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Anharmonic thermo-elasticity of tungsten from accelerated Bayesian adaptive biasing force
calculations with data-driven force fields
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The elastic properties of tungsten, a ubiquitous material in future energy systems, are investigated up to its
melting temperature by means of a data-driven approach. The proposed workflow combines machine learning
of the force field and enhanced sampling of the crystalline structure. While the machine learning force field
achieves the accuracy of ab initio calculations, its implementation in sampling methods is often limited due to its
high computational cost, which is commonly a few orders of magnitude larger than that of traditional potentials.
To overcome this limitation, we propose a fast and robust Bayesian sampling scheme aiming at estimating the
fully anharmonic free energy of crystalline solids with the help of an improved adaptive biasing force method.
This method performs a thermodynamic integration from a harmonic reference system, wherein zero frequencies
associated with the periodic boundaries are screened off. The proposed sampling method drastically improves the
speed of convergence and overall accuracy. We demonstrate the efficiency of the improved method by calculating
the second order derivatives of the free energy, such as the elastic constants, which are performed almost 100
times faster than with the standard methods. The proposed method enables the prediction of the elastic properties
of tungsten in the range of temperatures that cannot be investigated experimentally, from 2100 K to the melting
temperature. The accuracy and numerical efficiency of the proposed strategy open up many avenues for the
reliable prediction of finite-temperature properties of materials, such as the relative stability of structural defects
and elastic constants.
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I. INTRODUCTION

The thermodynamic properties of materials, such as heat
capacity, thermoelasticity, and phase stability, are crucial
benchmarks in materials design, as they determine the per-
formance and practical applications of a given material. This
knowledge is therefore essential to understand the behavior at
finite temperature of new materials. Experimental measure-
ments of the thermal quantities are often time consuming,
expensive, or even unfeasible under extreme conditions, e.g.,
at high temperatures and/or pressures. Atomic-scale simula-
tions are therefore widely used to predict the thermodynamic
quantities of practical interest and/or extrapolate them beyond
experimental conditions.

Thermodynamic properties are well characterized by the
free energy and its derivatives. In crystalline solids, an
accurate representation of the free energy includes three
contributions: (i) the contribution accounting for chemical
disorder and including configurational entropy, which can be
computed using Monte Carlo simulations or approximated
assuming that the lattice is rigid, (ii) the contribution of the
electronic excitations, and (iii) the harmonic and anharmonic
contributions of the lattice vibrations, i.e., the interactions
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of phonons with themselves and with other modes of ex-
citation. In this paper, we consider pure chemical systems
whose configurational entropy is equal to zero and we do
not implement any special treatment for the electronic free
energy. We thus focus on the vibrational contribution to free
energy. Its harmonic part can be straightforwardly obtained by
computing the phonon spectrum resorting to the harmonic or
quasiharmonic approximations [1–3]. These two approxima-
tions however become inaccurate at elevated temperatures for
which phonon softening and broadening should be accounted
for [4]. Recently, Swinburne et al. introduced an analytical
mean-force model able to directly compute the anharmonic
free energy of a general bond lattice within meV/atom accu-
racy [5]. Although computationally inexpensive, this model is
restricted to perfect crystals and difficult to extend in presence
of imperfections.

The anharmonic free energy contribution, which is crucial
for deriving the high-temperature properties, can be directly
evaluated by thermodynamic integration (TI) from a suit-
able reference system [2,6,7]. In TI, the first derivative of
free energy is first estimated using a sampling algorithm
and then integrated. TI-based calculations of thermodynamic
properties including the effect of anharmonicity from accurate
electronic structure calculations, i.e., ab initio calculations,
were initiated in 2001 [8,9].

Such a brute-force integration is often computationally
prohibitive in practice, e.g., in electronic structure calcula-
tions, as it requires one to sample too many configurations
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along the path of integration [10]. Therefore, several improve-
ments have been proposed to make TI-based methods more
feasible and amenable to electronic structure calculations in
particular. Notably, upsampled thermodynamic integration us-
ing Langevin dynamics (UP-TILD) method was developed
[11], which enhances the performance of TI by combining the
density functional theory (DFT) calculations using “reduced”
DFT parameters (energy cutoff of kinetic energy and k-points
sampling of the Brillouin zone) with an almost configuration-
independent offset with respect to the fully converged energy,
where only a small number of configurations are required to
evaluate the fully converged term. Based on UP-TILD, an
improved version, referred to as two-stage upsampled thermo-
dynamic integration using Langevin dynamics (TU-TILD),
was developed to further accelerate the convergence of the
calculation [12], wherein TI is split into two stages, first from
the harmonic to an intermediate potential, and then from the
intermediate potential to the exact DFT Hamiltonian. The
TU-TILD scheme has recently been applied with moment
tensor potentials (MTPs) [13], a class of machine learning
(ML) potentials which has demonstrated accuracy and effi-
ciency [10,14,15]. However, these approaches assume that
the points sampled from the reference distribution faithfully
represent the target distribution associated with the exact
Hamiltonian. This assumption can be true for high quality
reference or intermediate potentials, such as the MTPs within
the ML framework, but is not very reliable when using sim-
ple reference systems such as harmonic or quasiharmonic
Hamiltonians [10]. Generally speaking, when ML potentials
are chosen as intermediate potential, the free energy from the
reference should be computed with great accuracy. However,
this can be a crude task because, at least for crystalline ma-
terials, the ML force fields are from a few tens times slower
up to four orders of magnitude slower in terms of CPU times
than, for instance, traditional embedded-atom-method (EAM)
potentials. The developments proposed below aim precisely
at reducing the computational costs: We present a method for
fast evaluation of the anharmonic free energy employing nu-
merically heavy force fields without assuming that sampling
the relevant configurations from the reference distribution is
equivalent to sampling from the target distribution associated
with the exact Hamiltonian.

Our method mixes the reference and target Hamiltonian
states, and recovers the correct statistics resorting to the
Bayes formula, without any approximation. It builds on the
free energy perturbation (FEP) method [16] and adaptive
sampling approach [17–25]. The FEP method consists of
sampling the reference distribution and estimating the free
energy difference via the logarithm of a partition function
ratio [16]. In practice, the accuracy of the FEP method is
controlled by the degree of overlap between the reference and
target distributions [26]. Sampling from another distribution
exhibiting better overlapping properties with both the target
and reference distributions usually improves the accuracy.
This importance-sampling approach for the calculation of free
energy difference traditionally employs an auxiliary biasing
potential and is dubbed umbrella sampling [27,28], precisely
because the sampling distribution specified by the biasing
potential should cover simultaneously the region of configu-
ration space relevant to both the target and reference systems.

FIG. 1. Adiabatic bulk modulus BS of W. Experimental values
are obtained from four different experiments in the temperature range
from 4.2 to 2 073.15 K [49–52], while the calculated values are
extended up to the melting point by two models [53,54].

Establishing such a biasing potential that provides good over-
lapping properties is a challenging task. Here, we propose
to construct the biasing potential adaptively by averaging
and integrating the derivative of the extended Hamiltonian
with respect to the mixing (coupling) parameter, using the
adaptive biasing force (ABF) method [17,18,29–31] and a
Bayesian reasoning framework [32–35]. ABF-based tech-
niques have been widely developed and applied over the past
two decades [36–41]. It is rigorously proved that the biasing
force in ABF method converges to the free energy in the long
time limit [42]. The Bayesian formulation for the extended
Hamiltonian allows one to systematically reduce the statistical
variance of the estimated free energy difference when the
converged biasing force is frozen, compared with the other
standard estimators (FEP, TI, thermodynamic-occupation, and
weighted-histogram estimators; refer to Ref. [34]). Note that
this Bayesian approach can be viewed as a particular and effi-
cient FEP method because the biasing mean force is computed
through umbrella sampling and because the implemented
Bayes formula corresponds to a FEP equation in which the
sampled reference distribution is a biased marginal probability
distribution.

Here, a Bayesian adaptive approach is used to compute the
anharmonic free energy of a crystalline solid. In this paper,
we enrich the Bayesian adaptive approach with two new fea-
tures: We eliminate the numerical instabilities of the reference
Hamiltonian via a singular value decomposition (SVD) fil-
ter to increase the sampling robustness, and we introduce a
simple weighting scheme for the biasing force to enhance the
initial speed of convergence.

Beyond the methodological aspects, our main application
concerns the crystalline tungsten (W), which has been selected
as potential material of choice in plasma facing components
such as the divertor of fusion reactors due to its high melting
point [43,44]. Despite this huge industrial interest for W, its
high-temperature mechanical properties remain perplexing.
As presented in Fig. 1, there is no direct measurement of
elastic constants of the body centered cubic (bcc) phase of
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W for temperatures higher than 2100 K, while numerical
calculations of a system at such temperatures suffer severe
statistical fluctuations.

.Although the ML force fields approach the accuracy of ab
initio calculations [45–48], their applications for free energy
calculation are often limited due to their high computational
cost. To address this issue, we use the fast and robust Bayesian
scheme mentioned above to estimate the fully anharmonic
free energy of crystalline solids, providing access to the exact
thermodynamic properties, even those derived from the sec-
ond derivatives of the free energy, up to the melting point
with ab initio accuracy. This approach is validated by the
calculations of thermodynamic properties of W, in comparison
to the experimental results at temperatures below 2100 K
and to the traditional molecular dynamics (MD) simulations
at temperatures above 2100 K. With sufficient efficiency to
apply the ML potentials, this accelerated ABF method makes
the fast and accurate investigation of free energy at extremely
high temperatures feasible.

The paper is organized as follows. In Sec. II, we detail
and validate the method, including the theoretical framework,
algorithm implementation, and optimizations concerning the
reference system for TI and the weighting function for sam-
pling. In Sec. III, we present the thermodynamic properties of
W computed with this method, using traditional EAM poten-
tials as well as existing and newly constructed ML potentials.
A polynomial model of high-temperature properties for W is
proposed.

II. METHODS OF FREE ENERGY CALCULATION

Calculating the anharmonic free energy is a challenging
task as explained above. It is only possible to compute the
absolute Helmholtz free energy of a few relatively simple ma-
terial models (e.g., harmonic solids) which therefore play the
role of reference system. To obtain thermodynamic properties
of crystalline materials, the important quantity to compute
is actually the difference in free energy between the target
crystalline system and a reference solid. We explain below in
detail the theoretical framework, the proposed methodological
improvements, and the numerical implementation schemes
which make it possible to compute the anharmonic contribu-
tion as a free energy difference.

A. Calculation of free energy difference using
thermodynamic integration

For a system with Na atoms, the thermodynamic integration
is performed using a general potential energy U (ζ , r) that
linearly mixes the potential energy of the given target system
U (r) and of the reference system Uref(r) through a coupling
parameter ζ :

U (ζ , r) = ζU (r) + (1 − ζ )Uref(r), (1)

where r is the set of positions of Na atoms defined in the
3Na-dimensional torus T 3Na ⊂ R3Na (the configuration space
with periodic boundary conditions). Here, the coupling pa-
rameter ζ , similar to a reaction coordinate, has real values
inside the [0,1] range. This interval will be discretized in
practice into 201 equally spaced discrete values. Beyond this

simple numerical setup, some strategies have proven useful
in variance minimization and convergence acceleration, in-
cluding adoption of a nonlinear dependence of the potential
on the coupling parameter [16], as well as modification of
discretization method [55]. Besides, the free energy difference
can be directly computed from a single very long simulation
in which the temporal reaction coordinate ζ (t ) progresses lin-
early from 0 to 1 [56]. Although sometimes advantageous, it
is unnecessary to employ such methods in our case for which
accuracy and efficiency are both guaranteed by the Bayesian
formalism.

The corresponding partition function for the canonical en-
semble can be further derived:

Z (Na,V, T, ζ ) = 1

�3Na Na!

∫
T 3Na

exp [−βU (ζ , r)]dr, (2)

where � is de Broglie thermal wavelength and β = 1/(kBT )
with kB the Boltzmann constant and T the temperature. This
partition function gives access to the probability of finding the
generalized system in a state characterized by ζ :

P0(ζ ) = Z (Na,V, T, ζ )∫ 1
0 Z (Na,V, T, ζ̃ )d ζ̃

. (3)

The associated Landau free energy is defined as

A(ζ ) = −β−1 ln P0(ζ ) (4)

= −β−1 ln Z (Na,V, T, ζ ) + B, (5)

where the quantity B is independent of ζ . Then, the derivative
of the free energy can be deduced:

A′(ζ ) =
∫
T 3Na ∂ζU (ζ , r) exp [−βU (ζ , r)]dr∫

T 3Na exp [−βU (ζ , r)]dr

=
〈
∂U (ζ , r)

∂ζ

〉
ζ

, (6)

where 〈·〉ζ denotes the ensemble average. Integration of
Eq. (6) between ζ = 0 and 1 gives the difference in free
energy:

�A = A(1) − A(0) =
∫ 1

0
〈U (r) − Uref(r)〉ζ dζ , (7)

where A(0) and A(1) are the free energy, respectively, associ-
ated to the reference potential Uref(r) and the potential energy
U (r). Based on Eq. (7), determination of free energy of any
given system is subject to two requirements: The existence of
a reference system for which free energy can be calculated
numerically or analytically, as well as a reversible artificial
pathway between the system of interest and the reference
crystal, which allows one to carry out the thermodynamic
integration of potential energy. Here the coupling parameter
ζ provides a smooth transition from a known reference state
to a realistic system.

To numerically calculate the integral in Eq. (7), we propose
an optimized ABF algorithm based on the previous Bayesian
ABF (BABF) approach [32].

B. Bayesian adaptive biasing force

The main motivation for the development of the ABF
method is to overcome the obstacles arising during the ther-
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modynamic integration due to free energy barriers [16,55].
As an alternative of MD and Monte Carlo simulations
with proven convergence [42], the ABF algorithm improves
remarkably the sampling efficiency [17,18,29–31]. In this
method, a bias is added directly to the forces acting on the
atoms, counteracting the mean force along the transition di-
rection to prevent the system from being trapped by the free
energy barrier, as well as reducing the statistical variance [34].
We consider the corresponding biasing potential UA�

(ζ , r)
defined as

UA�
(ζ , r) = U (ζ , r) − A�(ζ ), (8)

where A� is the biasing potential added to the extended poten-
tial. Let PA�

(ζ , r) denote the joint probability of the extended
state (ζ , r) in the extended ensemble with biasing potential
A�. We have

PA�
(ζ , r) = exp [−βUA�

(ζ , r)]∫∫
T 3Na ×[0,1] exp [−βUA�

(ζ̃ , r̃)]d ζ̃d r̃
. (9)

Then the mean force A′(ζ ) formalized by Eq. (6) can be
transposed in the extended ensemble associated with the bias-
ing potential UA�

(ζ , r):

A′(ζ ) =
∫
T 3Na ∂ζU (ζ , r) exp[−βUA�

(ζ , r)]dr∫
T 3Na exp[−βUA�

(ζ , r)]dr

=
∫
T 3Na ∂ζU (ζ , r)PA�

(ζ , r)dr∫
T 3Na PA�

(ζ , r)dr
. (10)

The above equality indicates that it is possible to compute the
mean force in the biased extended system. We show how to
do it through Bayesian reasoning.

The marginal probability of ζ and r can be expressed as
PA�

(ζ ) = ∫
T 3Na PA�

(ζ , r)dr and PA�
(r) = ∫ 1

0 PA�
(ζ , r)dζ , re-

spectively. Then, the conditional probability of ζ for a given
r is given by pA�

(ζ |r) = PA�
(ζ , r)/PA�

(r) while that of r for
a given ζ is pA�

(r|ζ ) = PA�
(ζ , r)/PA�

(ζ ). The two equivalent
expressions of the joint probability below

pA�
(r|ζ )PA�

(ζ ) = pA�
(ζ |r)PA�

(r) (11)

allow one to formulate the Bayes relation, expressing the
conditional probability of r given ζ as a function of that of
ζ given r:

pA�
(r|ζ ) = pA�

(ζ |r)PA�
(r)

PA�
(ζ )

. (12)

The two equivalent expressions in Eq. (11) also allow one to
cast the mean force in Eq. (10) into the two respective forms:

A′(ζ ) =
∫
T 3Na

∂ζU (ζ , r)pA�
(r|ζ )dr (13)

=
∫
T 3Na ∂ζU (ζ , r)pA�

(ζ |r)PA�
(r)dr∫

T 3Na pA�
(ζ |r)PA�

(r)dr
, (14)

where the marginal probability of ζ cancels in Eq. (13) and
appears as the denominator of Eq. (14) in the form PA�

(ζ ) =∫
T 3Na pA�

(ζ |r)PA�
(r)dr. Equation (14) corresponds to the ex-

pectation form of the Bayes formula.
If the distribution PA�

(r) can be sampled, the above aver-
age can be well approximated owing to the ergodic theorem.

Given a sequence of N points {rs}1�s�N sampled from the
probability distribution PA�

(r), the mean force is estimated as

A′(ζ ) =
∑N

s=1 ∂ζU (ζ , rs)pA�
(ζ |rs)∑N

s=1 pA�
(ζ |rs)

, (15)

where the conditional probabilities of ζ given the sampled
points are directly calculated through numerical quadrature
and the relation below:

pA�
(ζ |r) = exp [−βUA�

(ζ , r)]∫ 1
0 exp[−βUA�

(ζ̃ , r)]d ζ̃
. (16)

A simple way to sample the distribution PA�
(r) consists in im-

plementing an underdamped Langevin molecular dynamics:

drt = ∇r{β−1 ln [PA�
(rt )]}dt +

√
2β−1dWt . (17)

The first term of the right-hand side of Eq. (17) can be written
as an effective force field:

∇r{β−1 ln [PA�
(r)]} = −

∫ 1

0
∇rU (ζ , r)pA�

(ζ |r)dζ

= FA�
(r), (18)

while the second term of the right-hand side of Eq. (17)
represents the uncorrelated random forces with Wt denoting
a 3Na-dimensional Wiener process. It satisfies the property
Wt+u − Wu ∼ N (0, tI) where I is the identity matrix, i.e.,
Wt − W0 = ∫ t

0 dWt is normally distributed with zero mean
vector and tI variance matrix. In practice, we prevent the
center of mass of the system from drifting with respect to
the fixed reference lattice. To achieve this, we introduce a
projection P that shifts the center of mass from any posi-
tion to its initial position. This operator being symmetric and
idempotent, we have P = PP�. Consequently, the projected
Langevin dynamics of the system reads

drt = PFA�
(rt )dt +

√
2β−1PdWt . (19)

By definitions in Eqs. (2) and (5), we have ∀z ∈ [0, 1],

ln
PA�

(ζ = z)

PA�
(ζ = 0)

= ln

∫
T 3Na exp [−βUA�

(z, r)]dr∫
T 3Na exp [−βUA�

(0, r)]dr

= β{[A�(z) − A�(0)]

− [A(z) − A(0)]}. (20)

Therefore, once we obtain a uniform sampling of PA�
(ζ ) over

ζ ∈ [0, 1], we have A�(z) − A�(0) = A(z) − A(0) which gives
the difference in free energy from the difference of biasing
potentials.

To implement the numerical algorithm, Eq. (19) is dis-
cretized. The (n + 1)th molecular dynamics move can be
realized based on the first n steps with the following algo-
rithm.

Step 1. A′
n(ζ ) is computed as

A′
n(ζ ) =

∑n−1
s=1 ∂ζU (ζ , rs)pAs (ζ |rs)w(s)∑n−1

s=1 pAs (ζ |rs)w(s)
, (21)

where ∇ζU (ζ , rs), being exactly equal to U (r) − Uref (r), is
easy to evaluate and the weighting function w(s), detailed in
the following section, is introduced to accelerate the initial
convergence.
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FIG. 2. Bayesian iterative flowchart of the present free energy
sampling: The forward step integrates the whole history of the
Langevin dynamics. The weight w(n) is inserted at each integration
step in order to accelerate the convergence of An and its form is a
user choice as discussed in Sec. II D.

Step 2. The free energy An(ζ ) for the step n is determined
as

An(ζ ) =
∫ ζ

0
A′

n(ζ̃ )d ζ̃ + An(0). (22)

Step 3. The corresponding conditional probability of ζ for
a given rn is calculated as

pAn (ζ |rn) = exp [−βUAn (ζ , rn)]∫ 1
0 exp [−βUAn (ζ̃ , rn)]d ζ̃

. (23)

Step 4. The effective force field is obtained by the equation

FAn (rn) = −
∫ 1

0
∇rU (ζ , rn)pAn (ζ |rn)dζ . (24)

Step 5. Integration of the dynamic equation is carried out
to obtain

rn+1 = rn + PFAn (rn)δt +
√

2β−1δtBn, (25)

where Bn ∼ N (0, P) is a normal deviate with zero mean and
P variance.

Once the new positions are determined, iteration continues
until the desired accuracy of An(ζ ) is achieved. Based on
Eq. (20), we have lim

n→+∞ �An = �A. The iterative process is

concisely illustrated by the flowchart in Fig. 2.
In practical applications, we analyze the sampling stability

on the fly by monitoring the running estimate of the marginal
probability at step n:

PAn (ζ ) = 1

n

n∑
s=1

pAs (ζ |rs), (26)

which is the mean value of the probability of ζ conditioned
on the sampled states rs during the Langevin dynamics and
given the successive biasing potentials As, with 1 � s � n. As
a probability density, the integral of PAn (ζ ) over ζ ∈ [0, 1] is
1. This distribution should be uniform in ζ in order to ensure
that the difference in free energy of the target and reference
systems becomes equal to the corresponding difference in the
biasing potentials yielded by the adaptive Langevin dynamics,
as expected from Eq. (20).

For assessing the relative efficiency of sampling using
different reference systems and weighting functions, we also
monitor the Kullback-Leibler (KL) divergence of PAn (ζ ) from
the uniform distribution:

DKL(PAn ||1[0,1]) =
∫ 1

0
PAn (ζ ) ln

PAn (ζ )

1[0,1](ζ )
dζ . (27)

This statistical pseudonorm measures how close the probabil-
ity distribution PAn (ζ ) is to the uniform distribution 1[0,1](ζ ).
It is zero for identical distributions and infinite for nonover-
lapping distributions. The closer to zero the KL divergence
is, the better the adaptive sampling procedure has converged.
The reason is that the biasing potential integrated from a
well-converged biasing force yields a reliable estimate of the
free energy A(ζ ). The recorded marginal probability of ζ ,
PAn (ζ ) from Eq. (26), should thus converge towards PA(ζ ) that
corresponds to the uniform probability distribution over [0,1]
range, which is 1[0,1](ζ ).

C. Choice of reference system

Hoover and Ree’s single-occupancy cell (SOC) method
[57,58] is one of the first methods proposed to obtain a refer-
ence system in the form of an artificial solid. According to the
SOC method, each of the Na atoms in the system is confined
in its own cell of volume V/Na at all densities to ensure
that no melting occurs and the solid-phase thermodynamic
properties of this artificial solid hold true. Though unphysical,
this method was successfully applied to the calculation of the
free energy of hard spheres [57] using computer simulations.
Hoover et al. [59,60] also suggested an alternative method
which involved a two-step calculation [7]. In the first step,
the given solid is approximated as a harmonic crystal by
cooling it to a sufficiently low temperature and then the free
energy of this solid can be analytically calculated using lattice
dynamics. The second step involves using the result from the
first step as a reference to calculate the free energy at a given
higher temperature. However, both methods have some draw-
backs. For instance, numerical integration for the SOC method
is complicated for unstable solids where phase transitions may
occur; cooling used to obtain a harmonic crystal may not be
reversible, etc.

In order to improve the performance of the method, other
useful references have been proposed, such as Einstein crystal
[61,62], harmonic solid [63,64], Morse potential [4], Lennard-
Jones system [9], inverse power potential [8,9], EAM [8,65],
MTP [13], and linear combination of the potentials above [8].

In this paper only reference systems with analytically
known free energy are considered. We test the use of Einstein
and harmonic approximations and further optimize the har-
monic reference. We demonstrate that such simple references
are sufficient to provide accurate and efficient calculations
with the BABF approach.

1. Einstein approximation

The Einstein crystal has been used extensively as a ref-
erence system in free energy calculations since the works
of Broughton and Gilmer [66] and Frenkel and Ladd [61],
due to the simplicity of its formalism and implementation.
In Einstein approximation (EA), it is assumed that the atoms
oscillate independently about their mechanical equilibrium
positions denoted by r0 ∈ T 3Na , i.e., the lattice vibrations are
represented by Na three-dimensional classical distinguishable
oscillators, yielding 3Na oscillators with an average frequency
ωi for i = 1, . . . , 3Na and atomic mass mi. The Hamiltonian
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of the Einstein system has the following potential energy:

U (r) = U (r0) + UEA(r, r0),

UEA(r, r0) = 1

2

3Na∑
i=1

miω
2
i (ri − ri,0)2. (28)

For the special case where all atoms have the same mass
mi = m and vibrate at the same frequency ωi = ω, the free
energy can be written as

FEA = 3Naβ
−1 ln β h̄ω. (29)

As previously emphasized, our aim is to construct a reversible
path from the noninteracting Einstein crystal to the crystal of
interest. This implies that the lattice of the reference system
at mechanical equilibrium should coincide with that of the
target crystal. This condition can be ensured by harmonically
coupling (via springs) the center of mass of the Einstein crys-
tal to that of the crystal of interest. According to Ryckaert
and Ciccotti [67], Eq. (29), for a constrained system, can be
written as

FEA, c = (3Na − 3)β−1 ln β h̄ω. (30)

The main drawback of EA is that the Einstein frequency
needs to be calibrated very carefully, because even a small
variation in frequency can produce a large difference in the
free energy of the reference and target crystals and result in
computational overhead. Using Eq. (30), this calibration can
be performed through the harmonic free energy calculation of
a small system:

ω(β ) = 1

β h̄
exp

[
βF bulk(β )

3Na − 3

]
, (31)

taking into account the temperature dependence of ω. For
instance, the full anharmonic free energy F bulk (β ) can be
quickly estimated in a short simulation at inverse temperature
β using a system with a small number of atoms (in the case
of bcc lattice, a 2 × 2 × 2 simulation cell with 16 atoms may
be sufficient) and then, through the estimated value of ω(β ),
scaled to a larger system.

2. Harmonic approximation

Alternatively, the reference system can be built upon the
harmonic approximation (HA), which involves a second-order
Taylor expansion of the potential energy around the mechani-
cal equilibrium:

U (r) = U (r0) + UHA(r, r0),

UHA(r, r0) = 1

2

3Na∑
i, j=1

Ki j (ri − ri,0)(r j − r j,0) (32)

where the Hessian matrix of the potential energy at the mini-
mum defines the force constants Ki j = ∂2 U (r)

∂ ri∂ r j
|r=r0 . Moreover,

the force field deriving from the HA potential has a com-
putational complexity of O(N2

a ), as can be inferred from
the double summation appearing in Eq. (32). However, the
quadratic complexity can be turned linear since the atomic
interactions are ignorable beyond some cutoff distance Rcut

and therefore the force constants Ki j are zero above 2Rcut in-
teratomic distance, i.e., the sum in Eq. (32) can be reorganized
as

UHA(r, r0) = 1

2

3Na∑
i=1

∑
j∈v(i)

Ki j (ri − ri,0)(r j − r j,0), (33)

for which v(i) is the collection of neighbor atoms of the ith
atom within 2Rcut distance. These summations have O(Nan)
computational complexity, where n is the average number of
neighbor atoms within v(i) (in general for large systems n 
Na).

In the present case the HA development is performed
around a minimum r0 of the potential energy, which means
that HA contribution in Eq. (32) is a positive semidefinite
quadratic form and so matrix K = [Ki j] is symmetric and
non-negative. Defining the reference system based on an ap-
proximation accounting for all vibration frequencies of the
physical system provides an important advantage: The degree
of overlap between the reference and target distribution is ex-
pected to be high. Besides, the free energy difference between
the target and reference systems should be relatively small, at
least at reasonable temperatures lower than one third of the
melting point.

The partition function, from which the harmonic free en-
ergy is deduced, is obtained by writing the Hamiltonian in
normal coordinates and solving the decoupled equations of
motion. The normal modes correspond to the eigenvectors of
the dynamical matrix Di j = Ki j/

√
mimj . Note that the dynam-

ical matrix has only real values in the present paper because
we treat only the 
-HA modes, i.e., those in the center of the
Brillouin zone of the crystal.

Being also symmetric non-negative, the matrix D is diag-
onalizable with real non-negative eigenvalues whose square
roots define the frequencies of the normal modes. We sort the
frequencies in descending order by convention: ω1 � ω2 �
· · · � ω3Na−3 > 0. Here, frequencies are strictly positive ex-
cept the three last ones that are exactly zero due to the periodic
boundary conditions that are applied to our atomistic simu-
lations. The null-space normal modes characterize the three
translation symmetries of the overall system in the three-
dimensional physical space.

In the limit of high temperature, the phonons (normal
modes) behave as independent and Boltzmann-distributed
classical oscillators, so the free energy becomes

FHA = β−1
3Na−3∑

i=1

ln (β h̄ωi ). (34)

It should be noted that employing directly the HA potential
energy [Eq. (32)] as the reference system may lead to unstable
and nonconverging dynamics in some cases, especially at sad-
dle points separating local energy minima, for which negative
eigenvalues of D exist.

The sampling instability in a physically stable state, like
bulk tungsten, stems from the fact that the three translation
eigenvalues are not exactly zero as they should be. These low-
est eigenvalues correspond to the overall displacement of the
system along three directions through the periodic boundaries.
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FIG. 3. Phonon frequencies ωi derived from the eigenvalues ω2
i

of the dynamical matrix D ∈ R384×384 of 128 atoms in pure bcc W
at equilibrium and the filtered matrix U�

r DUr , where r = 381 = 3 ×
128 − 3 and Ur ∈ R384×381 is the matrix of the first r left singular
vectors of D.

In exact arithmetic, the null space that reflects the trans-
lation symmetries does not affect the dynamics because the
center of mass is shifted to its initial position at each step,
which means that the displacement vector r − r0 remains
orthogonal to the null space. However, in finite-precision
arithmetic, rounding errors in the evaluated eigenvectors result
in a nonzero projection of the displacement vector onto the
computed null space. As soon as a translation eigenvalue
becomes slightly negative, it generates forces that favor the
atomic motion away from the unstable equilibrium position.
Hence, excessive atomic displacements may occur whenever
the dynamics is dominated by the harmonic potential.

To address this problem, we develop and test another nu-
merical scheme, in which we force the translation eigenvalues
of the dynamical matrix to be strictly equal to zero so that
the gradient of the harmonic potential in Eq. (32) is null along
translation symmetries and the dynamics is always orthogonal
to this null space. To achieve this goal, a numerical filter based
on SVD is proposed. The SVD decomposition of the real
dynamical matrix D = [Di j] ∈ R3Na×3Na is given by

D = U�V�,
(35)

U = U1 . . .U3Na

with Ui ∈ R3Na×1 are the 3Na left singular vectors whereas
� and V contain the singular values and the right singular
vectors. We filter the spurious modes associated with the
three lowest eigenvalues by projecting the constant matrix
D into the subspace spanned by the first 3Na − 3 right sin-
gular vectors Ur = (U1 . . .Ur ) ∈ R3Na×r where r = 3Na − 3.
The projector ensuring this transformation is UrU�

r . In this
way, K = [Di j

√
mimj] in Eq. (32) is replaced by KSVD =

[DSVD
i j

√
mimj] where DSVD = UrU�

r DUrU�
r (see Fig. 3). The

bottleneck here is the SVD decomposition whose computa-
tional complexity is cubic but which, fortunately, should be
made only once, as a separate calculation before the sampling
procedure begins. Note that evaluating the filtered potential
energy has the same scalability as that for evaluating the

nonfiltered potential energy. The computational complexity is
linear when the null-space components of the position vector
are filtered out prior to calling the neighboring list defined in
Eq. (33).

For the perfect bulk tungsten where no negative eigen-
values exist apart from the three translation eigenvalues, the
applications of the SVD filter and the P projector in Eq. (19)
are equivalent. However, SVD filtering is more general. Using
the SVD-filtered potential is expected to improve the stability
of mean force sampling by preventing the reference dynamics
from diverging. It should therefore be useful in sampling
unstable transition states.

3. Comparison between Einstein and harmonic approximations

Here we compare the convergence of the biasing force
towards the mean force using the BABF method for which
the reference system is based on the Einstein or harmonic
approximations. The target physical system consists of W
atoms described by an EAM potential [68]. To assess finite
size effects, we first performed two preliminary simulations
in systems containing 128 and 1024 atoms at 3400 K. The
variation of the lattice constant in BABF calculations with
those systems is of the order of 10−4 Å. The associated dif-
ference in bulk modulus is 1 GPa (the relative error is 0.37%).
Considering this error to be acceptable, we conclude that the
small system size of 128 atoms does not limit the accuracy
of the BABF calculations. Therefore, all simulations in the
following part of the paper are carried out with 128 atoms,
unless otherwise specified.

The behavior of the BABF method using the standard HA
reference (denoted by HA) and the SVD-filtered harmonic
reference (denoted by HA-SVD) is first briefly discussed. As
explained in Sec. II C 2, using the projection P that shifts the
center of mass from any position to its initial position at each
dynamic step is equivalent to filtering the HA reference via
SVD decomposition in this case (perfect bulk crystal). Hence,
either of the two methods is able to stabilize the dynamics.
This equivalence is demonstrated by the overlapping curves
of recorded marginal probability PAn (ζ ) at n = 2000 for HA
and HA-SVD references displayed in Fig. 4(a). Since the SVD
filter is a more general approach, the standard HA reference
will not be investigated anymore in the following sections. We
rather focus on the SVD-filtered harmonic reference, denoted
by HA-SVD, and thus compare EA and HA-SVD references
implemented in BABF simulations. The recorded marginal
probabilities PAn (ζ ) at n = 2000 for the two references are
also displayed in Fig. 4(a), from which we observe a more
uniform sampling when HA-SVD, rather than EA, is used
as reference. We further assess the sampling performance by
computing the KL divergence of PAn (ζ ) from the uniform
distribution [see Eq. (27)].

As illustrated in Fig. 4(b) where the KL divergence is
plotted as a function of n, the convergence level achieved after
80 000 Langevin steps using the Einstein reference necessi-
tates three times more steps than when using the SVD-filtered
harmonic reference instead. This trend is explained by the
fact that the harmonic solid is more supple than the Einstein
solid, as the harmonic Hamiltonian includes information from
all possible pairwise interactions, while the Einstein formal-
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FIG. 4. (a) Distribution of the estimated marginal probability PAn (ζ ) at Langevin step n = 2 000 of BABF calculations using references with
Einstein approximation (EA), standard harmonic approximation (HA), and SVD-filtered harmonic approximation (HA-SVD). (b) Variation of
KL divergence for the BABF calculations with EA reference and HA-SVD reference. (c–e) Distribution of PAn (ζ ) at Langevin step (c) n =
10 000, (d) n = 20 000, and (e) n = 40 000 of the calculations shown in (b). No weighting function [w(n) = 1] is applied in (a), while two
cases of weighting function [w(n) = 1 and n/N] are considered in (b)–(e), where N is the total number of Langevin steps. Legends for (c) and
(d) are the same as that in (b). All the calculations in this figure are performed in a bcc W system of 128 atoms at 3400 K using the WEAM4
potential [68].

ism considers a set of independent but identical harmonic
oscillators.

Additional profiles of the probability distributions PAn (ζ )
are shown in Figs. 4(c)–4(e) at increasing n values and using
two types of weighting functions w(n) in Eq. (21). The linear
weighting function w(n) = n/N where N denotes the total
number of steps is implemented in addition to the constant
function w(n) = 1 used previously. For both weighting func-
tions, the distribution PAn (ζ ) flattens faster with the filtered
harmonic reference than with the Einstein reference, which
indicates a better sampling performance of the former. In
contrast, the use of the latter results in excessively high prob-
ability on both sides, especially around ζ = 1. We further
observe from Figs. 4(b)–4(e) that convergence is significantly
improved by the use of the linear weighting function. We
next investigate the impact of the weighting function on the
convergence behavior of the BABF method with HA-SVD
reference.

D. Choice of weighting function

As emphasized in Fig. 4, one should notice that the first
several iterations of the BABF method give relatively bi-
ased sampling of ζ . Hence, a weighting function reevaluated
at each step is set in Eq. (21) to reduce the contribution
of the configurations initially sampled and then improve
the sampling efficiency. In Fig. 4, results of the sim-
plest linear weighting function w(n) = n/N for n = 1, . . . , N
are compared with the case without weighting function
[w(n) = 1]. Application of weighting results in significant

improvement of sampling efficiency. To reach the conver-
gence level DKL(PAn ||1[0,1]) < 10−3 with harmonic reference,
20 000 steps of Langevin dynamics are sufficient through
linearly weighting the sampling, while 80 000 steps are still
not enough without the use of the weighting function. Conse-
quently, it is of great interest to figure out the effects of the
weighting function.

Several weighting functions varying from 0 to 1 are tested
in order to measure the impact of the functional form. Fig-
ure 5 illustrates the results of employing the various weighting
functions that have been selected. The different shapes of
these functions are illustrated in Fig. 5(a). To evaluate the
importance of the first n samples, we display the following
characteristic function w(n)/

∑n
s=1 w(s) in Fig. 5(b), while

the corresponding KL divergence is shown in Fig. 5(c). The
weighting function with larger value of w(n)/

∑n
s=1 w(s) at

n  N leads to faster convergence [Figs. 5(b) and 5(c)] since
it lowers the contribution of the initial sampling. From this
analysis it can be concluded that an appropriate choice of
weighting function, such as w(n) = [sin( nπ

2N − π
2 ) + 1]( n

N )2,
can further improve the sampling significantly in terms of
convergence speed: It requires only 6000 steps to attain
DKL(PAn ||1[0,1]) < 10−3, which is three times faster than using
the linear weighting function.

E. Comparison of BABF method and molecular dynamics
on bulk modulus calculation

In this subsection we compare the performance of the
present BABF method with classical MD simulations. The
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FIG. 5. (a) Shape of different weighting functions. (b) The value of w(n)/
∑n

s=1 w(s), which determines the convergence speed. (c) Vari-
ation of KL divergence for different weighting functions. Legends for (a) and (b) are the same as that in (c). All the results in this figure are
obtained by BABF calculations with HA-SVD reference based on the same bcc W system and the same EAM potential as in Fig. 4.

direct comparison on free energy calculations is out of scope.
It is well known that direct MD simulations are unable to
estimate the free energy of the system. Here, we instead per-
form an indirect comparison on the second derivative of the
free energy with respect to the volume of the system, i.e., the
isothermal bulk modulus BT .

The previous BABF method with both EA and HA-SVD
references is used to compute the free energy at 20 tempera-
tures ranging from 10 to 3800 K. At each temperature, a series
of deformed systems is considered, allowing one to extract the
bulk modulus from the second derivative of the free energy
versus volume curve. Details of the procedure are illustrated
in Fig. 6.

The bulk moduli from MD-based simulations are obtained
by measuring the change in average stress tensor when the
cell volume undergoes a finite deformation [69] with the
ELASTIC_T package available in LAMMPS [70]. The high tem-
peratures 3000, 3400, 3600, and 3800 K, for which the
thermal fluctuations are large, have been selected.

The bulk modulus computations using both methods are
made within a bcc W system modeled with WEAM4 potential
[68]. A system containing 128 atoms is used in BABF calcu-
lations, while 16 000 atoms are needed in MD simulations to
avoid excessive fluctuations.

The relative error is recorded in BABF and MD simu-
lations for the system at 3400 K and plotted in Fig. 7(a).
One notices that the BABF calculation with EA reference
exhibits a significantly larger initial relative error than that
obtained with HA-SVD reference. BABF calculations with
both references converge quickly. Specifically, the relative
error of BABF calculation decreases to less than 1% from step
8000 with EA reference and from step 2000 using HA-SVD
reference. In contrast, MD simulation starts with a slight error
but always suffers severe fluctuations so that a large number
of MD steps are required to obtain a reliable time average.
Thus, the much smaller number of integration steps, combined
with the small system size in the BABF approach, results in a
100-fold increase in computational efficiency.

The results of BABF with EA and HA-SVD references
are consistent with those obtained from MD simulations
[Fig. 7(b)]. The obtained agreement validates the further ap-
plication of the optimized BABF method to the calculations
of elastic properties and thermal expansion. From the cost
analysis, we conclude that the present method is fast and
robust for estimating the free energy in crystalline solids and

FIG. 6. Illustration of thermodynamic properties calculation
with the BABF method, where Veq and F denote the equilibrium
volume and the Helmholtz free energy, respectively. At temperature
T , we compute the free energy for a series of systems with different
volumes as presented by the dark blue curves. The value of the lattice
constant corresponding to Veq, i.e., the free energy minimum, is the
lattice constant at this temperature, from which the volumetric ther-
mal expansion can be obtained (dark orange curve). Bulk modulus is
proportional to the second derivative of the free energy with respect
to the volumetric strain. Temperature dependence of the free energy
minimum (light blue curve) allows the entropy evaluation.
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FIG. 7. Comparison of BABF method and MD simulation. (a) Runtime relative error (BT
n − BT

∞)/BT
∞ at 3400 K with BT

∞ the fully
converged value. (b) Rescaled bulk modulus as a function of temperature. We take the ratio of the bulk modulus at temperature T to its
value at the Debye temperature TDebye, equal to 400 K for W [71]. The dark blue and light blue lines are computed with BABF method without
weighting function using EA and HA-SVD references, respectively. The dark orange line is obtained from MD simulations. The number of
atoms in the bcc W system and the number of iteration steps to achieve the convergence for each method are indicated in the legends. All the
curves are obtained with the WEAM4 potential [68].

can be applied to sample not only fast standard force fields but
also numerically heavy machine learning potentials [46,72–
74].

III. APPLICATION TO BCC TUNGSTEN

Tungsten is a potential first-wall material near the divertor
area in a fusion reactor due to its high melting point, high
temperature strength, and high thermal conductivity [43,44].
Based on the bulk modulus calculations of W, the performance
of the optimized BABF method from Sec. II is validated over
a wide range of temperature. Furthermore, fast calibration
and optimization of ML interatomic potentials are carried
out with the application of the above method. Throughout
Sec. III all the BABF simulations are performed using the
HA-SVD reference unless otherwise stated. To construct the
model of temperature-dependent elastic constants for bcc W,
we conduct the BABF-HA-SVD calculations using different
interatomic potentials in a wide range of temperature (10
to 3800 K), and compare the results with the experimental
values, available in the range between 4.2 and 2 073.15 K
[51,52]. Isothermal elastic properties from experiments can
be derived from the following relations:

CT
11 = CS

11 − BS + BT ,

BT = CPBS

CP + TV α2BS
, (36)

C′T = C′S,CT
44 = CS

44,

where C′ = 1
2 (C11 − C12); C11, C12, and C44 are the elastic

constants in Voigt notations characterizing cubic crystals; CP

and α denote, respectively, the experimental isobaric heat
capacity and the volumetric thermal expansion [51–53,75,76].
The superscript T represents the isothermal quantities, while
the superscript S indicates the adiabatic results, which can be
obtained from the experiments. Here, for each temperature,

the elastic properties are rescaled by the corresponding values
at the Debye temperature TDebye, equal to 400 K for W [71].

The adiabatic elastic constants of W were successively
measured by pure continuous wave techniques (from 77 to
500 K [50]), pulse-echo techniques (from 4.2 to 300 K [51]
and from 297.15 to 2073.15 K [52]), and sampled continuous-
wave techniques (from 4.2 to 77 K [49]). To develop a
high-temperature model which cannot be experimentally
achieved, an empirical cB model [77] of self-diffusion was
applied to determine the bulk modulus of W [78]. With
this model, Wang and Reeber evaluated the tungsten bulk
modulus from self-diffusion, thermal expansion, and specific
heat data over a wide range of temperatures (300–3600 K)
[53]. Besides, Gustafson provided a polynomial expression
of isothermal bulk modulus for W through evaluating the
available experimental data [79], based on which Saxena and
Zhang gave an estimation up to 3700 K [54].

A. Performance of EAM potentials

First, we perform the calculations using the present
BABF-HA-SVD method and five different traditional EAM
potentials: WDD by Derlet et al. [80], WEAM2 and WEAM4
by Marinica et al. [68] (denoted as EAM2 and EAM4 in
Ref. [68]), WJW by Juslin and Wirth [81]), as well as WMB
by Mason et al. [82], commonly used for atomic-scale model-
ing of bcc W. As reported in Fig. 8, none of the five EAM
potentials can correctly reproduce the experimental curves.
The curves of WDD and WMB strongly deviate from that
of the experiments. WEAM2 and WEAM4 provide an op-
posite trend up to 800 K compared to the experiments: For
CT

11, CT
12, and CT

44, the computed values augment while the
measured values decrease with increasing temperature. The
WJW potential can describe the decreasing tendency of elastic
constants. Nevertheless, the slope is too large, and abnormal
fluctuation occurs at high temperature due to the potential
instability. There are several reasons why these potentials can-
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FIG. 8. (a) Linear thermal expansion, (b) rescaled bulk modulus, and (c–e) rescaled elastic constants of bcc W, from 0 K to the melting
point, computed employing BABF-HA-SVD method and five different traditional EAM potentials: WDD [80], WEAM2 [68], WEAM4 [68],
WJW [81], and WMB [82]. We take the ratio of the elastic properties at temperature T to its value at the Debye temperature TDebye = 400 K
[71]. In all panels, the circles denote the results of BABF-HA-SVD calculations with respective force fields whereas the black lines and
dash-dotted black lines are experimental [52] and calculated values [53,54], respectively. All the subplots share the legend provided in (a) and
(b).

not correctly reproduce the temperature dependence of elastic
constants in W.

(i) First the formalism is too basic to take into account the
fact that W is a metal for which the Fermi level lays into a
pseudogap [68,83]. This fact enhances the angular characters
of the bonds, which cannot be reproduced by the radial many-
body EAM force fields.

(ii) For all these potentials the database of fitting is very
poor, without too much data beyond 0 K (except WEAM2
and WEAM4 for which a few W liquid configurations are
included).

The relatively simple physical model of EAM formalism
as well as in the fitting information does not allow one to
accurately predict the high-temperature properties of W such
as the evolution of bulk modulus with temperature [Fig. 8(b)].
Therefore, in the next section, we will turn to the class of
ML potentials, which provide a remarkable improvement of
accuracy compared with the empirical potentials [45–47] es-
pecially for W [48,84,85].

B. Prediction of elastic properties based
on existing ML potentials

As previously stated, the traditional EAM force fields fail
to reproduce thermoelasticity of bcc W. Employing the fast
and robust BABF-HA-SVD method developed in the present
paper, we will run through the numerically heavy but accurate

ML force fields. During the past several years, various types of
ML interatomic potentials have been developed for W, which
are most commonly based on the kernel methods, including
the Gaussian approximation potential (GAP) [84,85], linear
potential [48,86], and quadratic noise potential [48]. More-
over, the framework of deep learning neural networks is also
used to construct the potential model for W [87].

In this section, we perform the BABF-HA-SVD calcula-
tions of elastic properties and thermal expansion in bcc W
using different types of ML potentials and compare our results
with the experimental values [51,52]. First, we investigate the
existing recent ML potentials for W, which are constructed
with linear formalism (LML) and quadratic noise formalism
(QNML) [48]. These potentials are designed for the simula-
tion of point and extended defects and the underlying database
contains some finite-temperature W systems such as bulk and
liquid state. The numerical cost (CPU time) per Langevin
step of these ML potentials is a few tens times higher up to
four orders of magnitude higher than with the EAM potentials
but is much lower than the same accurate DFT calculation.
The linear expansion and elastic properties given by both ML
potentials (Fig. 9) are in much better agreement with the ex-
perimental results compared to those from the EAM potentials
(Fig. 8). However, the rescaled bulk modulus calculated with
QNML starts deviating from the experimental curve around
1000 K [Figs. 9(b)]. In addition, the calculations of the elastic
constants, e.g., C44 in Fig. 9(e), reveal the limitations of the
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FIG. 9. The same elastic properties of bcc W as in Fig. 8, evaluated using ML potentials with different formalism: LML [48], QNML [48],
GAP [84], and KNML. In all panels, the circles denote the results of BABF-HA-SVD calculations with respective force fields whereas the
black lines and dash-dotted black lines are experimental [52] and calculated values [53,54], respectively. All the subplots share the legends
provided in (a) and (b).

two ML potentials for the calculations of high-temperature
elasticity.

Therefore, the widely used model GAP [84] for bcc W
is considered. High efficacy and robustness of the present
BABF-HA-SVD approach make it feasible to employ this
computationally heavy force field, of which the numerical
cost per Langevin step is about 15 times higher than that
of the LML and QNML potentials. As shown in Fig. 9, the
previously mentioned deficiencies of LML and QNML are
dealt with using the GAP. Nevertheless, the linear expansion
obtained with GAP deviates from the experimental curve at
high temperatures. This can be explained by the lack of con-
figurations above 1000 K in the database of GAP. In the next
section we present the strategy to improve the accuracy of
these high-temperature properties prediction based on BABF-
HA-SVD in conjunction with ML force fields.

C. BABF-based strategy for ML potential improvement

The learning capacity of machine learning force fields
can be increased by changing the formalism while the trans-
ferability can be optimized by increasing the size and the
morphologies of the atomic environments in the database.
First, we note that no configuration above 1000 K exists in the
training database of the GAP force field, while in that of LML
and QNML, only the configurations at 300, 1000, and 3000 K
exist. However, the results of the GAP formalism seem to be
very good until 2000 K compared with the experiment and

more reliable than the numerically efficient but lower capacity
models yielding the LML and QNML potentials. Therefore,
we propose to enlarge the database by collecting informa-
tion from a wider range of temperatures and simultaneously
increasing the learning capacity of the ML model. Here, the
descriptors used previously within linear and quadratic noise
regression to construct the LML and QNML force fields are
similarly employed in the higher capacity kernel-based mod-
els. We also use the Machine Learning Dynamics (MILADY)
package [48,86] to construct the associated force field.

To complete the database, MD simulation in the NPT
ensemble is carried out using the LAMMPS-MILADY mod-
ule [70]. The simulation system contains 128 atoms, and
the temperature varies linearly from 100 to 5000 K in
245 000 steps. From the MD simulation, 38 configura-
tions are randomly selected and then recalculated with DFT
using VASP 6.2.0 [88] and the projector augmented wave
pseudopotential for W that accounts for 14 valence elec-
trons [Xe4 f 14]5s25p66s15d5 (known in the VASP database
as W_sv). The exchange-correlation energy is evaluated us-
ing the Perdew-Burke-Ernzerhof (PBE) parametrization [89]
of the generalized gradient approximation (GGA). The DFT
setup is exactly the same as in the original dataset from
Ref. [48]. In this paper, the training database is composed of
the MD-generated configurations and the original database of
the previous LML and QNML potentials [48].

The present kernel potential is built on the following two
assumptions. The first one is related to the notion of the
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empirical potential itself, which states that the total energy
Es of a system s containing Ns atoms can be written as
the sum of the local atomic energies εs,a of each ath atom,
Es = ∑

a∈s εs,a. The second one is related to the kernel noise
machine learning (KNML) potential, a formalism proposed
by the MILADY framework. The KNML model has the same
foundation as the QNML framework [48]: Instead of perform-
ing a single regression with a fully nonlinear formalism in
descriptor space, the linear model (LML) is fitted first and then
the kernel model (KML), more difficult to fit, is applied to the
difference between the target value and the LML estimation.
The model can be written as

εKNML
s,a = εLML

s,a + εKML
s,a , (37)

εKNML
s,a = (wLML)�Ds,a + (wKML)�k(Ds,a)

= (wLML ⊕ wKML)�[Ds,a ⊕ k(Ds,a)] (38)

where Ds,a is a D-dimensional descriptor that encodes the
local neighboring information of the ath atom from the system
s within a cutoff distance Rc. Here we use the bispectrum
SO(4) descriptor [90] with D = 55, Rc = 5.0 Å and the angu-
lar moment jmax = 4. Besides, k(·) ∈ RK×1 is a column vector
that measures the distance in the descriptor space between
the descriptor Ds,a ∈ RD and the K sparse points zk ∈ RD

(k = 1, . . . , K) selected from the database:

k(Ds,a) =

⎛
⎜⎜⎝

k(Ds,a, z1)
k(Ds,a, z2)

...

k(Ds,a, zK )

⎞
⎟⎟⎠ ∈ RK×1 (39)

where k(·, ·) : RD × RD → R is the kernel function. Within
this formulation, the LML and KML parts are in direct prod-
uct w = wLML ⊕ wKML, meaning that there are 1 + D + K
parameters in total. This can be interpreted as an extension of
K components to the original D-dimensional descriptor space.
The energy descriptor becomes

∑
a∈s[Ds,a ⊕ k(Ds,a)], from

which the forces and stresses can be derived [45,72,86].
In the present paper we use the normalized polynomial

kernel [45,91,92]:

k(Ds,a, zk ) = k̃(Ds,a, zk )√
k̃(Ds,a, Ds,a)

√
k̃(zk, zk )

,

k̃(Ds,a, zk ) =
(

σ 2 + Ds,a · zk

2l2

)p

. (40)

Here σ , l , and p are the kernel hyperparameters. In the KNML
framework σ = 0 because after the linear fitting, the differ-
ence between the DFT target values and the LML prediction
follows a normal distribution with zero mean [48]. After many
trials the other two hyperparameters are set to l = 0.05 and
p = 4. The K = 3615 sparse points zk ∈ RD are selected via
sampling the Mahalanobis distance of the fitting database.
We compute the statistical distance of each local atomic de-
scriptor Ds,a for all atoms of the database that contains in
total M = 47 277 data points. The Mahalanobis distance of
the mth local atomic environment with respect to the covari-
ance matrix � ∈ RD×D of all M local descriptors contained in

the database can be written as

d (Dm) = [(Dm − μ)��−1(Dm − μ)]
1
2 ,

� = 1

M − 1

M∑
m=1

(Dm − μ)(Dm − μ)�,

μ = 1

M

M∑
m=1

Dm. (41)

The statistical distance d (Dm) for each point is computed
to measure the distance between this point and the distribu-
tion of the whole database. Instead of directly sampling the
statistical distance d (Dm), we sample d p(Dm) with a very
low power p, here equal to 0.05. Then the interval ID =
[minm[d p(Dm)], maxm[d p(Dp)]] is equally divided into nK

segments, and one point is selected as kernel sparse point in
each subinterval if possible. First, from the entire database,
for which M = 47 277, K = 2812 sparse points are collected
from nK = 4000 subintervals of ID.

Second, we make another dense selection, in addition to
the previous one, in the portion of the descriptor space that
represents the primarily important components of the database
for the physics of our paper. In our case, since we intend to
have good elastic constants at high temperatures, we intensify
the collection of the configurations related to elastic deforma-
tions and finite-temperature MD simulations. Consequently,
we perform the same procedure only for three special classes
of the database, including the bulk systems under elastic de-
formations at 0 K, and the perfect bulk systems sampled from
MD simulations at 300 and 3000 K [48]. From those classes
consisting of 5142 data points we extract 803 sparse points
from 1000 subintervals.

Using the above KNML formalism and the fourth-order
polynomial kernel, we train a new potential on the new
database oriented towards high-temperature properties of bcc
W. The present KNML potential is validated by giving almost
the same results at reasonable low temperatures (<2000 K) as
the GAP (Fig. 9), which is also based on the fourth-order poly-
nomial kernel. The difference between the results of KNML
and of GAP, especially at high temperatures, is reasonable as
well in consideration of the difference in database, selection of
sparse points, and fitting. In terms of computational speed, our
KNML potential offers a sixfold increase over GAP potential.
Gratifyingly, the predictive ability of the KNML potential
is satisfying. All the properties computed with this potential
(Fig. 9) are in excellent agreement with the experimental
curves. The lattice expansion in Fig. 9(a) closely follows
the experimental value up to the melting point. This fact is
surprising because the present formulation does not take into
account the electronic entropy. Perhaps, the present agreement
does not exclude an error compensation in the estimation
within GGA-PBE exchange-correlation functional, i.e., the
finite-temperature effects are enhanced with the same quantity
as the electronic free energy.

Slight disagreement is observed for all elastic constants
at temperatures below the Debye temperature of W. This be-
havior is normal because our free energy calculation method
BABF-HA-SVD is based on classical mechanics statics and
cannot account for the quantized zero point energy of phonons
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in bcc W. This paper focuses on the high-temperature prop-
erties of bcc W, while the measurable impact of quantized
phonons at low temperature has been investigated in a large
amount of recent studies [93–95].

At the intermediate temperature between 1000 and 2000 K,
a discrepancy in bulk modulus between the experimental
observation and the present KNML potential-based calcula-
tion can also be observed. However, this difference is lower
than the 0-K difference between the bulk modulus value
from the DFT GGA-PBE approach (304.5 GPa) [48] and the

low-temperature experimental value (314.73 GPa) [49]. The
overall consistency between the experimental measurements
and the present computational results is remarkable in terms
of the temperature dependence of the elastic properties, which
provides a perspective on the contribution of electronic en-
tropies and the role of exchange-correlation functional.

Based on the results calculated with the accurate KNML
potential, a polynomial model is proposed for the rescaled
isothermal bulk moduli and elastic constants of bcc W from
0 K to the melting temperature:

BT (T )

BT (TDebye)
= −4.434 × 10−12T 3 − 2.082 × 10−9T 2 − 4.042 × 10−5T + 1.013, (42)

CT
11(T )

CT
11(TDebye)

= −3.018 × 10−13T 3 − 2.209 × 10−8T 2 − 6.875 × 10−5T + 1.029, (43)

C′T (T )

C′T (TDebye)
= 5.800 × 10−12T 3 − 5.166 × 10−8T 2 − 1.103 × 10−4T + 1.054, (44)

CT
44(T )

CT
44(TDebye)

= −2.592 × 10−12T 3 − 1.343 × 10−10T 2 − 6.616 × 10−5T + 1.026. (45)

This model with proven correctness could be useful to
predict the elastic behaviors of bcc W at extremely high tem-
perature which cannot be reached by the experiments.

To briefly summarize the work in this section, we present
the overall process of ML potential improvement based on
BABF-HA-SVD in conjunction with experimental observa-
tions. As a remedy for the high numerical cost of ML force
fields, the fast BABF-HA-SVD assessment makes it possible
to establish the optimization strategy rapidly.

IV. CONCLUSION

In this paper, we propose and implement an accelerated
Bayesian ABF method for sampling the minima of an energy
landscape and estimating its free energy. The procedure, de-
veloped in the ABF Bayesian-reasoning framework, consists
in performing a thermodynamic integration from a reference
system, which in the present paper corresponds either to Ein-
stein approximation or to the harmonic approximation, i.e.,
the second-order Taylor expansion around the energy mini-
mum. We provide two improvements that drastically facilitate
the Bayesian sampling. First, we eliminate the numerical in-
stabilities in the harmonic potential energy using a SVD-based
filter. This improves the numerical stability of Bayesian sam-
pling, making it feasible and offering systematic character
in the free energy exploration. Second, we propose a pro-
cedure that introduces weights in the sampling of the mean
biasing force from molecular dynamics flow. The use of a
simple weighting procedure enhances the sampling efficiency
by three orders of magnitude, in terms of speed of conver-
gence towards uniform sampling which is here measured by
the Kullback-Leibler divergence. It also yields reliable re-
sults two orders of magnitude faster than a traditional MD
simulation does.

Beyond the computational efficiency, the present formula-
tion offers two main advantages with respect to the standard
TI methods. First, the expectation form of Bayes formula

which serves to construct the mean-force estimator owing
to the ergodic theorem can also be used to estimate many
other observables, such as elastic dipole tensors and formation
volumes. One simply has to replace the potential gradient in
Eq. (15) with the desired quantity. Second, the robustness of
thermodynamic integration is increased owing to the Bayesian
mixing of the target and reference Hamiltonian systems. To
illustrate this point, let us consider some defects located in
some metastable minima surrounded by very small barriers,
e.g., screw dislocations in bcc metals, mobile dislocations
loops such as the cluster formed by crowdion interstitial atoms
(of 〈100〉 and 〈111〉 types in fcc and bcc crystal, respectively),
etc. For these defects, the traditional TI methods are difficult
to set up and often fail to sample the free energy basin of
interest. Because the sampled distribution for ζ close to 1
mainly reflects the target system, the dynamics may very
easily escape from the local energy minimum and introduce
transitions with hysteresis along the integration path from
ζ = 0 to 1. The ability of the adaptive Bayesian approach
to explore rugged energy surfaces opens up many perspec-
tives involving the characterization of complex defects in
materials science. In addition to that, the adaptive Bayesian
method can be applied for computing free energy of melt-
ing in metallic systems. In this case, to evaluate the melting
point of the material, an appropriate reference system of
liquid, such as the inverse-power pair potential [8], should
be provided.

The outstanding performance of the method developed
here enables many possibilities for numerical applications.
For example, it is well suited to the accurate computation of
the free energy landscape and its derived quantities for phys-
ical systems described by faithful but time-consuming ML
potentials: We prove this for the experimental elastic proper-
ties of W, which can be reliably predicted in tens of minutes.
Using the Bayesian ABF sampling with linear, quadratic, and
kernel ML potentials, we highlight the agreement with the
extrapolation laws used for the bcc W thermoelastic properties
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obtained by Wang and Reeber [53], and slight disagreement
with those obtained by Saxena and Zhang [54]. Our ro-
bust Bayesian ABF approach based on kernel ML potential
validates only the former ones [53]. Besides, it eventually
provides its own extrapolation laws based on the estimated
vibrational free energies.

As a final point, being numerically fast and stable, the
present free energy method opens up the prospect of new
machine/deep learning force-field calibration strategies. Our
Bayesian ABF method can (i) significantly accelerate the eval-
uation of recent machine/deep learning models, potentially
revealing deficiencies in the model or database, as well as (ii)
indicate the direction of optimization, and (iii) ensure robust
evaluation of the free energy within complex FEP workflows
dedicated to ab initio computations (many of them mentioned
in the Introduction).

The MILADY package is open source software under ASL
license and can be downloaded from Ref. [96]. The KNML

potential developed in this paper is provided on the same web-
page. The W database is available upon reasonable request.
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