PHYSICAL REVIEW MATERIALS 7, 014404 (2023)

Orbital correlations in ultrathin films of late transition metals
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We develop a two-orbital Hubbard model of electron correlations in ultrathin (111)-oriented fcc films of
late transition metals such as Co and Ni. Our model indicates that the Mott-Hund’s interaction results in
ferromagnetic nearest-neighbor orbital correlations. Frustration associated with the mismatch between orbital
and crystal symmetries prevents orbital ordering, resulting in the orbital liquid state. This state can be manifested
in phenomena involving spin-orbit coupling, such as magnetic anisotropy.
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I. INTRODUCTION

Magnetism and superconductivity are among the most fas-
cinating collective phenomena in condensed matter physics.
These phenomena stem from electron correlations that pro-
vide a mechanism for electrons to lower their kinetic and
Coulomb interaction energies while satisfying the Pauli ex-
clusion principle [1]. Despite this fundamental connection,
the two phenomena are usually approached from very differ-
ent perspectives. Superconductivity is understood in terms of
pairwise electron correlations (Cooper pairs) that cannot be
described in single-particle terms [2,3].

In contrast, magnetism is commonly analyzed in single-
particle terms. For instance, in the Stoner-Weiss model,
ferromagnetic (FM) ordering arises because electrons with the
same spin avoid each other due to the Pauli principle, reducing
their Coulomb interaction energy [4,5]. Fundamentally, this
is a many-particle effect. Nevertheless, it can be captured in
the single-particle mean-field approximation as an effective
exchange field [6]. It is notable that the local density approxi-
mation of the ab initio theory, which includes this effect as the
single-particle exchange-correlation energy, generally needs
to be amended with additional correlation terms to adequately
describe FM systems [7], indicating that correlations not re-
ducible to single-particle energies may play an important role
in magnetism.

A prominent example of a model of magnetism based
on such correlations is the Mott theory of antiferromagnetic
(AFM) ordering in a single half-filled band [8]. The kinetic
energy of two electrons on neighboring sites is minimized
if their spins are AFM-correlated so that the Pauli princi-
ple allows hopping onto the neighboring site, stabilizing an
AFM-ordered insulating ground state at sufficiently large in-
teraction, Fig. 1(a).

The Kugel-Khomskii model is a conceptually similar
theory of ferromagnetism in cubic magnetic insulators charac-
terized by two degenerate orbitals populated with one electron
per site [9]. Same-orbital hopping of an electron to the
neighboring site occupied by another electron results in the
lowest Mott-Hund’s on-site energy if electrons are on different
orbitals and have the same spin, stabilizing FM spin ordering
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and AFM orbital ordering [Fig. 1(b)]. Despite its success in
describing cubic FM insulators, a similar model for common
transition metal ferromagnets has not yet emerged.

In this work, we utilize the Hubbard model to analyze
correlations in (111)-oriented ultrathin fcc films of late tran-
sition metals such as Co and Ni. Our choice of this system is
motivated by the relatively simple electronic structure charac-
terized by the d-level population of about one hole per site,
enhanced correlation effects due to hopping suppression in
thin films, and practical relevance for magnetic memory and
sensor applications [10].

Our main finding is illustrated in Fig. 1(c). Opposite-orbital
hopping is dominant, resulting in FM orbital coupling be-
tween neighboring sites. Virtual hopping stabilizes an orbital
singlet state—a superposition of FM-coupled orbital states of
neighboring sites characterized by vanishing orbital angular
momentum on each site. In contrast to the Kugel-Khomskii
model, orbital ordering is prevented by orbital frustration due
to the mismatch between orbital and crystal symmetries. The
resulting state can be described as an orbital liquid [11].

We also show that spin-orbit coupling (SOC) breaks the
symmetry between the orbital singlet components, resulting in
a finite orbital moment that facilitates perpendicular magnetic
anisotropy (PMA). This finding sheds light on the enhanced
PMA commonly observed in ultrathin magnetic films [12,13]
and suggests an approach to efficient control of PMA in mag-
netic nanodevices via electron correlations.

The paper is organized as follows. In the next section, we
introduce our model. In Sec. III, we show that the two-site
approximation is equivalent to the Kugel-Khomskii model,
aside from an inconsequential hopping asymmetry. In Sec. IV,
we utilize a three-site model to elucidate orbital frustration
associated with the mismatch between orbital and lattice sym-
metries, which prevents orbital ordering in this system. In
Sec. V, we extrapolate our analysis to an extended system.
In Sec. VI, we show that orbital correlations can be mani-
fested in phenomena involving SOC, focusing on magnetic
anisotropy as a specific example. Finally, in Sec. VII we
summarize our results and discuss their broader implications
for other magnetic systems expected to exhibit similar orbital
frustration.

©2023 American Physical Society
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FIG. 1. (a) Mott mechanism of AFM spin ordering in single-
orbital systems. (b) Kugel-Khomskii mechanism of FM spin ordering
in two-orbital systems dominated by same-orbital hopping. (c) Or-
bital correlations in FM spin-ordered state of ultrathin late transition
metal films identified in our model. The double-headed dashed ar-
rows show virtual hopping.

II. MODEL

The magnetic and electronic properties of transition metals
are dominated by the states derived from the 4s and 3d atomic
orbitals. Strong hybridization between 4s orbitals produces a
broad (=10 eV) 4s band [6]. In contrast, the 3d band is signif-
icantly narrower and is formed by five subbands derived from
the corresponding atomic 3d orbitals. Ferromagnetism me-
diated in transition metal ferromagnets by the hybridization
of d orbitals is a consequence of direct exchange interaction
between d electrons, as opposed, e.g., to indirect exchange
between localized f electrons in rare-earth ferromagnets me-
diated by the conduction electrons [14]. This interaction is
commonly appr0x1mated by the Heisenberg exchange Hamil-
tonian H = —J Z (i.J) S S describing coupling between spins

8., 8; ; of d electrons quasilocalized on the neighboring lattice
sites. Since 4s states do not play a significant role in magnetic
ordering, we neglect them in our analysis focused on the
mechanisms of magnetism.

To identify the orbitals that dominate valence states in
ultrathin (111)-oriented fcc films, we consider the d-level
splitting by the effective crystal field [15]. In bulk transition
metals with cubic symmetry, the crystal field splits the fivefold
degenerate atomic d level into threefold orbitally degenerate
I, orbitals and twofold degenerate e, orbitals (Fig. 2, left) [6].
In (111)-oriented ultrathin fcc films of Ni or Co with a thick-
ness comparable to the lattice constant, bonding is dominated
by the six nearest in-plane neighbors on the triangular lattice.

FIG. 2. Splitting of atomic d levels by the cubic crystal-field
symmetry of a three-dimensional fcc crystal (left) and the Cs symme-
try of the two-dimensional triangular lattice (right). The vertical scale
does not represent level energies, which are separately discussed in
the text.

In the two-dimensional approximation, the sixfold rotational
symmetry of the crystal field splits the d levels of an atom
into an orbitally nondegenerate level, d3,»_, and two doubly
orbitally degenerate levels formed by the orbitals d,., d;, and
d>_y2, dyy, respectively (Fig. 2, right) [16].

The hole representation provides a simple way to identify
the orbitals that dominate valence states. In Ni, about half
an electron per site resides in the 4s shell, leaving about
half a hole in the d band [6]. In Co, there are about 1.5
holes per site in the d band. Thus, only the bonding states
derived from the most strongly hybridized 3d orbitals are
occupied with holes. The strongest hybridization is expected
for the d,>_,» and d,, orbitals characterized by the largest
in-plane extent. We have confirmed this qualitative conclusion
by analyzing the hybridization using the Koster-Slater param-
eters corresponding to the interatomic spacing of Co and Ni
[17].

We describe the system by the Hubbard-Kanamori Hamil-
tonian in the hole representation,
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where the summation is over all the dummy indices, cﬁa s

creates a hole with spin s = 41/2 =%, ] and pseudospin
o = %1 enumerating the orbitals d\>_y», d,, at the position

7i normalized by the lattice constant, [ is a unit vector in the
direction of one of the six nearest neighbors, and ;s =
é;gyséﬁ,a,s. Note that 7i is generally not an integer vector for
the triangular lattice.

The first term in Eq. (1) accounts for the intra- and
interorbital nearest neighbor hopping described by the ma-

trix elements 77 AT The next three terms describe on-site

Coulomb interactions between holes with opposite spins in
the same orbital, opposite spins in different orbitals, and the
same spin in different orbitals, respectively, with the coeffi-
cients U > U’ > U” > 0 accounting for the atomic Hund’s
rules.

The two terms with coefficients J and J., commonly
referred to as the Kanamori’s spin-flip and pair-hopping
terms, are required by the symmetry of the Hamiltonian. The
last term accounts for SOC, which controls the magnetic
anisotropy essential for the magnetic devices based on thin
films with PMA [18]. Since the magnitude of SOC is at least
an order of magnitude smaller than the dominant hopping and
interaction energies, it is neglected in the next two sections fo-
cused on magnetic ordering and is separately discussed in
Sec. VL.
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The symmetry-constrained relations among the parameters
U,U,U",J,andJ.inEq. (1) are U = Uy + Jo/2,U" = Uy —
Jo/2, U" =Uy —Jo, J =J. =Jyp/2 in the orbital basis of
cubic harmonics, and U = U’ = Uy, U" = Uy — Jy, J = Jy,
J. = 0 in the basis of spherical harmonics diy = (dy>_y2 £
idxy)/ﬁ. We use the values Uy = 3.64 eV, Jy =0.77 eV
based on extensive prior Hubbard modeling of transition metal
compounds [19,20]. We do not include Zeeman energy pro-
duced by the magnetic field, whose main role away from the
critical points is to control the direction of magnetization.

III. TWO-SITE MODEL

In this section, we consider a two-site approximation, and
show that in the cubic harmonic basis the nearest-neighbor
orbital correlations are essentially the same as in the Kugel-
Khomskii model. In the subsequent sections, we show that the
form of correlations becomes different in the spherical har-
monic basis, which is more practical for analyzing extended
systems and SOC. We choose the x axis along the direction
between the two sites, the y axis in-plane perpendicular to
it, and the z axis normal to the plane. Intraorbital hopping
between sites is described by the matrix elements #,_,» and
tyy. Interorbital hopping vanishes because the orbital d>_y» is
symmetric with respect to the inversion of the y axis, while
the orbital d,, is antisymmetric. Using the Koster-Slater pa-
rameters, and accounting for the fact that the signs of hopping
amplitudes in the hole representation are opposite to those
in the electron representation, we calculate #,2_,» = 0.32 €V,
tyy = —0.27¢eVforNi,andz._» =0.39¢eV,1,, = —0.33¢eV
for Co with a precision of about 0.01 eV [17]. The only
distinction between this system and the system considered in
the Kugel-Khomskii model is a small difference between the
amplitudes of hopping on the two orbitals.

To analyze correlations, we consider the system populated
with two holes. In the limit of negligible interaction, the
two-particle ground state is the single-particle ground state
populated with two opposite-spin holes. At finite interac-
tion, this state evolves into a singlet whose energy calculated
approximately by neglecting the last two interaction terms

in Eq. (1) is E;” =U/2— J(U/2)> +4t%_,. The effects

of these interaction terms calculated perturbatlvely result
in energy correction AE :JOESZ)/ (4E(§2) —2Up), in good
agreement with exact numeric diagonalization, Fig. 3.

We now show that at sufficiently large interaction the
ground state is a spin triplet. The qualitative picture is the
same as in the Kugel-Khomskii model. In the regime domi-
nated by interactions, one can treat hopping as a perturbation
on the manifold of degenerate ground states of the interaction
Hamiltonian with one hole per site. The second-order correc-
tion to the energy of this state due to hopping is minimized
if the Mott-Hund’s interaction energy of two on-site holes
produced by virtual hopping is minimized; i.e., they have the
same spin and are on the opposite orbitals. Thus, the spins of
the holes on the two sites are FM coupled and their orbitals
are AFM coupled, consistent with Fig. 1(b).

This picture is confirmed by the exact diagonalization of
the Hamiltonian. For simplicity, we consider only two com-
ponents of spin triplet with spin normal to the film, whose
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FIG. 3. State energies vs U for the two-site model, with Jy =
0.21U,. FM (spin triplet; red dashed line) and nonmagnetic (spin
singlet; black dots) state energies calculated analytically as described
in the text; solid green curve: result of exact numeric diagonalization
for the singlet. Dashed vertical line marks the value of the Mott
energy used in our model. The calculations are based on the hopping
parameters of Ni.

wave functions labeled by the spin direction s are
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trigonometric  parametrization 6, =
tan~ ' [—E, [(ta_y —ty,)] of the amplitudes to simplify
normalization. For the hopping parameters of Ni,
E, =—-0.2 eV, 6, =14° and this state is dominated by
the first term. Thus, the holes are almost localized, consistent
with the qualitative analysis above.

Stoner vs Heisenberg magnetism. We now discuss the con-
tribution of interaction-induced correlations between holes to
FM ordering in the considered two-site model. At sufficiently
small interaction, the FM (spin triplet) state is approximated
as a product of single-particle states with the same spins,
which can be viewed as the two-site limit of Stoner (single-
particle band) magnetism. In this regime, the energies of both
the singlet and the triplet linearly vary with U (see Fig. 3, U <
1 eV). The smaller slope for the FM state is a consequence
of the Pauli principle, which allows same-spin particles to
avoid each other and lower their interaction energy relative to
the spin singlet state. However, the dependence significantly
deviates from linear at the experimentally relevant values of
U, suggesting that the Stoner approximation is not adequate
for this system.

Instead, in the experimentally relevant regime at U = U,
the first two components in Eq. (2), which describe two
holes localized on different sites, dominate the FM wave
function, which places this system in the strongly correlated
limit [8,21]. This regime can be described as the Hund’s-
Heisenberg magnetism, in which FM coupling between spins
of quasilocalized particles is associated with the on-site
Hund’s interaction mediated by virtual hopping. We note that

6 NS 2x2 —y2,5 C2x)_;)i||0> (2)

with  energy
Here, we use
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(a) 3 ’ (b)

FIG. 4. Three-site model. (a) Cubic harmonic basis. Orbital
d_,» is shown on sites 1 and 2, and orbital d,, is shown on site 3.
(b) Rotated spherical harmonic basis. Solid lines show the directions
along which the basis harmonics defined in the text are real and
positive.

the spin dependence of Hund’s interaction itself is associated
with the same Pauli exclusion principle that underlies Stoner
magnetism. The difference is that in the Hund’s-Heisenberg
mechanism, the spin dependence of many-electron energy
is governed by the interaction-induced electron correlations
neglected in the Stoner mechanism.

IV. THREE-SITE MODEL OF FM STATE

In this section, we show that the similarity to the
Kugel-Khomskii model does not extend beyond the two-site
approximation, due to the orbital frustration associated with
the mismatch between orbital and lattice symmetries. For the
square lattice, the matrix elements #,2_2, #,, would describe
orbitally selective hopping between a given site and all four of
its nearest neighbors, due to the matching symmetries of the
lattice and the d orbitals. This would allow for a straightfor-
ward extension of the two-site model to an extended system,
leading to orbital ordering as in the Kugel-Khomskii model
[9]. However, the fcc lattice of bulk late transition metals or
the triangular lattice of (111)-oriented ultrathin films does not
permit such an extension. The three-site model discussed in
this section illustrates the resulting orbital frustration effects,
providing a step toward the model of the extended system
discussed in the next section.

We position sites 1 and 2 on the x axis, the same way as
in the two-site model, and site 3 on the y axis [Fig. 4(a)].
In this configuration, the orbitally selective matrix elements
ty_y, Ly introduced in the two-site model describe hopping
between sites 1 and 2, but not between one of these two
sites and site 3. For instance, the lobes of the d,, orbital on
site 3 almost face the lobes of the orbitals d,>_,» on sites 1
and 3, resulting in finite interorbital hopping characterized by
direction- and site-dependent matrix elements. This difficulty
has been discussed in the context of the compass models of
anisotropic spin coupling [22].

To simplify the problem, we transform to the orbital basis
that reflects the symmetry of the three-site model. For site 3,
we introduce the spherical harmonics in the usual Condon-
Shortley phase convention, d,, = (dy>_y» idxy)/ﬁ. Here,
m = %2 denotes the projection of the atomic orbital moment
onto the film normal. Hereinafter, we label these orbitals

by the pseudospin ¢ = m/2. For sites 1 and 2, we uti-
lize the same orbitals rotated by the angle 27 /3 clockwise
and counterclockwise, respectively [Fig. 4(b)]. In this ba-
sis, opposite-orbital hopping is described by a single real
matrix element ¢, _ for all pairs of sites. Counterclockwise
same-orbital hopping on the orbital d,, is characterized
by the amplitude e=2"/3t,,, where t,, is real. Clockwise
hopping on this orbital is characterized by the hopping am-
plitude e**/3¢, .. The latter is a complex conjugate of the
counterclockwise hopping amplitude, as expected for the
time-reversed process in a Hermitian system. Since the orbital
d_, is a complex conjugate of the orbital d,,, the corre-
sponding hopping amplitudes are also related by complex
conjugation. Using the Koster-Slater parameters and account-
ing for the fact that the sign of the hole hopping amplitudes
is opposite to that for electrons, we obtain 7, = 0.29 eV,
t;+ =0.03eVforNi,andz,_ =0.36¢eV, 7, =0.03eV for
Co, with a precision of about 0.01 eV.

Single-particle states. The single-particle approximation is
a useful starting point for the analysis of the many-particle
state. According to group theory [23], the stationary states
transform under one of the three cyclic representations of
the threefold rotational symmetry of the three-site model;
i.e., they are multiplied by the factor e=2"!/3 upon site index
cyclingl - 2 — 3 — 1, with/ = +£1, 0. The single-particle
ground state is invariant under index cycling (I = 0),

1 .
Yos =z > o, ), 3)

with energy Eg = —2¢,_ + 14 4.
The lowest-energy chiral single-particle states are

sin 6, rin/3 At cos 6 rin/3 At
w P — e 7Tm/ 6.” S+_ e 7Tm/ 6‘;173'0)
= T TR T
“

and

cos 0, —omin/3 At sin 6, —omin/3 At
lﬁf, — e mwin/ ¢ 4 e mwin/ A |O>
s \/§ %: n,+,s \/§ ; n,—,s
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characterized by [ =1 and —1, respectively. Here, 6, =
tan~'(1 4+ 2¢,, /t;_) ~ 50°. These states can be interpreted
as Bloch waves propagating clockwise and counterclockwise,
respectively, around a closed three-site chain. They are related
to each other by time reversal, and have the same energy £y =
—ty_ —t44, where we neglect a correction of order ti iy} T
All the single-particle states are also spin-degenerate.

Many-particle state. We expect that many-particle states
characterized by populations of 0, 1, and 2 holes per site are
relevant to late transition metals due to quantum charge fluc-
tuations. For three sites, the corresponding total populations
vary from O to 6, with very small amplitudes for large de-
viations from the average populations dictated by the atomic
structure.

For Ni, the average d-shell population is somewhat smaller
than one hole per site. Thus, the amplitudes of states with one
and two holes on three sites are large. However, we do not
expect such states to significantly contribute to correlations
because hole hopping to the neighboring empty site does not
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affect interaction energy. Correlations relevant to Ni are ex-
pected to stem from the many-hole wave function component
with one hole per site. This component also has a substantial
amplitude in Co populated with somewhat more than one d
hole per site, and is considered throughout the rest of this
work.

Larger hole populations are also expected to contribute to
the correlations identified in our work, as outlined in our sum-
mary (Sec. VII). Quantum charge fluctuations reduce these
correlations but are not expected to completely suppress them,
as suggested by the persistence of Mott correlations in the
metallic state of doped Mott insulators [24—26]. In this work,
we focus on identifying the essential form of correlations as-
sociated with magnetism, and leave detailed analysis of these
effects for future studies.

We consider for simplicity only the FM state with spin
polarization normal to the film plane, so the spins of all three
holes are either up or down. In the limit of negligible interac-
tion, this state is reduced to the product of three lowest-energy
single-particle states Eqgs. (3)—(5) with the same spin. To the
lowest order in interaction, its energy is E3 = —4ty_ — 4, +
2U"/3, where we use the approximation sin6; = cos6;, =
1/+/2 for the angle that parametrizes the single-particle states.

We now analyze the interaction-dominated regime us-
ing the virtual hopping approximation. The product of three
lowest-energy single-particle states Eqgs. (3)—(5) is symmetric
with respect to site index cycling, and antisymmetric with
respect to orbital reversal. These symmetries are expected
to be independent of the interaction magnitude. The wave
function of the state with these symmetries on the subspace
of single-occupancy states is

c0593 O
= 2 :UclasCZGsc3as

sm@ R
SZ n2asn IUSCIL—O'AK)) (6)

where we use cyclic notations for the site index, i.e.,n — 1 =
3 for n = 1, and trigonometric parametrization of amplitudes
to simplify normalization. Neglecting same-orbital hopping,
degenerate second-order perturbation theory gives 63 = 30°
and E; = —8t42__/U”.

These analytical approximations are in good agreement
with exact numeric diagonalization in the respective limiting
regimes, as illustrated in Fig. 5. We note that at U = U,
the virtual hopping approximation provides a much better
agreement with the exact energy than the small-U approxima-
tion, placing the considered system in the strongly correlated
regime.

Two-particle correlations. We now interpret the three-
particle FM state in terms of two-particle correlations. The
wave function Eq. (6) with 6; = 30° can be written as

T
s = ot n—2,0,s Cn— ,0,8 na s|0> (7)
‘ﬁS 2[ Z 2, 1

I'LO'U

Consider the component of this state with n = 3,

wB s = %( 1+, sC; +.5 611-,—,56;,—.5)(63 +.5 + C3 - s)|0>’ (8)

0

FM state energy (eV)

U (eV)

FIG. 5. Energy of the FM-ordered state vs U for three holes on
three sites, with Jy = 0.21U,. Dots: Independent-particle approxi-
mation; dashed curves: virtual hopping approximation; solid curve:
results of exact numeric diagonalization. The hopping parameters of
Ni are used in the calculations.

normalized here to unity so that it can be viewed as a separate
wave function. This state is a product of the state d,, on site 3
and an orbitally FM-correlated singlet state on sites 1 and 2,

wlz,x:f(cmcz“—e; & _000), ©)

consistent with the two-particle correlations illustrated in
Fig. 1(c). Similarly, the components ¥ ; and v that cor-
respond to n = 1 and n = 2 in Eq. (7) descrlbe pairwise FM
orbital correlations between sites 2 and 3, and sites 1 and 3,
respectively.

To relate these results to the two-site model of Sec. III, we
first note that the operators in Eq. (9) are defined in the basis
of orbitals rotated by £60° relative to the standard Condon-
Shortley convention. The rotation directions are opposite for
sites 1 and 2, so these rotations do not affect the operator prod-
ucts in Eq. (9). Using the relation d1» = (d,2_2 L id,y)/ V2,
Eq. (9) is then reduced to the first two terms in Eq. (2).
Thus, two-particle intersite orbital correlations in the three-
site model are the same as in the two-site model. They can
be described as AFM-like in cubic harmonics, and FM-like
in the spherical harmonic basis. The latter is more physical
since it directly relates to the orbital angular momentum and
the effects of SOC discussed in Sec. VI.

We note that orbital correlations are distinct from orbital
ordering. The latter is associated with unquenched orbital mo-
ments. However, orbital moments vanish in the state Eq. (7)
despite nonvanishing orbital correlations. Orbital quenching
in late transition metal ferromagnets is commonly attributed
to the lifting of the d-level degeneracy by the effective crys-
tal field [6]. Our results show that orbital quenching can
also occur in multiorbital systems with orbitally unquenched
single-particle states, due to the stabilization of the orbital
singlet state by the orbital selectivity of hopping.

V. EXTENDED SYSTEM

In this section, we extend the few-site models of correla-
tions developed in the last two sections to an extended system.
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We note that the hexagonal symmetry of the triangular lattice
does not quench the moments of the single-particle di, or-
bitals that dominate the valence states (see Fig. 2), so orbital
correlations are allowed by the crystal symmetry.

Virtual hopping approximation. For realistic hopping and
interaction parameters, both two- and three-site model sys-
tems discussed above are well described by the virtual
hopping approximation. For an extended system, this implies
either an insulating or a “Hund’s metal” state characterized by
anomalous transport inconsistent with the properties of tran-
sition metals [27]. However, as discussed in Sec. II, electronic
transport in late transition metal ferromagnets is dominated
by the delocalized 4s electrons, without significant anomalous
contributions from the quasilocalized 3d electrons.

The appropriateness of the quasilocalized approximation
for 3d electrons is implied by the Heisenberg exchange
model commonly used to describe magnetism in late tran-
sition metals [6]. The AFM Heisenberg Hamiltonian has
been rigorously derived for single-band Mott insulators as
the second-order virtual hopping correction to the energy
of quasilocalized particles [28]. In the context of ferromag-
netism, this possibility has been demonstrated only in the
Kugel-Khomskii model [9], which is based on the virtual
hopping approximation for insulating ferromagnets. Based on
these observations, we conclude that virtual hopping likely
provides an adequate lowest-order (i.e., second-order in hop-
ping) approximation for the correlations of 3d electrons in
extended films.

Orbital frustration. As was shown in the previous sec-
tion, the FM-ordered state of three sites is a superposition
of products of an orbital singlet of two sites and a quenched
orbital state of the third site. The mechanism of quenching
is similar to the frustration of three AFM-coupled Ising spins
[29]. For the latter system, only two of the three spins can be
AFM-correlated, while the third one becomes frustrated. For
the three-site model considered in this work, virtual opposite-
orbital hopping of a hole onto the neighboring site occupied
by another hole with the same spin is possible if the orbitals
of the two holes are FM-correlated in the basis of spherical
harmonics whose phase is defined with respect to the direction
between two sites. However, the phases of the dy, orbitals
are rotated by £120° in the direction of the third site, turn-
ing constructive opposite-orbital interference (hybridization)
into destructive and frustrating FM orbital correlations among
three sites.

For AFM-coupled spins, frustration on the triangular lattice
results in the spin liquid state characterized by singlet nearest-
neighbor correlations [22,29]. Similarly, orbital frustration
identified in our model is expected to result in the orbital
liquid state of an extended system, which is characterized by
the nearest-neighbor two-particle singlet orbital correlations
described by Eq. (9), but does not exhibit orbital ordering
[11].

Basis orbitals and Hamiltonian. Virtual hopping involves
hopping of a hole from site 7 onto the neighboring site 7 + I,
and hopping back of the same hole or the hole initially located
on that site. For the states projected on the subspace with a
single hole per site, this process involves only two neighboring
sites, allowing one to introduce site-specific basis orbitals to
simplify the analysis of virtual hopping [22].

We align the x axis of the local coordinate system with the
direction [ between two neighboring sites. In the spherical
harmonic basis, opposite-orbital hopping amplitude is #_,
while same-orbital hopping amplitude is 7,,. We use the
virtual hopping approximation—the second-order degenerate
perturbation theory on the subspace of states with a single
hole per site—to determine the effective second-order hop-
ping Hamiltonian

J
52 _ U1 Z A AT A oA
== 2 TG Cir0,5 410,507 5 C0 s
ﬁ,lﬂ,a,a’,x,x’
S
Y E 6T AT 7 Caiy Ciion,s
2 71,04,8 " jit],0q,—s H+l,00,—s 01

ii,ls, |01 +or 40304 |=1

_h Y dsslel e &G
2 L

i,l,o,0',s,s

_ A At A AL
E cﬁ’g’scﬂi’g,’ﬂcﬁH,_U,.SC,,,_[,,_S , (10)

il,o0'.s

where we have neglected corrections of the order ti " /ti_ <

0.01. The summation is over all /i and [ so each second-
order hopping process is counted twice, J; = 2t3_/U", J, =
Lt QU —J?)/(U? = UJ?), J3 =2:2_U/(U? — J?). The
operators Cj , annihilate a hole on the corresponding site in
the orbital state o defined in the local two-site basis.

To gain insight into the correlations described by this
Hamiltonian, we first consider the subspace of spin-ordered
states with spin normal to the film plane. The first term in
Eq. (10) is the only nonvanishing term on this subspace.
The components of this term with ¢’ = o describe Ising FM
orbital coupling. The components with ¢’ = —o flip two FM-
coupled orbitals of the neighboring sites, which do not have
a spin analog because of spin conservation. For orbitals, this
is possible because hopping does not conserve orbital angular
momentum with respect to a given site.

The two-orbital flip term prevents orbital ferromagnetism.
The ground state of the Hamiltonian Eq. (10) for two sites
is an FM-correlated orbital singlet described by Eq. (9) and
illustrated in Fig. 1(c). Since orbital moments on both sites are
quenched, such correlations do not prevent pairwise singlet
correlations with other sites, allowing the description of the
entire extended system in terms of two-site correlations. This
state can be interpreted as an orbital version of the resonating
valence bond state, or equivalently as an orbital liquid [11].

Energy of orbital correlations. To gain further insight into
the correlations described by Eq. (10), we first assume a state
with completely disordered site spins and orbital moments.
A pair of neighboring sites 7, 7 + 1 can then be described
by a 16 x 16 density matrix which accounts for two possible
orbital and spin directions on each site, and in the completely
disordered state is simply proportional to the unity matrix,

. 1 L
pﬁ,ﬁ+7=E Z nﬁv"vsnﬁJrl‘,U’,s” (11)

o,0',s,s
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The contribution to energy due to virtual hopping between
these two sites is

E.  -=Tr(p,. H?) =1 ! ! 12
il = (D 5 )= —ti_ E+2U// : (12)

Accounting for the fact that each site has six nearest neigh-
bors, the total energy of the uncorrelated state of an N-site
system is 3NE, ;7.

The FM spin-ordered, orbitally uncorrelated state can be
similarly described by the 4 x 4 density matrix accounting for

two possible orbital states of each site,

. 1 L
pﬁ,ﬁ+7 = Z Z nﬁ~“vsnﬁ+f,a’..¥' (13)

o,0',s

The energy of this state for the N-site system determined as
in Eq. (12) is —3Nt2_/U". It is easy to see that this energy
is higher than that of the completely disordered state. Spin
ordering without orbital correlations raises energy instead of
lowering it because some of the virtual hopping channels are
eliminated due to the Pauli exclusion principle.

The FM spin-ordered, orbitally correlated state of two
neighboring sites described by the wave function Eq. (9) is an
eigenstate of H® with energy —8tJ2r_ /U". The corresponding
energy of the extended system is —24N t_%_/ U”. Tt is lower
than that of the uncorrelated state by AE o = 3N ti_(lSU —
2U")/2UU". Thus, orbital correlations are necessary for spin
ordering in the considered virtual-hopping approximation.
This approximation underestimates the effects of quantum
fluctuations and deviations from the average population of one
d hole per site, and neglects the effects of hybridization with
4s electrons. Because of these limitations, our model cannot
quantitatively account for the energy of the magnetic system.
Nevertheless, it elucidates the nature of correlations and their
role in magnetic ordering.

VI. EFFECTS OF SOC

Orbital moments are quenched in the orbital liquid state,
making it more challenging to observe this state than orbital
ordering. Nevertheless, orbital correlations may be manifested
in phenomena that involve SOC, such as magnetic anisotropy,
and anomalous and spin Hall effects [30]. In this section, we
show that orbital correlations identified above should result
in a strong dependence of magnetic anisotropy [31] on the
relation between Mott-Hund’s interaction and hopping ampli-
tudes, providing a simple verifiable prediction for our model.

Thin films of late transition metal ferromagnets commonly
exhibit an anomalously large PMA [32], which is particu-
larly important for modern magnetic nanodevices [18] and
is usually interpreted in terms of single-particle orbital hy-
bridization across the interface [12]. Atomistically, magnetic
anisotropy results from SOC-mediated spin coupling to orbital
moments. At the single-particle level, the latter are controlled
by the effective crystal field effects, as illustrated in Fig. 2
for the system considered in this work. On the other hand,
observation of two-ion anisotropy suggests that in some cases,
a single-particle approximation may be inadequate [33]. We
now analyze such many-particle effects using the Hubbard
Hamiltonian Eq. (1) including the SOC term.

_0.06
3 0.08/
50.04/
g
0.04/
go.oz—
3
R
g 04 0]

FIG. 6. (a) Two-site PMA energy of the two-site model vs U
calculated using the hopping parameters of Ni, A =40 meV, and
Jo = 0.210,. (b) Same as (a) vs t,_, using U” = 2.87 eV. Solid
curve: numerical solution; dotted curve: analytical approximation
represented by Eq. (16).

The SOC Hamiltonian has a simple form in the basis of
spherical harmonics d, because the latter are not mixed by
the orbital moment operators,

Hsoc =20 ) s O, (14)

i,o,s

with A ~ 40 meV for Ni [34].

We use the two-site model as an approximation for the two-
site correlations in the extended system, as discussed in the
previous section. Including the SOC term in the Hamiltonian,
we obtain the two-site FM ground state wave function for spin
s normal to the film,

Yo = cosO,(singé] _ &5 —cospd] &, )
sin 6;
V2

At ¢ = 7 /4, this wave function reduces to the spin-triplet
state derived in Sec. III in the limit of negligible SOC, with en-
ergy B, = 4 — /(42 4+ 413 _and 6, = tan™ ' (—E, /2t,. ).
The deviations of ¢ from m/4 due to SOC break the
symmetry between the term with two up orbitals and the
term with two down orbitals, the only terms in Eq. (15)
that contribute to SOC energy. To the lowest order in A/t _,
¢ = /4 — 4sL/E,, and the energy is E = E; + Esoc, where

@ -0 as)

E (4 B 16
soc = E( + m) (16)
is the contribution of SOC to the two-particle state energy.
Analysis omitted here for brevity shows that the effect of SOC
on the in-plane spin-polarized state is two orders of magnitude
smaller because the subspace of orbitals di, includes only
orbital moments normal to the film. This small energy is asso-
ciated with the higher-order SOC-induced effects that involve
two-hole spin-orbit correlations. Neglecting this correction,
the energy of the normal-spin triplet components is smaller
than that of the in-plane spin-polarized state by —Esoc, which
describes the two-site PMA energy.

The effect of correlations on magnetic anisotropy is illus-
trated in Fig. 6(a), which shows the dependence of the two-site
anisotropy energy on the on-site interaction for the hopping
parameters of Ni and A =40 meV. The anisotropy energy
increases with increasing U, since a large interaction confines
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the two holes to the respective sites, increasing the amplitudes
of wave function components that contribute to SOC.

Since the on-site Mott-Hund’s interaction is mainly a prop-
erty of the atomic species, a more experimentally relevant
prediction of our model is the increase of magnetic anisotropy
with decreasing hopping parameter 7, _ at fixed interaction
[Fig. 6(b)], which is explained by the same mechanism as
the dependence on U. Experimentally, hopping can be varied
by introducing impurities with electronic level structure mis-
matched with that of late transition metal host, such as B, Si,
or Al [35], which may allow one to judiciously control PMA
in nanodevices based on ultrathin magnetic films.

VII. SUMMARY

In this work, we used the two-orbital Hubbard-Kanamori
model including spin-orbit coupling to analyze correlations in
ultrathin films of late transition metal ferromagnets such as
Ni and Co. Our analysis suggests that the wave function of d
electrons hosting magnetism is not well approximated by the
Slater determinant of single-particle states. Instead, it can be
well described by the virtual hopping approximation, tenta-
tively placing these systems in the strongly correlated regime
in the sense that interactions dominate the many-particle wave
function of d electrons.

Our main result is the prediction that correlations take the
form of the orbital liquid state characterized by ferromagnetic
orbital correlations between neighboring sites, but vanishing
on-site orbital moments in the limit of negligible SOC. We
show that in contrast to Kugel-Khomskii materials, orbital or-
dering is prevented in the considered systems by the mismatch
between orbital and crystal symmetries, resulting in orbital
frustration. Because of orbital moment quenching, the orbital
liquid state is significantly more challenging to observe than
the orbitally ordered state. Nevertheless, it is expected to be
manifested in phenomena involving spin-orbit coupling such
as magnetic anisotropy, spin Hall and anomalous Hall effects
[30], and the Dzyaloshinskii-Moriya interaction [36]. In par-
ticular, we showed that the correlations may contribute to the
commonly observed enhancement of perpendicular magnetic
anisotropy in ultrathin films. The significance of this contribu-
tion can be experimentally tested by suppressing hopping via
doping with impurities such as B, Si, or Al.

Our model focuses on the component of the many-electron
wave function characterized by the d-level population of one
hole per site, whose amplitude is maximized in the CosyNisg
alloy. However, orbital correlations identified in our work are
expected to persist in thin films with larger d-hole popula-
tions. Consider, for instance, a thin-film fcc CosgFeso alloy
that contains about two 3d holes per site. According to
the Hund’s rules, their spins are expected to be aligned, in
agreement with the Slater-Pauling curve [6]. The second

Hund’s rule can be satisfied if the holes occupy, for example,
orbitals d,, and d;; to maximize their total orbital moment.
Their opposite-orbital hopping onto the nearest-neighbor site
is then maximized if the holes on that site occupy states d
and dy .

Following the same arguments as for a single hole per site,
opposite-orbital hopping stabilizes the orbital singlet state of
two sites, while orbital frustration on the fcc lattice stabilizes
an orbital liquid state. The same argument extends to states
with three holes on two sites, with one hole shared between
the sites. It starts to break down for populations exceeding
two holes per site, since the same state dy must be occupied
on both sites, whose energy can be lowered by AFM spin
correlations of the two holes, instead of FM correlation. This
is consistent with the observation that the largest moment
per site achievable in transition metal alloys is about 2.5up
[6], and with antiferromagnetism of Fe monolayers and FeMn
alloys [6,37].

In bulk Co and Ni, each site has six nearest neighbors in
the two (111) planes above and below the plane containing
this site and its six neighbors considered in our work. In the
spherical harmonic basis, same-orbital hopping is dominant
for the out-of-plane neighbors, resulting in AFM two-site
orbital correlations. The picture of orbital correlations then
becomes significantly more complicated than that in ultrathin
films. Nevertheless, since the orbital singlet is characterized
by a vanishing on-site orbital moment, FM in-plane orbital
correlations are compatible with AFM out-of-plane correla-
tions, allowing for an orbital liquid state in the bulk materials.
We leave its detailed analysis for future studies.

Our approach can be extended to other magnetic systems,
such as small clusters of metals [38,39], layered oxides such
as LiVO, and NaTiO, [40,41], and two-dimensional ferro-
magnets such as vanadium and chromium trihalides [42,43].
For the latter, orbital degrees of freedom are believed to be
important, but their specific role remains elusive. In particular,
the magnetic moment of almost exactly 3up per Cr atom is
consistent with the spin alignment of its three d electrons,
without any substantial contribution of orbital moment. The
Cr atoms form a 2D hexagonal lattice whose symmetry pre-
vents orbital ordering, as discussed above for the triangular
lattice. We conclude that d electrons in chromium trihalides
likely form an orbital liquid characterized by singlet orbital
correlations dictated by the Hund’s rules that stabilize long-
range spin ordering and result in negligible orbital moment.
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