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Simple and accurate estimation of metal, semiconductor, and insulator work functions
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Work-function φ measures the work needed for an electron to escape a solid. For simple metals, it is almost
exclusively the result of the surface dipole created by spill-out of electrons from bulk into the vacuum as shown
in the seminal work by Lang and Kohn [Phys. Rev. B 3, 1215 (1971)] using a jellium model. Despite a half
century of intense efforts, however, such understanding has not been extended past metals. Here we present a
universal model for φ which contains a previously unrecognized bulk contribution φI [Phys. Rev. Lett. 121,
196802 (2018)]. By incorporating φI into the jellium model, we find that it dictates the dipole due to charge spill
out and provides a description which applies to a wide range of materials, ranging from metals, semiconductors,
to insulators.
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I. INTRODUCTION

Work function is a key part of the original theory of
Einstein on photoelectric effect [1]. Its importance to sci-
ence spans a wide range of topics from thermionic emission
and energy conversion [2], chemisorption [3], surface recon-
struction [3], surface chemistry [4], chemical sensors [5],
material’s fracture toughness [6] and mechanical strength [7],
to free-electron lasers [8], to name a few. In the context of
the so-called Schottky-Mott limit [9,10] and Anderson rule
[11], the work function also serves as a rough guide to band
alignment for electronic device design [12,13], interfacial
diagnosis [14], and to match redox potentials for photoelec-
trochemical reaction and energy conversion [15].

On the theoretical side, density functional theory- (DFT-)
based methods provide reliable access to accurate results of
work functions [16], using a periodic supercell with “slab
plus vacuum” geometry. In addition to the work function,
Schottky barriers between lattice-matched heterostructures
are routinely calculated [17]. Such calculations determine the
interfacial dipoles and show that the interfacial properties
between materials cannot be reduced to their constituent parts
as in the Schottky-Mott limit or Anderson rule [18]. Although
these calculations provide quantitative results, they provide
little understanding on the physics and factors that control the
alignment at material interface. As such, a basic understand-
ing of interfacial dipole formation, or even what constitutes
the interfacial dipole, which could serve as a foundation for
understanding material interfaces without explicit atomistic
calculation is still lacking.

A general model of the surface work function, which can
be thought of as the extreme case of an interface, was pro-
posed by Lang and Kohn (LK) [19] in which they postulate
that the crystalline details are unimportant, and the ionic
potential can be replaced by that of a uniform background
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charge. Such a jellium model provides reasonable results for
simple metals but has failed for semiconductors and insula-
tors. This leads to the question of whether a fully atomistic
calculation is necessary to capture the essential physics of
nonmetals, or if instead a hidden physical property can be
included in a simple model to cover a broad range of materials.

The difficulty in the description of the work function partly
comes from that most of our understanding of solids are based
on the construct of periodic bulk system, thanks to the Bloch
theorem and to the wide adoption of Fourier transform. In this
regard, the surface can be viewed as follows: first the infinitely
large periodic bulk forms an interface with the “empty space”
of vacuum, and second this interface reaches equilibrium by
creating surface relaxation dipoles. Yet, one always needs a
common reference to quantify interactions and align elec-
tronic levels between subsystems when placed together. For
example, in quantum chemistry, the reference of a molecule is
chosen as the position infinitely far away from the molecule.
An obvious drawback of the periodic bulk theory is that the
reference gets “lost,” between the bulk and the vacuum since
there is no “infinitely far” position for an infinitely large bulk.
Without identifying the reference for periodic bulk, we do not
know how to properly define the surface and its relaxation.

In this paper, we formulate a theory of work function and
show that the bulk ideal vacuum level [20] plays a critical role
in determining the overall work function. As atomic surface
relaxation can be trivially incorporated, here we only consider
the effect on the work function due to electronic relaxation.
This work function contains two parts: a pure bulk term
φI dubbed as the innate bulk work function and a surface-
relaxation dipole term VDR . The bulk contribution φI is the
Fermi-level position (or the valence-band maximum for the
case of nonmetals) relative to the ideal vacuum level. By a
real-space charge and potential analysis, we show that VDR can
be evaluated using a corrected jellium model based on Lang
and Kohn’s approach [19], provided that the effect of φI is
incorporated. The results are compared with first-principles
atomistic calculations for 21 real solids. Good agreement is
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FIG. 1. Schematic of the charge density of a truncated slab with
the cutting planes depicted as vertical lines, (a) before and (b) after
electronic relaxation. The electrostatic potential corresponding to the
charge densities in (a) and (b) are shown in (c) and (d), respectively.

found across the board for metals, semiconductors, and insu-
lators, leading to a universal description of the work function.

II. MODEL ANALYSIS

A. Bulk and surface contribution to the work function

In general, the work-function φn̂ of a solid is a direction-
dependent (n̂) quantity defined by the difference between
the vacuum potential V n̂

vac in the near-surface region and the
bulk Fermi-level EF . In semiconductors and insulators, φn̂

refers to the ionization potential in which EF is replaced by
the valence-band maximum. Intuitively, the contribution to
φn̂ could be separated into an (unrelaxed) bulk part and a
local surface relaxation part as shown in Fig. 1. However, a
physically clear-cut definition of surface relaxation charges
has been lacking for a long time because the bulk charges (and
potentials) are continuously distributed and there is no clear
“initial bulk configuration” to compare with the slab. In other
words, a common reference to align the bulk to the vacuum
before surface relaxation is missing here. Thus, the surface
relaxation, which is defined from the differential charge be-
tween the relaxed slab and the initial bulk configuration, is a
rather nontrivial issue. From a practical point of view, it means
that we do not know what kind of truncated bulk should be
used as the reference to define the surface relaxation.

Recently, some of the authors have identified the reference
energy of periodic bulk as the ideal vacuum level [20], which
is determined by truncating the bulk charge density by planar
cuts at maxima of the average potential [see Figs. 1(a) and
1(c)]. In such truncated bulk, it is found that these maxima
of the average potential are equivalent to the vacuum level,
thus, can be used as the reference of a periodic bulk when
aligned to the vacuum. Although the macroscopic monopole
and dipole vanish in a periodic bulk due to charge neutrality
and translational symmetry, the inhomogeneous distribution
of bulk charge still provides a finite electric quadrupole ten-
sor Q. Across the surface of a truncated bulk with a given
orientation n̂, the commonly used bulk average electrostatic
potential V bulk is offset from the ideal vacuum level V n̂

ideal by
the potential associated with the quadrupole V n̂

Q [21],

V bulk = V n̂
ideal − V n̂

Q = V n̂
ideal − 4π

�
n̂T ←→

Q n̂, (1)

where � is the unit-cell volume. Here, we decompose
φn̂ into a pure surface term plus a pure bulk term as

follows:

φn̂ = V n̂
vac − EF

= (
V n̂

vac − V n̂
ideal

) + (
V n̂

ideal − EF
)

= V n̂
DR

+ φn̂
I , (2)

where V n̂
DR

is the surface relaxation dipole potential which
shifts vacuum level from V n̂

ideal to V n̂
vac, whereas φn̂

I is the innate
bulk work function, which is a pure bulk contribution to φn̂.

The innate bulk work function, defined as φn̂
I = V n̂

ideal −
EF , is related to the ideal vacuum level of bulk and can be
straightforwardly calculated via a bulk unit cell. V n̂

DR
, how-

ever, is physically determined by the extent to which the
self-consistent charge spills out into the vacuum region at a
particular surface. As reflected schematically in Fig. 1(b), the
truncated wave functions associated with electrons in bulk ex-
ponentially decay into the vacuum region with characteristic
lengths which would depend on the difference in energies be-
tween their electronic states in the material and in the vacuum
region. Considering a state at the Fermi level, before relax-
ation, this energy difference is simply φn̂

I . However, as charge
spills out, the resulting surface dipole alters the alignment
of the aforementioned states, yielding φn̂, which needs to be
determined self-consistently.

B. Model based on jellium approximation

Within the context of DFT calculation, the noninteracting
electrons experience the same effective potential,

VT (r) = Vion(r) + VH (r) + vxc(r), (3)

where the individual terms to the right correspond to the ionic
electrostatic potential, the Hartree potential of electrons, and
the exchange-correlation potential, respectively. In the work
of LK [19], it was shown that the details of the ionic positions
could be abstracted away and that the work function of simple
metals are well described through a jellium approximation
in which the ionic charge is assumed to be uniformly dis-
tributed. Although this approach has proved unsuccessful for
nonmetals, it provides a picture of metals wherein the work
function can be simply understood by the average electron
density of the material.

Figures 2(a) and 2(b) schematically show the alignment
between bulk and vacuum energy levels at the interface,
before electronic relaxation, for a jellium system and an atom-
istic system, respectively. For the case of jellium, shown in
Fig. 2(a), both the positive ionic charge and the negative
electronic charge are uniformly distributed throughout the
material (dark blue region). Therefore, the net charge van-
ishes everywhere, and the average electrostatic potential of
the material equals that of vacuum V J = Vvac. Furthermore,
as EF of a uniform electron gas is above the vacuum level,
φLK

I is a negative quantity. For the case of an atomistic system,
however, as depicted in Fig. 2(b), the ions are represented by
point charges (or pseudopotentials designed to reproduce their
affect) leading to charge inhomogeneity in the bulk region. For
a planar cut of the charge density, V n̂

vac lines up with V n̂
ideal, and

from Eq. (1), the average potential in the atomistic bulk region
is distinct from the vacuum region by V bulk = V n̂

vac − V n̂
Q . In
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FIG. 2. Schematic of interfacial alignment between the truncated
bulk and vacuum for (a) jellium and (b) atomistic system before
surface relaxation. (c) Ionic potential of the jellium slab surface in
(a). (d) The same as (c) but added by a surface step function to
correct φI .

this case, φn̂
I can be positive or negative, depending on the

details of the material. It is important to note that in both
cases, these level alignments are for the truncated material
before surface electronic relaxation, and φI is the driving force
for charge spill out. Hence, whatever simplification to the
problem is used, the accurate representation of φI is necessary
to obtain the appropriate physics.

In this context, LK’s wide success for metals and failures
for nonmetals can be understood. In particular, as systems
become more metallic the details of the ionic coordinates are
screened away and the electric quadrupole of the bulk system
approaches zero. Hence, for metallic systems, φI approach
−EF and the associated charge spill-out are well described by
the jellium model. For semiconductors and insulators, on the
other hand, as depicted in Fig. 2(b), the incomplete screening
results in a significant electric quadrupole, V n̂

Q , which is not
captured by jellium, leading to a φI which can be entirely
different than a metallic system of similar electron density.

This success of LK [19] for metals implies that jellium
adequately describes the physics of surface charge relaxation,
and the atomic details of the system are unimportant, pro-
vided the driving force for that spill-out φI is accurate. As
the jellium model of charge relaxation is so simple, it would
be greatly beneficial if the approach could be extended to
semiconductors and insulators. Our approach to accomplish
this is to directly modify the jellium potential at the surface
by adding a step potential which yields a jellium φI equal to
that of the semiconductor/insulator under investigation. This
modification to the jellium potential in Fig. 2(c) is shown in
Fig. 2(d). As the charge spill out is still calculated within the
jellium approximation, but the potential is modified to correct
φI , we, hence, refer to it as the φI corrected jellium (φI J)
model. The procedure to determine the work function in the
φI J model is based on the relationship φ = φI + VDR , where
φI is determined from an atomistic calculation of the bulk
solid. VDR is the surface dipole determined self-consistently
from a calculation of a jellium slab with surface step potential
φI − φLK

I .

III. RESULTS AND DISCUSSION

To determine how well the relevant physics of the sur-
face relaxation can be captured with such a simple jellium

FIG. 3. (a) Calculated φ, (b) VDR , and φI − φLK
I [the inset of

(b)] for 21 metallic or gapped systems. The horizontal axis (actual)
indicates the values obtained from fully atomistic DFT calculations.
The vertical axis shows results of our φI J model (blue shaded). The
results from Lang and Kohn’s approach [19] for metals (light-green
open) and nonmetals (dark-green open) are included as a reference.
Most materials are considered with more than one surface orienta-
tions (n̂), thus, the data points are more than 21.

approximation in the effective potential outlined above, we
perform calculations on a series of 21 materials including
face-centered-cubic structure elemental metals (Li, Na, K,
Be, Mg, Ca, Al, and Ga), diamond/zinc-blende structure
semiconductors (Si, BN, BeO, AlP, GaAs, and AlSb) and
rock-salt structure insulators (LiF, LiBr, NaF, NaCl, KCl,
MgO, and CaO). Our real-crystal calculations were performed
using DFT by the VASP package [22] and exchange-correlation
potential of local density approximation [23] with interac-
tions between ion cores and valence electrons described by
the projector augmented-wave (PAW) method [24]. Our jel-
lium calculations were carried out by the GPAW package
[25]. We used the optimized lattice structures from the Ma-
terial Project Database [26] and fixed atomic positions for
all the calculations. To simplify the discussion, we con-
sider in this paper only the nonpolar surfaces for binary
materials.

The results are summarized in Fig. 3 with comparison
to the fully atomistic calculations. Here the horizontal axis
corresponds to fully atomistic DFT calculation of the crystal
(actual), whereas the vertical axis shows the values calculated
from our φI J model as well as LK’s approach [19] (model).
In Fig. 3(a) it can be seen that the φI J model largely follows
the diagonal line (corresponding to model φ = actual φ) with
some spread. The largest deviations are found for semicon-
ductors in which the deviation can exceed 1 eV in the case of
the (100) and (110) surfaces of Si and BN, respectively. For
reference, the results from LK’s approach [19] are shown by
the open symbols. Although both methods work equally well
for metallic systems as φ becomes larger, LK’s approach [19]
predicts instead an almost constant φ of nearly 4 eV. Note
that larger φ is also associated with the system developing
an increasing band gap. As the gap becomes very large, φI

becomes critically important and the contribution of VDR can
be understood as secondary response to φI .

In Fig. 3(b) we directly compare this electron spill out
within the φI J model and LK’s approach [19]. Although
both using jellium to calculate the electron spill out and
the corresponding surface dipole which develops, the φI J
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model corrects the value of φI within the jellium calcu-
lation so that the Fermi-level position relative to vacuum
is well represented before considering the charge spill out.
Here it can be seen that whereas the φI J model largely
reproduces the actual VDR across the range of metals,
semiconductors, and insulators, LK’s approach [19] for non-
metals (dark-green open circles) generally leads to substantial
overestimation.

In order to understand the general agreement of the two ap-
proaches for the case of metals, we examine the difference of
φI in the two approaches, �φI = φI − φLK

I , shown as an inset
in Fig. 3(b) [note that φLK

I = −EF as depicted in Fig. 2(a)].
From the inset, �φI becomes large in gapped systems con-
firming the significant underestimation of φI in LK’s approach
[19], which explains why it fails for semiconductors and insu-
lators. In contrast, �φI is much smaller for metallic systems,
thus, both approaches can work equally well in this range. The
influence of ignoring φI is much weaker in metallic systems so
the relaxation dipole dominates, however, in semiconductors
and insulators both φI and VDR are non-negligible.

These results highlight the essential role of the ideal vac-
uum level in the understanding of the work function. Ideal
vacuum level dictates how a periodic bulk lines up to actual
vacuum and is a direct reflection of charge inhomogene-
ity under broken continuous translational symmetry, which
manifests more intensely in semiconducting and insulating
materials with highly localized bonds. Although all the direct
structural information is removed in our jellium calculation,
this effect of inhomegenity is preserved by adequately ac-
counting for φI . Hence, the work function of both metals and
nonmetals can be understood on the same footing.

Despite the success of the above description, we stress that
φI and the associated VDR are highly dependent on the ori-
entation of the terminating surface. Although the orientation
dependence of φI and VDR largely cancel for the work-function
φ, within the φI J model, consistent with the experimental
observation (which typically exhibits direction dependence
of less than 1 eV [27]). The origin of this large deviation
in φI can be traced back to our choice of a simple planar
truncation of the surface. Depending on the orientation of the
surface, such a cut can easily cut very close to the core of the
atoms. Physically, we know that the charges should maintain
both the translational symmetry (which has been preserved
in our procedure) and rotational symmetry (or point group)
of the crystal (which is violated by a planar cut). As such, a
large part of the calculated surface relaxation is to restore the
approximate rotational symmetry of bulk charge rather than
relaxing with respect to the vacuum.

The use of a planar cut maintains Videal = Vvac, but this is
not a requirement for the presented φI J theory. In fact, it may
be beneficial to perform a surface charge termination which
more closely resembles the expected charge relaxation such
that a sizable portion of the surface relaxation is incorpo-
rated in the bulk contribution to the work function, φ′

I . In
such a configuration, the periodic cell representing the bulk
charge density has a shape distinct from the parallelepiped
associated with the Bravis vectors. One such construction is
the charge-neutral polyhedron (CNP) [28], which preserves
both the translational and the rotational symmetry of the bulk
crystal. In particular, a CNP is defined by partitioning the

FIG. 4. (a) Comparison of φI calculated using CNP cut (circles)
and planar cut in different directions (triangles). The materials are
ordered by ascending actual φ. (b) The same as Fig. 3(a), but the
results of the φI J model (red shaded) are calculated using φI obtained
from the CNP cut. The result of Lang and Kohn’s approach [19]
(light-/dark-green open) is same as that in Fig. 3(a).

charge density into atom-centered charge-neutral polyhedra
in a way similar to the determination of the Wigner-Seitz
cell. One cuts real space with planes perpendicular to bonds
between the target atom and all its neighbors with the distance
to the plane determined such that the total charge enclosed in
the smallest polyhedron vanishes for each atomic specie. For
commonly studied elemental or binary materials, the CNP cell
can be uniquely defined.

An interesting quality of the CNP partitioning for the ma-
terials studied here is that the innate work function φCNP

I is
completely independent of surface orientation. Comparison
of φI using the planar and CNP cut are shown in Fig. 4(a).
Furthermore, φCNP

I is consistently larger than φ
planar
I because

it is associated with a smaller relaxation dipole as it avoids
cutting the charge density near the core region. Note that
among the planar-cut directions, the (111) direction, which
bisects nearest-neighbor bonds, yield results most similar to
the CNP method. Despite the substantial differences in the
cutting methods, they yield quite similar results for the work
function when used in the φI J model as shown in Figs. 3(a)
and 4(b). Although there appears to be a mild systematic over
estimation of φ using the CNP cut, the results of nonmetals
have been clearly improved. As φCNP

I is orientation indepen-
dent, this cut naturally yields an orientation-independent φ,
which, whereas only approximately true in experiment, is
foundational in the chemical understanding of redox reactions
and hints that the construction may have a deeper physical
significance.

IV. CONCLUSIONS

To summarize, we have presented the φI J model of the
work function, where φI is the bulk contribution to the work
function, determined from the electrostatic quadrupole of the
bulk solid. This φI gives rise to a step potential at the surface.
By including this discontinuity, we determine the additional
surface contribution to the work function by a jellium model
in which the atomistic details of the solid are replaced by the
average density of bulk. This provides a unified understanding
of the work function and its validity is shown over a wide
range of metals, semiconductors, and insulators. These results
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indicate that when the bulk contributions are adequately in-
cluded, surface electronic relaxation can be well described by
a simple model. As the work function is an extreme example
of a material interface, this suggests that the interfacial dipoles
can also be understood simply by bulk properties. This has
large implications, especially in device physics where the
interfacial properties are of paramount importance in deter-
mining device function.
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