its complex structures and phase
transitions [4,5], is one of the very few lead-free antifer-
roelectric oxides. This material has attracted considerable
interest because it is a typical nontoxic and highly stable
semiconductor which has applications in photocatalysis [6]
and potentially also in piezoelectric nanodevices [7]. Indeed,
NNO has shown growing interest in environmental protection,
providing a matrix phase for various lead-free piezoelectric
materials, such as (K, Na, Li)(Nb, Ta, Sb)O3 [8] and (Na,
K)NbO3 [9], which could replace the set of lead-based per-
ovskites.

ABO3 perovskites typically crystallize at high temperature
in an aristotype cubic Pm3̄m structure, but then lower their
symmetry on cooling by rotating or distorting the BO6 octa-
hedra and translating the A site or B site cations. The structures
obtained by simple rotations of the BO6 octahedra around the
axes of the aristotype cubic structure were first classified by
Glazer [10], followed by a number of theoretical studies of
the possible tilt structures and phase transitions [11–13]. It is
known today that understanding the crystal structures, char-
acterized by structural phase transitions, of the perovskites is
crucial to understanding the origin of their performance and
accelerate the search for new materials. The computational

first-principles approach has became an extremely valuable
tool to identify competing structural instabilities in per-
ovskites and this is even more crucial for a structurally
complex material such as NNO.

The richness of the phonon curves in the cubic phase and
the complex sequence of phase transitions of NNO are the
subject of several studies both experimental and theoretical.
Discovered in 1949 by Matthias [14], NNO certainly rep-
resents the most structurally complex “simple” perovskite
known so far. A set of “seven phases of sodium niobate” were
first summarized by Megaw [15] (PE, AFD, AFE, and FE
are abbreviations for paraelectric, antiferrodistortive, antifer-
roelectric, and ferroelectric, respectively): N (FE/AFD-R3c,
below −100◦ C), P (AFE/AFD-Pbcm, from −100 to 360◦ C,
room temperature), R (AFE/AFD-Pnmm, 360 → 480◦ C),
S (PE/AFD-Pnmm, 480 → 520◦ C), T1 (PE/AFD-Cmcm,
520 → 575◦ C), T2 (PE/AFD-P4/mbm, de 575 → 640◦ C),
and U (PE-Pm3̄m, beyond 640◦ C). Since then, several ad-
ditional phases have been put forward. It is the case of the
Q (FE/AFD-Pmc21) phase, visible as a phase coexisting in
certain temperature ranges with the N and P phases [16–20].

In spite of the importance of phonons in the physics of
ferroelectrics, there are rare studies in the literature on the
phonon-dispersion relation of NNO from first principles [21].
The present study is part of the first-principles contributions
to improve our understanding of the crystal structures, phase
transitions, and phase stability of sodium niobate.

In this paper we quantify the delicate competitions between
instabilities in NNO, we systematically analyze the phase
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transition mechanism and discuss how it affects the volume
and atomics displacements. We confirm the presence of mix-
tures of the Pmc21 (FE[110]/AFD), Pbcm (AFE/AFD), and
R3c (FE[111]/AFD) polymorphs. Compared to experimental
observations, our generalized gradient approximation–PBEsol
(GGA-PBEsol) approach provides more sensible results than
local density approximations (LDA). However, let us notice
the fact that the R AFE/AFD-Pnmm and S PE/AFD-Pnmm,
with cells dimension

√
2 × √

2 × 12 (24 formula units) and√
2 × 6 × √

2 (12 formula units), respectively, are more com-
plex to build and to characterize from ab initio simulations
[22].

The remainder of this paper is organized as follows. In the
Sec. II, we summarize the technical details of our calculations.
Then the description of the cubic perovskite phase, including
the lattice constant, the Born effective charges, and the phonon
dispersion curves are reported in Sec. III. Section IV discusses
the FE, AFD, and antipolar electric (APE) instabilities con-
densed one by one and the relative low-energy structure for
each them. In Sec. V, we investigate the ground state in NNO
and the energy proximity between FE and AFE phases. We
provide a summary at the end.

II. COMPUTATIONAL DETAILS

First-principles calculations were carried out using the
ABINIT density functional theory (DFT) package [23–25]
within the plane-wave-pseudopotential approach. We used
the Perdew-Burke-Ernzerhof functional revised for solids
(GGA-PBEsol) [26] and optimized norm-conserving pseu-
dopotentials (ONCVPSP) [27–29], available on the PSEUDO-
DOJO server [30]. For comparison, some results have also been
checked at the LDA level [31]. The valence states for the
computations are 2s22p63s1 for Na, 4s24p64d45s1 for Nb and
2s22p4 for O. Convergence was achieved for an energy cutoff
of 45 hartrees for the plane-wave expansion (for both types
of pseudopotentials) and a 8 × 8 × 8 grid of k-points for the
Brillouin zone sampling of the single perovskite five-atom
cell. In supercell calculations, the k-points’ grid was adjusted
to provide a density of k-points and a degree of convergence
similar to the 8 × 8 × 8 sampling in the five-atom cell. When
condensing the AFD instabilities, either we considered a 20-
atom supercell corresponding to

√
2a0,

√
2a0, 2a0, with a

sampling of 6 × 6 × 4 k-points or, for the Cmcm, Pmmn,
R3̄c, and R3c phases, a 40-atom supercell corresponding to
2a0, 2a0, 2a0 with a sampling of 4 × 4 × 4 k-points. The
antipolar electric (APE) Cmc21, AFD a−a−b+/a−a−b−, and
AFE/AFD Pbcm structures were relaxed in a 40 atoms su-
percell corresponding to

√
2a0,

√
2a0, 4a0, and a sampling

of 6 × 6 × 2 k-points. We explicitly checked that the relative
energy of the different phases is well converged and indepen-
dent of the choice of the supercell. All of the present ab initio
calculations were performed using optimized theoretical lat-
tice constants. Full structural relaxations (lattice parameters
and internal degrees of freedom) were performed until the
forces and stresses were smaller than 10−7 hartrees/bohr and
10−7 hartrees/bohr3, respectively. The phonon frequencies,
Born effective charges, and electronic dielectric tensor were
calculated according to density functional perturbation theory
(DFPT) [32]. The phonon dispersion curves were interpolated

from the dynamical matrices on a 2 × 2 × 2 q-point grid,
while treating separately the dipole-dipole interaction. For the
polarization, we used the Berry phase approach [33]. The
space group symmetry were checked by the FINDSYM program
[34]. To analyze the group theory and relative contributions
of different phonon modes to the distortions we employed
ISOTROPY and AMPLIMODES codes of the Crystallographic Bil-
bao server [35–37].

III. HIGH-SYMMETRY CUBIC STRUCTURE

First, we report the properties of the highly symmetric
cubic perovskite structure of NNO. In this cubic phase, the
atomic positions are fixed by symmetry and the only structural
parameter to be relaxed is the lattice constant a0. Our results
are reported in Table I compared to NaTaO3 (AFD), KNbO3

(FE), and KTaO3 (PE), and other theoretical and experimental
values. We report also the Born effective charges (Z∗) and the
optical dielectric constant (ε∞). In the cubic structure, Z∗ of
A (A = Na; K) and B (B = Nb; Ta) atoms are isotropic while,
for O, two distinct values have to be considered depending if
the O atom is displaced along the B-O chain (O‖) or perpen-
dicularly to it (O⊥).

Our NNO relaxed lattice constant (a0 = 3.9427Å) is in
agreement with that reported experimentally (a0 = 3.945Å)
and other theoretical results (Table I). Let us nevertheless
point out the discrepansy with the values found by Prosandeev
[39] who used the ultrasoft atomic potentials (US-PP).

The Born effective charges of B (B = Nb; Ta) and O‖
are strongly anomalous and these values are known to be a
common feature of ABO3 compounds. They are related to
the dynamical transfer of charge between the B d and O 2p
orbitals [42]. Z∗

(Na/K) and Z∗
O⊥ are also anomalous but to a much

lower extent. We notice the tendency of the Born effective
charges to be larger in niobates (ANbO3) than in tantalates
(ATaO3). In the same way, the calculated optical dielectric
constant of ANbO3 (6.12 and 6.42) is bigger than for ATaO3

(5.12 and 5.39).
Our calculations describe NNO as an insulator with an

indirect band gap of 1.65 eV between R and Γ points, as
well as for NaTaO3 (2.32 eV), KNbO3 (1.53 eV), and KTaO3

(2.16 eV). This result is in agreement with the previous the-
oretical value 1.6 eV [40]. Compared with the experimental
band gap 3.4 eV of NNO [43], the calculated indirect band gap
is much smaller. This discrepancy is due to the use of GGA, or
LDA, which typically underestimates, by about 30 to 40%, the
experimental band gap in semiconductors and insulators [44]
but correctly reproduces their insulating nature. Note, how-
ever, that hybrid functionals give a band-gap value in much
better agreement with the experiment, as demonstrated by
distinct authors [45–47], while the Hartree-Fock (HF) method
very strongly overestimates the ab initio calculated band gaps
of solids [47].

Even if the ground state of a system can be very complex,
the calculation of phonon dispersion curves in the high-
symmetry phase offers a global view of the instabilities that
can progressively condense and helps revealing the possible
intermediate phases and the ground state. The Goldschmidt
tolerance factors of NNO (t < 0.98) and NaTaO3 (NTA) ma-
terials are close and dispose them to stabilize an orthorhombic
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TABLE I. Lattice parameter (Å), Born effective charges (|e|), optical dielectric constant gap (eV), and the calculated Goldschmidt tolerance
factor t of cubic NaNbO3 at relaxed volume compared to NaTaO3 (AFD), KNbO3 (FE), and KTaO3 (PE), and other theoretical values. The
nominal charge are +1|e| for Na and K ions, +5|e| for Nb and Ta ions, and −2|e| for O ion. The NaNbO3 experimental lattice parameter and
gap are, respectively, 3.945 Å and 3.4 eV [38].

NaNbO3
NaTaO3 KNbO3 KTaO3

Present LDA US-PP [39] Present Present Present

a0 3.9427a 4.1822 3.9366a 3.9847a 3.9772a

3.9134b 3.92 [40]

Z∗
A 1.13 1.13 [41] 1.102 1.14 1.14 1.15

Z∗
B 9.48 9.11 9.718 8.56 9.61 8.68

Z∗
O‖ −7.28 −7.01 −6.28 −6.50 −7.28 −6.49

Z∗
O⊥ −1.67 −1.61 −2.27 −1.60 −1.73 −1.67

ε∞ 6.12 4.96 5.12 6.42 5.39

GAP 1.65 1.6 [40] 2.32 1.53 2.16

t 0.94 0.92 1.04 1.02

aGGA-PBEsol.
bLDA.

AFD phase. In Fig. 1 we report the phonon dispersion curves
of NNO and NTA in a cubic five-atom cell. The R-Γ , Γ -X ,
X -M, and M-Γ lines are along the [111], [100], [010], and
[110] directions, respectively. Negative values of ω (cm−1) in

FIG. 1. Calculated phonon dispersion curves of cubic
(a) NaNbO3 and (b) NaTaO3 at the GGA-PBEsol relaxed volume
along the path R-Γ -X -M-R of the cubic Brillouin zone. A color is
assigned to each point based on the contribution of each kind of
atom to the associated dynamical matrix eigenvector (red for the Na
atom, green for the Nb/Ta atom, and blue for O atoms). The � and
T points of the Brillouin zone in NNO are not represented here.

the graphs correspond to imaginary phonon frequencies and
are related to unstable modes, which determine the nature
of eventual phase transitions. By condensing these unstable
modes, it is theoretically possible to find the intermediate and
the stable phases of a compound. The character of these modes
thus also has significant implications on system properties.
Frequencies and types of ferroic unstable modes are summa-
rized in Table II.

Our cubic NNO phonon curves are in agreement with those
calculated by Machado et al. [21] but different from those cal-
culated by Prosandeev [39], in wich the R unstable mode is the
most significant. As can be seen from Fig. 1, the ferroelectric
instability in NNO, contrary to that in NTA, is not restricted
to the Γ point, but extends to the Γ -X -M plane and the AFD
unstable branches extend from M to R in both structures. In
NNO there are additional unstable branches.

In NTA, instabilities are dominated by AFD R+
4 and M+

3
modes, but in NNO, similar to what is observed for PbZrO3

(PZO) [48], the polar FE (Γ −
4 ) and antipolar (�5, X −

5 , M−
3

and T4) instabilities are also significant. For the instability at
the Γ point, the eigendisplacement in NTA is significantly

TABLE II. Modes and soft phonon frequencies ω (cm−1) of
NNO and NTA high symmetry at Γ , X , M, R, �, and T points of
the Brillouin zone. AP is the abbreviation of antipolar mode. The
values in brackets are from Prosandeev [39].

ω

k-points Mode Type NaNbO3 NaTaO3

Γ (0, 0, 0) Γ −
4 FE 174i (121i) 54i

�
(
0, 1

4 , 0
)

�5 AP 129i
X

(
1
2 , 0, 0

)
X −

5 AP 103i

M
(

1
2 , 1

2 , 0
)

M+
3 AFD 120i (138i) 118i

M−
3 AP 62i

T
(

1
2 , 1

2 , 1
4

)
T4 AFD/AP 121i

R
(

1
2 , 1

2 , 1
2

)
R+

4 AFD 122i (140i) 120i
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FIG. 2. Energy gain (meV/f.u.) of different total relaxed structures in NNO calculated in two approximation GGA-PBEsol and LDA.
Magnitudes of the GGA-PBEsol tilt angles (◦) are : P4/mbm (a0a0c+: c+ = 11.3/5.0a), I4/mcm (a0a0c−: c− = 11.9), Imma (a−a−c0: a− =
9.0), Cmcm (a0b−c+: b− = 8.7/4.7 [49], c+ = 9.0/6.1), Im3̄ (a+a+a+: a+ = 7.0), R3̄c (a−a−a−: a− = 6.9), Pnmm (a−b+b+: a− = 8.0,
b+ = 6.9), Pnma (a−b+a−: a− = 8.5, b+ = 9.4). The zero of energy corresponds to the equilibrium cubic paraelectric Pm3̄m state.

dominated by the movement in opposite directions of Na
and O atoms, with a very small displacement of the Ta
atom, surely because of its heaviness (almost six times the
mass of Na). In NNO, with Nb being lighter than Ta and of
close ionic radius, all atoms contribute significantly to the
eigendisplacements of the polar instability. The condensation
of unstable modes is different depending on whether the tran-
sition atom is Ta or Nb in NaBO3 (B = Ta, Nb). For NTA,
the condensation of the AFD modes stabilizes in the Pnma
ground state all the other unstable modes observed in the
high-symmetry phase. In NNO, however, as we shall see in
Sec. V, it is rather the combined condensation of all these
modes, at least two as in the R3̄c structure that stabilizes the
low-energy structures. Let us first analyze the NNO phonons
unstable modes separately.

IV. INDIVIDUAL STRUCTURAL INSTABILITIES

In this section, we successively analyze the condensations
of different unstable modes observed in the phonon curves
of the high-symmetry phase. The goal is to see how these
modes condense when isolated and when combined and thus
to understand the importance of the couplings in the stabi-
lization of this or that phase. The colored bars of Figs. 2
and 3 show the energy gains relative to the high-symmetry
cubic phase of different structures that we relaxed in NNO
according to two approximations (GGA-PBEsol and LDA).
In the GGA-PBEsol approximation, we performed two types
of calculations: the GGA-PBEsol-1 (Fig. 2, left) calculation
consisted in a total relaxation of the cell parameters and
atomic positions while the GGA-PBEsol-2 (Fig. 3) calculation
consisted in relaxing only the atomic positions but in a fixed
cubic cell, i.e., not allowing for strain.

Three zones can be identified in these graphs: the first
one with small energy gains associated to the condensation
of polar (FE) and antipolar electric (APE) instabilities, the
second with much larger energy gains associated to the con-
densation of AFD instabilities, and the third one with the
largest energy gains associated to the condensation of com-
bined FE/AFD and AFD/APE instabilities. The condensation

of either FE/APE and AFD instabilities will be discussed here
while their combination will be considered in the Sec. V.

A. Polar and antipolar instabilities

Looking at the phonon dispersion curves of the cubic phase
(Fig. 1), the unstable polar mode is the most significant (Γ −

4 ,
174i cm−1) followed by the antipolar electric mode (�5,
129i cm−1). In agreement with the previous study [21], our
analysis of the eigendisplacements corresponding to the Γ −

4
phonons shows that the B-Nb atoms are indeed involved in
the motion in such a way that both atoms Na and Nb move
out of phase with respect to the oxygen atoms (Table III),
in contrast to what it is observed in the PZO polar unsta-
ble mode; so the Nb atom contributes significantly to the
ferroelectric Γ −

4 mode in NNO. The mode-effective charge
associated to this unstable mode is 7.88e, larger than in NTA
and PZO.

The P4mm (royal blue bars, Fig. 2), Amm2 (orange-red
bars), and R3m (gold bars) structure represent the condensa-
tions of the unstable polar modes along the directions [100],
[110], and [111], respectively. The energy difference between

FIG. 3. Energy gain (meV/f.u.) of different structures of NNO
calculated by relaxing only the atomic positions but in a cubic vol-
ume, i.e., by not allowing the strain (GGA-PBEsol-2).
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TABLE III. Normalized real-space eigendisplacement for the
unstable FE mode at � (z polarization) and associated TO mode
effective charges (as defined in Ref. [32]). The corresponding dy-
namical matrix eigenvector can be obtained by multiplying each
value by the appropriate mass factor

√
Mion.

Atom NaNbO3 NaTaO3 PbZrO3

Na 0.046 0.112 0.034
Nb/Ta/Zr 0.051 0.016 −0.014
O‖ −0.107 −0.087 −0.067
O⊥ −0.128 −0.130 −0.145
Z

∗
7.88 5.36 5.07

the three structures is very small, about 1 meV/f.u. If NNO
were only FE, according to the approximation used, the Amm2
structure would be the most stable FE GGA-PBEsol structure
in this material (Amm2: −37 meV/f.u.; R3m: −36 meV/f.u.;
and P4mm: −35 meV/f.u.) with a spontaneous polarization
equal to 49 µC/cm2 and an indirect R-Γ gap of 2.1 eV.
Our LDA calculations gives a different trend; it is rather the
P4mm structure which is the FE lowest energy (P4mm: −37
meV/f.u.; Amm2: −35 meV/f.u.; and R3m: −34 meV/f.u.).
Contrary to the intuition that one would have by observing the
intensities of the instabilities in the phonon curves (Fig. 1),
the condensation of the only FE unstable mode allows small
energy gains. Concerning the APE unstable mode �5, starting
from the Cmc21 structure the system relaxes in the P4mm
structure (Γ −

4 , peru bars) with the almost same total energy
gain in both GGA-PBEsol and LDA (−35/ − 37 meV/f.u.).
This result allows us to conclude that, unlike the �2 APE
mode in PZO [48], the �5 APE mode in NNO cannot even
condense itself.

B. Antiferrodistortive instabilities

Among all instabilities, those caused by the rotations of
oxygens octahedra, antiferrodistortive (AFD) modes, are the
most common in perovskites [10–13]. Glazer’s description are
in terms of component tilts around the “pseudocubic” axes,
that is, the cubic axes of the parent structure. The irreducible
representation (irrep) associated with the in-phase tilts is M+

3
(k = 1/2, 1/2, 0) and that associated with the antiphase tilts
is R+

4 (k = 1/2, 1/2, 1/2) [13]. Both AFD modes are unstable
in the high-symmetry cubic phase of NNO with significant
intensities (M+

3 : 120i and R+
4 : 122i), but, contrary to what

was observed in PZO [48], not higher but lower than polar
FE and antipolar modes (Γ −

4 , 174i cm−1 and �5, 129i cm−1,
respectively).

Now let us see how NNO would behave if it were only
AFD. In the second zone of the Fig. 2 (AFD distortion),
we show the total relaxed energies of the AFD structures
obtained by condensing the M+

3 and R+
4 modes, separated and

combined. Whatever the approximation used, the hierarchy
of AFD unstable modes stay the same. The lowest energy is
achieved in the orthorhombic phase Pnma (a−b+a−), combin-
ing two antiphase and one in-phase rotations, as also found
in PZO [48]. This phase is not observed in NNO, but it
may allow us to understand why the coupling of its rota-
tions with the polar FE orthorhombic displacements favors

a significant energy gain to stabilize the Pmc21, a subgroup
of Pnma. The AFD P4/mbm (a = b = 5.4756/5.5639 [49],
c = 7.9066/7.8856) and Cmcm (a = 7.7195/7.7642 [49],
b = 7.8061/7.8550, c = 7.8109/7.8696) phases were ob-
served experimentally. On the one hand, from the results of
our calculations, both AFD modes inphase M+

3 and antiphase
R+

4 evolve almost in the same way when they are separately
condensed in one, two, or even three components. The struc-
tures Im3̄ (a+a+a+, yellow-green bars) and R3̄c (a−a−a−, red
bars), condensing, respectively, the M+

3 and R+
4 modes in three

components show the same energy gain (−84 meV/f.u., even
if the LDA approximation slightly favors the Im3̄ structure,
−146 meV/f.u., more than the R3̄c, −143 meV/f.u.), but
their couplings with polar displacements favor the R+

4 mode
(R3c, a−

p a−
p a−

p , −119/ − 174 meV/f.u., green bars) more
than the M+

3 mode (R3, a+
p a+

p a+
p , −111/ − 164 meV/f.u.,

steel blue bars). On the other hand, we can notice that con-
densing M+

3 and R+
4 modes simultaneously (Cmcm, a0b−c+,

−89/ − 155 meV/f.u., orchid bars) is more favorable than
condensing a single mode in two (Imma, a−a−c0: −86/ − 151
meV/f.u., dark. olive-green bars) or three (Im3̄ or R3̄c) direc-
tions. Moreover, coupling antiphase tilts in two directions and
in-phase tilt in the third direction (Pnma, a−b+a−: −98/ −
171 meV/f.u., blue bars) is energetically more favorable than
combining antiphase tilt in one direction and in-phase tilts
in two directions (Pnmm, a−b+b+: −92/ − 158 meV/f.u.,
medium slate-blue bars).

Compared to the energy gain of the FE mode Γ −
4

(−37 meV/f.u.), we can see that the energy gains of the
AFD modes M+

3 and R+
4 , both separately and combined, are

considerably larger (from 1.9 to 2.6 times for P4/mbm and
Pnma, respectively). This can explain why octahedral tilts
corresponding to the M+

3 and R+
4 modes can be considered

as primary order parameters, inducing the first two structural
transitions, from the cubic into the T2 and T1 phases [21].
The AFD modes therefore play a crucial role in condensing
the NNO ground state, as they select the AFE distortions,
among competing structural variants, and at low temperature
the rhombohedral R3c and the orthorhombic Pmc21 (both
FE/AFD) symmetries which are energetically close to the
orthorhombic AFE/AFD state Pbcm.

The significantly different gain of energy arising from AFD
and APE distortions is at odds with that observed in PZO
[48], another AFE compound. While in PZO, the conden-
sation of the � APE and S4 AFD distortions converges to
energies close to those obtained in Imma and Pnma structures
(−215,−214,−169, and −224 meV/f.u., respectively), the
situation is different in NNO. Indeed, the condensation of
the individual �5 and T4 distortions converges at total ener-
gies far higher than the Imma, Cmcm, and Pnma structures
(−16,−72,−86,−89, and −98 meV/f.u., respectively). The
coupling of modes is very crucial in this material to stabilize
the low-energy states FE/AFD and AFE/AFD and, as we
have seen before, it is the unstable AFD modes that allow to
lower the energies of the FE and APE modes.

C. Phonon-strain coupling

Comparing the energy gains of GGA-PBEsol-1 and GGA-
PBEsol-2 calculations, we notice that the strain relaxation
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TABLE IV. Energy gain (meV/f.u.), remanent instability (cm−1),
and total polarization P (μC/cm2, Exp. 59 µC/cm2 in R3c [50]) of
the three low-energy distortions in NNO optimized through GGA-
PBEsol (GGAPBEs) and LDA approximations. The comparative
values in brackets are taken from Ref. [51]. The angle in the rhom-
bohedral cell is 89.24◦ (Exp. 89.22◦[52]). The condensed modes in
the 30i instability are relatively R+

4 (1.45), T4 (1.20), and �5 (0.65).

Space Energy gain Instability

group GGAPBEs LDA GGAPBEs LDA P

Q: Pmc21 −116.1(−108.7) −176.2 0i 0i 32(47)
P: Pbcm −116.3(−106.3) −175.0 30i 0i
N : R3c −119.2(−116.1) −173.9 0i 0i 48(58)

plays a significant role in NNO, lowering the energy by 3
meV/f.u. in R3m and by 61 meV/f.u. in Pnma. It is the strain
relaxation that allows to stabilize the Amm2 structure (from
−27 to −37 meV/f.u.) below the R3m (from −33 to −36)
and also the Pnma (from −37 to −98 meV/f.u.) below the
Cmcm (from −50 to −89 meV/f.u.) and the Pmmn (from
−53 to −92 meV/f.u.). It is also the strain relaxation that
brings Pbcm and Pmc21 structures at similar energies (from
−86 to −116 meV/f.u. and from −90 to −116 meV/f.u.,
respectively). As for the R3c symmetry, it remains the most
stable (from −96 to −119 meV/f.u.).

V. TOWARDS THE ENERGY GROUND STATE

Having explored the modes separately, we are now in
a position to investigate the combinations of modes yield-
ing the lowest-energy structures. As can be seen from
Figs. 2, and whatever the approximation used, three structures
show comparable low-energy values: (i) The rhombohedral
FE/AFD[111] R3c phase (green bars), also called the N
phase, which is the experimental ground state; (ii) the or-
thorhombic AFE/AFD Pbcm phase (yellow bars), also called
the P phase, which is the room-temperature antiferroelec-
tric phase and (iii) the orthorhombic FE/AFD[110] Pmc21

(mauve bars), also called the Q phase, which has been pro-
posed [16,17] as the ferroelectric phase induced by applying
an electric field to the Pbcm phase at room temperature. The
energy lowering (respect to the high-symmetry cubic refer-
ence Pm3̄m) of these three phases as obtained from GGA-
PBEsol and LDA approximations, are reported in Table IV.

The coexistence of polar and nonpolar phases, arising from
distinct small distortions of the same reference structures and
showing very similar low energies was discussed by Rabe
[53] as a key requirement for antiferroelectricity and was also
observed in PbZrO3 [48]. Depending on the approximation
used, our calculations lead to two distinct results regarding
the energy ordering of those phases.

When we consider the GGA-PBEsol approximation, it
is the R3c structure which constitutes the NNO lowest-
energy state, in agreement with previous experimental
and theoretical [21,51] studies. This is also in agreement
with previous generalized gradient approximation using
the functional proposed by Wu and Cohen (GGA-WC)
calculation, although stabilizing further the R3c phase.

In GGA-PBEsol, even keeping the cubic volume fixed
(Fig. 3), i.e., not relaxing the strain, the low-energy struc-
ture remains R3c (−96 meV/f.u.) followed by Pmc21

(−90 meV/f.u.) and Pbcm (−84 meV/f.u.). We can notice
again here the importance of the strain in all these structures,
making them gaining about 20 meV/f.u., much more in the
Pbcm (relative energy gain of 32 meV/f.u.) which stabilizes
it at the same energy state as the Pmc21. In our calculations
we get E (N ) < E (P) ≈ E (Q) while in Ref. [51] they reported
E (N ) < E (Q) < E (P), but we notice that the energy differ-
ences remain small.

When we consider the LDA approximation, the situation
changes: it is now the Pmc21 structure that is the lowest-
energy structure followed by Pbcm and then R3c. Even using
the LDA with alternative Troullier-Martins pseudopotentials
(LDA-TM), we get the same sequence. These results allows us
to conclude that the LDA is not a suitable functional to study
NNO in the sense that it does not stabilize the appropriate
ground state and the GGA-PBESol should be preferred.

The polar R3c (a−
+a−

+a−
+, a− = 7.1◦) phase combines the

antiphase tilts (R+
4 mode, a−a−a− pattern) and polar dis-

placements (Γ −
4 mode) of the Na, Nb, and O atoms along

three cubic directions [111]. As for the Pbcm phase, it com-
bines the Imma (R+

4 mode, a−a−c0 pattern) distortion with
T4 (complex AFD) and �5 (APE). Finally, the Pmc21 phase,
defined as a subgroup of the Pnma phase, shows an unusual
distortion; condensing complex rotations on alternative layers
a−a−b+/a−a−b− (a− = 6.8◦, b+ = 8.3◦ and b− = 6.9◦) as
in Pbcm, but while the Pbcm phase favors APE motion in the
orthorhombic ab-plane, i.e., in the cubic direction [100], the
Pmc21 phase is polar along the orthorhombic b-axis, i.e., in
the cubic plane [110]. The structural similarities between the
last two phases and their close energies allows us to support
that, at room temperature, the AFE-Pbcm phase of NNO
should transform into the FE-Pmc21 phase on the application
of electric field [16,17].

The low energy of the Pmc21 structure results mainly
from the high stability of the Pnma phase. The calculated
spontaneous polarization of NNO for the FE/AFD Pmc21 and
R3c structures given in Table IV are found to be 32 µC/cm2

and 48 µC/cm2, respectively, which is comparable to that
we obtained for the conventional ferroelectric rhombohedral
KNbO3 (41 µC/cm2) and BaTiO3 (42 µC/cm2), but signifi-
cantly smaller than tetragonal PbTiO3 (97 µC/cm2).

Concerning the Pmc21 structure, we relaxed also two
other subgroups of the Pnma phase, namely, Pna21 and
Pnm21 [20]. The last two structures converge to a similar
total energy which remains higher than the total relaxed en-
ergy of the Pmc21 (GGA-PBEsol: −111/ − 116 and LDA:
Pnm21 = −174/Pna21 = −175/ − 176 meV/f.u., respec-
tively). This result allows us to state that, of the three
subgroups of the Pnma distortion, the Pna21 and Pnm21

distortions are unlikely in NNO in favor of the more
stable Pmc21 structure. Concerning the 30i instability ob-
served in the Pbcm phase, its condensation gives the Pca21

structure. When we condense this last structure, according
to what was found in Ref. [22], its total energy is not
significantly lower than Pbcm using either LDA (−175.0
meV/f.u.) or GGA-PBEsol (−116.4/−116.3 meV/f.u. ⇒
−0.1 meV/f.u.) calculation. This means that the P phase
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FIG. 4. Relative contributions of phonon modes, analyzed with
AMPLIMODES, in the (a) Pmc21 and (b) Pbcm phases of NNO relaxed
in GGA-PBEsol (green columns) and LDA (red columns) compared
to the experimental data (blue columns, Ref. [54]). The main modes
consist of either oxygen octahedra rotation (R+

4 , M+
3 , and T4) or

polar/antipolar displacements (Γ −
4 /�5), while the additional modes

consist of couplings with cations (M−
5 , R+

5 , X −
3 , and X +

5 ) or oxygen
displacements (Γ −

5 , T2, and M+
2 ). The R3c condense to two main

modes: R+
4 (0.89/0.93 [50]) and Γ −

4 (0.42/0.42).

could be formally Pca21 rather than Pbcm, but, in prac-
tice, the distortion might not be large enough to be de-
tected and is also likely suppressed at room temperature.
The small energy difference between these three struc-
tures (N, P, Q), whatever the approximation used, meets the
expected criteria for antiferroelectricity [48,53] and is in line
with the coexisting ferroelectric and antiferroelectric struc-
tures observed in experiments [50].

To go further, let us now analyze the details concerning the
three phases that are the subject of our discussion in this sec-
tion. What are the main and secondary modes that condense in
each of these phases and what are their relative contributions?
Figure 4 reports the modes that condense in the Pmc21 and
Pbcm (some authors use the alternative arrangement Pbma)
phases.

Concerning the main modes, whatever the approximation
used, we notice that, on the one hand, the hierarchy of am-
plitudes is in agreement with the experimental results, and on
the other hand, it is the AFD R+

4 mode which contributes most
to the stabilization of these three phases. However, significant
differences from experimental values are observed for some
secondary modes that condense in the Pbcm (M−

5 ) and Pmc21

(X +
5 , Γ −

5 , M+
2 and R+

5 ). Given that the �5 mode, according to
our calculations, cannot even condense itself, we can highlight
that, in NNO, the AFD R+

4 mode is very preponderant in the

FIG. 5. Atomic contributions by mode in the Pmc21 and Pbcm
phases of NNO. The atomic contributions of Na, Nb, and O atoms
in the Γ −

4 mode of Pmc21 are very close (Na: 0.58; Nb: 0.51; O1:
−0.57; and O2: −0.29), while in the same mode for R3c it is the Na
atom which contributes significantly (Na: 0.72; Nb: 0.32; O1: −0.27;
and O2: −0.55).

coupling with the �5 mode and thus gives rise to the Pbcm
phase.

It is instructive to compare the relative contribution of each
atom to the distortion associated with each irrep (Fig. 5). The
colored columns of Fig. 5 allow us to observe that, in NNO,
on the one hand, the AFD displacements of the oxygens (R+

4
and M+

3 ) are favored over the ferrodistortive displacements
(Γ −

5 , M+
2 , and T2), on the other hand, the contributions of

the atoms are significant and with close intensities in both
Γ −

4 polar and �5, M−
5 antipolar modes. This last observation

allows us to argue that the coexistence of low-energy phases
is probably related to the simultaneous structural distortion
caused by the displacement of Na and Nb ions from their
equilibrium positions.

We finally present in Table V how the amplitudes of the
modes evolve in the different structures. Interestingly, we can
note here that the amplitude of the modes remains the same
or increases when they are coupled. This result allows us to
argue that the coupling of modes is very favored in NNO
to stabilize the phases of the lowest energies. Although they
appear as unstable modes in the high-symmetry phase, the
X −

5 (103i) and M−
3 (62i) APE modes do not contribute to

the stabilization of any of the observed NNO structures. The
simultaneous condensation of two (in R3c) or three (in Pmc21

or Pbcm/Pca21) of the five main modes as reported in Fig. 4
is sufficient to stabilize them. Comparing the pseudocubic
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TABLE V. Evolution of the pseudocubic volume (Å3) and ampli-
tudes of the modes in the main structures of NNO.

Symmetry V �−
4 �5 R+

4 T4 M+
3

Pm3̄m 61.29 174i 129i 122i 121i 120i

Amm2 61.80 0.29
P4mbm 59.26 0.82
Cmcm 58.84 0.89 0.92
Pmmn 58.80 1.16 1.41
Pnma 58.56 1.07 0.82
Pmc21 59.22 0.39 0.99 0.85
Pbcm 59.09 0.65 1.45 1.20
R3c 59.60 0.42 0.89

volumes of the different structures, we reach the same con-
clusion as in the PZO [48]; FE and AFE instabilities tend to
increase the volume while AFD ones reduce them.

Table VI reports the NNO relaxed positions in the three
low-energy structures Pmc21, Pbcm, and R3c, respectively.

We can note here again the agreement of our optimized values
compared to the previous experimental results.

VI. SUMMARY

In this work, we conducted a systematic investigation of
the energy landscape of NaNbO3 through the characterization
of various metastable phases, observed and unobserved ex-
perimentally. In its high-symmetry cubic perovskite structure,
sodium niobate is an insulator with an indirect gap between
R and Γ points of the Brillouin zone. In line with its com-
plex sequence of phase transitions, the phonon dispersion
curves of this cubic phase combines distinct polar/antipolar
and antiferrodistortive unstable branches. The ground state
of NaNbO3 does not arise from the condensation of a single
unstable mode, but instead from the combination of several
modes, which, thanks to their coupling, bring NaNbO3 to
lower-energy states. Our calculations reveal that, consistently
with experimental observations, three phases show very sim-
ilar lowest energies: rhombohedral FE/AFD R3c (N phase),

TABLE VI. Cell parameters (Å) and atomic positions of NNO in the orthorhombic Pmc21, orthorhombic Pbcm, and hexagonal R3c phases,
respectively, in comparison with experimental data.

Q Pmc21 Ref. [54]

a 7.7421 7.7633
b 5.5024 5.5143
c 5.5608 5.5655

Site x y z x y z

Na (2a) 0.0000 0.2599 0.0483 0.0000 0.2500 0.7820
Na (2b) 0.5000 0.2588 0.0806 0.5000 0.2510 0.8520
Nb (4c) 0.7495 0.7556 0.0620 0.7500 0.7540 0.8080
O1 (2a) 0.0000 0.6887 0.0377 0.0000 0.1750 0.2630
O2 (2b) 0.5000 0.8132 0.0160 0.5000 0.3220 0.2850
O3 (4c) 0.7175 0.5385 0.3205 0.2300 0.5500 0.0580
O4 (4c) 0.7809 0.0395 0.2462 0.2710 0.9640 0.5130

P Pbcm Ref. [54]

a 5.4945 5.5327
b 5.5602 5.5630
c 15.4732 15.6450

Site x y z x y z

Na1 (4c) 0.7431 0.2500 0.0000 0.2100 0.7500 0.0000
Na2 (4d) 0.2591 0.7080 0.2500 0.2120 0.7570 0.2500
Nb (8e) 0.2447 0.2270 0.1252 0.2497 0.2500 0.1250
O1 (4c) 0.3139 0.2500 0.0000 0.3260 0.2500 0.0000
O2 (4d) 0.1850 0.2723 0.2500 0.2090 0.2310 0.2500
O3 (8e) 0.4614 −0.0323 0.1418 0.5180 0.0140 0.1370
O4 (8e) 0.0394 0.5419 0.1088 0.9720 0.4670 0.1140

N R3c Ref. [50]

a 5.5241 5.4811
b 5.5241 5.4811
c 13.5313 13.6852

Site x y z x y z

Na (6a) 0.0000 0.0000 0.5004 0.0000 0.0000 0.2723
Nb (6a) 0.0000 0.0000 0.2592 0.0000 0.0000 0.0164
O (18b) 0.0036 0.5668 0.0238 0.0999 0.3367 0.0833
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orthorhombic FE/AFD Pbcm (P phase), and orthorhombic
FE/AFD Pmc21 (Q phase). These three phases mainly arise
from the condensation of unstable phonons at R and M points
and along the T line connecting them. The GGA-PBEsol
functional stabilizes the R3c phase as the ground state, con-
sistent with the experiment, and locates the Pbcm and Pmc21

phases together few meV/f.u. above. In contrast, our LDA cal-
culations stabilizes the orthorhombic FE/AFD phase Pmc21

as the ground state and locates the Pbcm phase and then the
R3c slightly higher in energy, highlighting that LDA should
be avoided to study NaNbO3. In all calculations we find only
small energy differences between the P, N , and Q phases
(few meV/f.u.), highlighting the presence of nearly degener-
ated energy minima fully compatible with antiferroelectricity.
The close proximity in the energy and structure of the Pbcm
and Pmc21 phases supports the idea that the application of

an electric field could bring the AFE/AFD-Pbcm phase to
the FE/AFD Pmc21 phase rather than to the FE/AFD R3c
phase.
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J. Appl. Phys. 108, 113509 (2010).

[55] https://www.ulg.ac.be/cms/c_3826073/fr/nic4, http:
//www.ceci-hpc.be/.

024408-10

http://www.pseudo-dojo.org/index.html
https://doi.org/10.1103/PhysRevB.45.13244
https://doi.org/10.1103/PhysRevB.55.10355
https://doi.org/10.1103/PhysRevB.47.1651
https://doi.org/10.1107/S0021889804031528
https://stokes.byu.edu/iso/isotropy.php
https://doi.org/10.1107/S0021889809028064
https://doi.org/10.1107/S0021889806014075
https://doi.org/10.1021/jp025974n
https://doi.org/10.1134/1.2131156
https://doi.org/10.1103/PhysRevB.80.205420
https://doi.org/10.1103/PhysRevLett.72.3618
https://doi.org/10.1103/PhysRevB.58.6224
https://doi.org/10.1039/B604520K
https://doi.org/10.1038/s41524-020-00360-0
https://doi.org/10.1103/PhysRevB.77.165107
https://doi.org/10.3390/condmat7040070
https://doi.org/10.3390/sym14051050
https://doi.org/10.1140/epjp/s13360-021-01639-x
https://doi.org/10.1107/S010876819800963X
https://doi.org/10.1103/PhysRevB.76.024110
https://doi.org/10.1039/C4DT03919J
https://doi.org/10.1107/S0567740873006308
https://doi.org/10.1063/1.3512980
https://www.ulg.ac.be/cms/c_3826073/fr/nic4
http://www.ceci-hpc.be/

