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Tellurium is a gyrotropic, p-type Weyl semiconductor with remarkable electronic, optical, and transport
properties. It has been argued that some of these properties might stem from Weyl nodes at crossing points
in the band structure and their nontrivial topological textures. However, Weyl nodes in time-reversal invariant
semiconductors are split up in energy, rather than in momentum, and located deep below (far above) the
top (bottom) of the valence (conduction) band, challenging such an interpretation. Here, instead, we use a
four-band k - p Hamiltonian for p-type tellurium to show how the k-dependent spin-orbit interaction mixes up
the top two (Weyl node free) and bottom two (Weyl-node-containing) valence bands, generating a 3D hedgehog
orbital magnetic texture at the uppermost valence band, already accessible to transport at the lowest doping.
Hedgehog textures are important signatures of Weyl fermion physics, in general, and in the context of condensed
matter physics arise form the carriers’ wave packet rotation being locked to their propagation wave vector.
For spatially dispersive media, such an induced hedgehog texture/carrier rotation stabilizes two nonrecipro-
cal and antisymmetric components to the Hall transport within different weak-localization (antilocalization)
relaxation regimes: the anomalous and planar Hall effects, usually forbidden by time-reversal symmetry. Our
AC magnetotransport measurements on Sn-doped tellurium confirm the theoretical predictions and our paper
demonstrates how Weyl signatures generally appear in transport on enantiomorphic materials with natural optical

activity.
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I. INTRODUCTION

The discovery of topological insulators [1] paved the way
for the emergence of a unique class of remarkable quantum
systems: topological materials (TMs) [2,3]. One of the earliest
manifestations of topology in TMs is the integer quantum
Hall effect [4,5], in which the Hall conductance plays the
role of an adiabatic curvature whose associated topological
invariant corresponds to the number of completely filled bands
[6]. When conduction and valence bands linearly cross at
the Fermi level, one speaks of topological semimetals [7].
Time-reversal symmetry breaking splits up the two bands in
momentum, introducing a chiral shift [8], thus generating two
Weyl nodes that act as source and drain of nonzero Berry cur-
vature. In such Weyl semimetals (WSMs), the chiral anomaly
gives rise to open Fermi surfaces or Fermi arcs connecting the
two Weyl nodes, leading to unique signatures in transport [9]
such as the anomalous Hall effect (AHE), which in WSMs
is purely intrinsic and determined solely by the location of
the linearly dispersing Weyl nodes [10]. Conveniently, the
gauge/gravity duality provides a simple and elegant way to
compute the AHE in bulk topological WSMs because of its
holographic equivalence to a nonzero axial component for the
horizon gauge field at the conformal boundary [11]. The AHE
is universal even for a doped Weyl metal when the Fermi level
occurs slightly away from the nodes [8].

Quite recently, another class of TMs was discovered: Weyl
semiconductors (WSCs) [12]. The unique signatures of Weyl
physics found in enantiomorphic, elemental semiconductor
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tellurium include negative longitudinal magnetoresistence,
planar Hall effect (PHE), and logarithmically periodic
magneto-oscillations [12]. Following the discovery, tellurium
resurrected as a very promising material for both scientific
research and the design of unique technologies [13]. Tel-
lurium can be easily synthesized either as 1D nanowires, with
promising piezoelectric and thermoelectric properties [14],
grown as 2D films, fulfilling all the necessary requirements
to replace Silicon and Si-based semiconductor technology
[15], or as 3D bulk crystals, exhibiting quite remarkable
chiral thermoelectric properties [16] and pressure-induced
metal insulator transition [17,18]. Tellurium also exhibits sev-
eral magnetoelectric effects, including current-induced mag-
netization [19], strong electrical magnetochiral anisotropy,
circular photogalvanic effect, nonlinear (current-induced)
AHE, kinetic Faraday effect, kinetic magnetoelectric effect
[20], and natural optical activity [21], which have all been
interpreted as clear and unique signatures of Weyl physics.
Finally, the chiral-induced spin selectivity in tellurium [22]
builds an important bridge to systems that combine chi-
ral molecules, such as amino acids, sugars, or DNA, and
magnetic moments of charge carriers, therefore engineering
unique approaches to enantioselective chemistry [23].

Of particular relevance to understanding the origins of the
Weyl physics in WSCs is the Hall response. For a magnetic
field, B, at an angle ¢ with an applied current, j, and both
coplanar to the Hall electric field, E, a quadratic, recipro-
cal PHE, Uf;{(B) o B?sin(2¢), is observed for ¢ # 0, 7/2
in tellurium [12]. Although a symmetric PHE is ubiquitous

©2023 American Physical Society
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FIG. 1. (a) Top. and side views of the crystal structure of trigonal
tellurium showing the arrangement of the helices. (b) The Brillouin
zone and the H and H' points. (c) Valence band structure of tellurium
and degeneracy lifting by the spin-orbit interaction.

in WSMs [24], no signatures of an AHE [8] have yet been
reported. The Weyl physics in WSCs must then come from
pairs of nodes split up in energy, not in momentum, that
should also account for any antisymmetric, nonreciprocal,
anomalous or planar Hall responses [25] forj L B (¢ = 7 /2)
and with B at an angle v /2 — 6 with E. However, even though
tellurium is always p doped due to naturally occurring vacan-
cies, such Weyl nodes are deep below the top of the valence
band [12,26], making any contribution to transport negligible.

In this paper, we use a four-band k-p Hamiltonian
[27,28] to demonstrate how the k-dependent spin-orbit in-
teraction (k SOI) induces nonzero Berry curvatures at the
top two topologically trivial valence bands resulting from
their mixing to the bottom two topologically nontrivial and
Weyl-node-containing valence bands. The resulting form of
wave-packet rotation undergone by the carriers [29] generates
a 3D hedgehog orbital texture and contributes to transport.
Using Boltzmann transport equations [30,31] for spatially dis-
persive media [32] and j || Z L B [JE || X, we have found, in
addition to the reciprocal Hall response, o"(B) & Bcos 6, two

X

antisymmetric, nonreciprocal phenomena: the AHE GZZ‘XH (B) x

J

er1(k) — Ay ak.
Y ak_ e (K)— A,
iRk, ibk_
—ibk, —iRk_

The k-independent parameters A, arise at first order in H;
and are responsible for the bands splitting. At second order
in ‘H;, we have ey 1 (k) = e(k) & (S £ d)k;, with e(k) =
Aki + Bkz2 [27,28]. The Sk, and Rk, terms represent linear-
in-k contributions at first order in H; due to the lack of

B cos 0 and the PHE &ZECH (B) o Bsin 6. Our AC magnetotrans-
port for p-doped Te:Sn confirmed both the antisymmetry and
phase relations amongst o}, 528, and &P,

II. TELLURIUM

Elemental tellurium is a chiral, noncentrosymmetric semi-
conductor composed of helical chains arranged in a triangular
lattice as shown in Fig. 1. The space group of tellurium is
either D‘S‘ for a right-handed, or Dg for left-handed, screw axis
[33]. When choosing a set of primitive translation vectors
t; = (a,0,0), t, = (—a/2,/3a/2,0), t; = (0,0, c), where
a=444A and c = 5.91 A, one can then write the symmetry
elements of the factor group in the space group of Dg.

A. k - p Hamiltonian

The valence-band structure of tellurium has been derived
using the k - p perturbation theory [27,28]. One assumes the
energy spectrum, E,(Kg), and wave functions, v, g, (r), for
the nth valence band at ky = (47 /3a, 0, 7w /c), are solutions
to the eigenvalue problem, Hoy, k,(r) = E,(Kg)¥, K, (T)
for an unperturbed Hy = p2/2m + U(r), where U(r) is
the periodic potential. Then one looks for solutions to the
Schrodinger’s equation H, k(r) = E,(K)y,, k(r) for k away
from the H point, where E,(k) and v, x(r) can be ob-
tained from a double perturbation theory in k-p and the
SOL. One inserts ¥, x(r) = e"k'run,kﬁ,k(r) into Schrodinger’s
equation to obtain an eigenvalue problem for u,y, k(I)
as Hip soltn iy k() = E, (kg + K)up k, k(r), where E, (kg +
k) = E,(ky + k) — A°k?/2m. The matrix elements of H =
Ho + Hi + Ha + Hs, with

h
Hi = —k-p,
m
h
Hy = W(U x VU(r)) - p,
2
Hz = W(U x VU(r)) -k (1)

are calculated in terms of the unperturbed states v, g, (),
around k = kg, and correspond, respectively, to contribu-
tions from k - p, from the k-independent SOI, and from the
k SOI [27,28]. The doubly degenerate H; valence band state
becomes split into H6i, H4Jr , and Hy valence bands by the
spin-orbit interaction [27,28]. Neglecting Hs, our starting-
point Hamiltonian reads [27,28]

—iRk_ ib*k_
—ib*k, iRk,

e__(K)+ Ay N
—2A, er_(K)+ Ay

(

inversion symmetry. Combining H; and H, gives rise to the
linear-in-k band mixing elements aky and ibky, as well as the
diagonal £dk, terms. We have discarded all trigonal warping
terms k3 and (k} — k;), and all other second-order terms in
H, [27,28].

014204-2



HEDGEHOG ORBITAL TEXTURE IN p-TYPE ...

PHYSICAL REVIEW MATERIALS 7, 014204 (2023)

B. Valence band structure

The band structure obtained from the above Hamiltonian,
for R = b = 0, at the H point is shown in Fig. 1(c) on the right,
where

eny . (k) = (k) £ \/(S — A2 + 402 + A,

ez (K) = £(k) /(S + 22+ @23 — Ase ()

The uppermost H," valence band exhibits a dumbbell-shaped
structure at k& = :l:\/ (S — d)* — 16A2B2/2B|S — d|, as long

as |(S — d)?/B| > 4A,, which is the case for tellurium. The
normalized eigenstates for R = b = 0 are

g, ()) = : ( 241 )
V2hEK)(h(K) £ h.(k;)) \—h(k;) F h(k)
1 —ak,
i ) = e % 0.0 <gz<’<>¢9<k>>

with f.(k,) = (S — d)k, while

and gz(kz) =(S+ d)kzs
Jh2(k,) +4A% and g(k) = ,/g2(k.) + a®k3 .

III. TOPOLOGICAL PROPERTIES

A. Berry curvature — (k)

In this section, we will demonstrate how a nonzero Berry
curvature can be induced at a Weyl-node-free valence band in

J

R* + |b)?

[h-(k.) + h(K)]*[ g (k)

second-order perturbation theory due to its coupling to Weyl-
node-containing valence bands. The Berry curvature of the nth
band can be calculated from the expression [29]

o auv Mn|a;LH|un ) (|0, H 1ty

Q (k)_zZZ P ., )
n#n' v
where n,n = H4+ ,H;,HéE derivatives are with respect to
9, = 9/0k*, and €**” is the total antisymmetric tensor with
o, 1w, v=2x,y,z. Using R=>b=0, we find SZH:,H;(k) =
(0, 0, 0), showing that, at the H or H' points, the HI and H,
bands are topologically trivial and carry zero Berry curvature.

The Hamiltonian for the Hg and H{ bands, in turn, can be
written as He ¢ = g(k) - &, with g(k) = (ak,, aky, (S + d)k;)
so the same calculation for the lowest two bands yields the
Berry curvature

@, (k) =+ 88

° 2 |gk)?
which is simply the field of a magnetic monopole at the origin
in momentum space [29]. This shows that at the H or H’
points, the H6i valence bands are indeed topological, a direct
consequence of the Weyl node at kg [26].

For deviations from the H point, however, the bands mix-
ing may no longer be ignored. By considering b # 0 and
R # 0, the induced curvature at the H,” band due to the mixing

with the H" bands reads SZ(O) (k) = (0, 0, Q(Z 0)(k)) where

“

— g2 (k)] — [ (k) — k2 (k) ][g: (k) — o g(K)I?

(z,0)
gy 10 = Xﬁ;(h(k)—ag(k)JrzAz)2

&)

2g(K)h(K)(h(K) + h-(k:))(g(k) — o g-(k.))

The above result demonstrates that, by considering solely the k-independent SOI to the Hg ¢ bands, a z component for the Berry
curvature can be induced at the H;" valence band. Here the superscript (z, 0) indicates that the z component was calculated

without considering the k SOI.

However, so far, we have omitted all matrix elements associated to the k SOI in 3 [27,28] and these are the central theoretical
ingredients of the present paper, since these will induce nonzero contributions to the other two components of the Berry curvature.
Combining H,; and H3 gives rise to the following perturbation Hamiltonian:

0 0
H = 0 9
(G + iw)k;k, —v*kk_
— vk ky (G — iu)k_k,

(G —iwk k.  —vkk_
—vkky (G +iwkpk,
0 0
0 0

We use again the general expression for the Berry curvature Eq. (3) to calculate the fully induced curvature onto the H," band,

) (k) = (27 (), Q51 (), 452" (k). (©6)
where now
2 = Z (G + [uPeck,  [ho(k) + h(0)P[g.(k) — 0 g(K)]* — [ (k) — h2(k)][¢° (k) — g2 (k)]
— (h(k) —og(k) — 2A)? 20()h(K)(h(k) + . (k)(8(k) + 0 g (k.)) ’
240 = Y (G + [Pk [ha(k) + h()P[g.(k) — 0 g1 = [ (k) — h2(k)][¢° (k) — g2 (k)]
= (k) —og(k) —24,)? 20()h(K)(h(k) + h.(k)(8(k) + 0 g (k.)) ’
(G +uPHk; [h() + h)P[g:(k) — og(k)]* — [ (k) — K2 (k)] [9° (k) — g2 (k)]

Q(Zf) k) =
i =2 G0~ ag00 - 28,7

2g(K)n(k)(h(k) + h-(k))(g(k) + 0 g.(k;))

@)
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The above result finally demonstrates that, by also including
the k-dependent SOI to the Hg ¢ bands, a full 3D, radial Berry
curvature is induced at the H, 4+ valence band. Here the super-
script (i, 1) for all i = x, y, z indicates that those components
were calculated including the k SOI.

B. Orbital texture : m,;, (k)

Knowledge of the original eigenstates of the four-band
k - p Hamiltonian obtained in Eq. (3) allows us to calculate
the induced orbital moment at the Weyl-node-free H, I valence
band due to its mixing to the two Weyl-node-containing Hg ¢
valence bands. For that, we shall use [34]

orb(k) ie ZZ apy un|a H|un/)(un |a H'“n) ®)

En — En
n;én j73Y "

from which we can calculate the several contributions to the
three components of the induced orbital texture. To simplify
our analysis, and without loss of generality, we shall neglect
the spin splitting of the bands Héi and the dispersion of the
H,' band when compared to A,. Now, if we consider both
terms b # 0 and R # 0, we find a collinear orbital magnetic

moment, m®) = (0, 0, m((frbo)) with

e R* + |b? S —dk
m&) (k) ~ T . 9
2 J(5—dp2 48]

The existence of a nonzero m(Z O)(k) ~ k, for the H, * band
in tellurium has been prev10usly obtained and accounts for
both the kinetic magnetoelectric effect observed in trigonal
tellurium [20] and the current-induced spin polarization
of holes in tellurium [22]. However, since at this stage

(()’;bo)(k) (()‘rbo)(k) = 0, it does not correspond to a Weyl
fermion and we shall proceed with our analysis.

Following the same reasoning used while discussing the
Berry curvature, at this point we need to include all matrix
elements associated to the k SOI in H5 [27,28]. The con-
tributions from #H; and H; gives rise to a full 3D orbital
magnetic moment, m') (k) = (m;" (k), m&; (k), m& (k)),
whose components are

e eG2+|u|2+|v|2 (S — d)kk,
o 4 N an?

— +

Z 1
D)~ eG2+|u|2+|v|2 (S — d)K2k,
Moo (k) 7 ’
282 [(S - )2 + 407
2

(zbl)(k),\, sz-i‘|M|2-i-|v|2 (S — d)kZk, . 10)
or 2A2

\/ (S — d)2k2 + 412

It is important to emphasize that the 3D hedgehog orbital tex-
ture shown in Fig. 2 is not to be associated to sources or sinks
of Berry curvatures at k, = +k(, which are the positions of the
two maxima of the uppermost H," valence band. This would
mean Weyl nodes split in momentum, causing time-reversal
symmetry to break down, and it would be equivalent to the
case of Weyl nodes in WSMs. Here, instead, the Weyl nodes
are split up in energy, not in momentum, and the 3D hedgehog
texture simply reflects the existence of Weyl nodes within the

(b) Helical chain

[z

AL
k&4 k\%ﬂm

Hedgehog orbital moment
k-dependent S.O. coupling

rotating wavepacket

FIG. 2. Left: Dumbbel Fermi surfaces and the hedgehog texture.
For k, > 0, the Berry curvature is positive (yellow) while for k, <
0 the Berry curvature is negative (blue). Right: Helical motion and
wave packet rotation responsible for the hedgehog orbital texture.

valence and conduction bands [26] at the same momentum Ky
or k', and are therefore sources and sinks of Berry curvature
at the same high-symmetry axis, either H— or H'—, in the
Brillouin zone.

IV. WEYL FERMION PHYSICS

In particle physics, a Weyl fermion is a massless, spin-1/2
particle whose spin is locked to its momentum, s*(p) || &P,
defining its chirality: right-handed (+) or left-handed (—).
This can be easily seen from the Weyl Hamiltonian

Hyeyt = %0 - p. (1)

The solution to this Hamiltonian is straightforward. The
eigenvalues define the linearly dispersing Weyl cone, E.(p) =
+|p|, and the eigenstates are

;< tp1 > (12)
V2Pl F o) \UPI F p)e? )’

/P> + p? and ¢ = arctan (py/py). The
Berry curvature associated to this Hamiltonian reads

|u+(p)) =

where, as usual, p; =

P
b(p) = £5—3, (13)
21pP
representing a magnetic monopole at the origin, p = (0, 0, 0).

The spin of the Weyl fermions can also be calculated from
s*(p) = (u+(p)|o|ux(p)) and reads

st(p) = £ 2. (14)
I
This result shows us that indeed s* (p) is locked to the direc-
tion of the momentum +p with chirality right-handed (+) or
left-handed (—), depending on the sign, see Fig. 3.

In condensed matter physics, charge carriers in, for exam-
ple, p-type doped semiconductors are characterized by their
nonzero effective masses, m’j_’H # 0, and parabolic dispers-
ing valence bands. Nevertheless, Weyl fermion physics may
arise from the interaction between these carriers to quasipar-
ticle excitations close to Weyl-cone-like, linearly dispersing
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(a) (b)

FIG. 3. (a) A right-handed Weyl fermion whose orbital angu-
lar momentum is parallel to its wave vector, m;:b(k) I +k. (b) A
left-handed Weyl fermion whose orbital angular momentum is an-
tiparallel to its wave vector, m_, (k) || —k.

crossings in the band structure, in which case an intrinsic
orbital angular momentum, associated to a wave-packet ro-
tation, might become locked to a propagation wave vector,
mZ, (k) || £k, see Fig. 3. Comparing Eqgs. (10) and (14) we
conclude that, indeed, the emergence of Weyl fermion physics
in tellurium does occur and is a direct consequence of the
k SOI between Weyl-node-free and Weyl-node-containing va-
lence bands. The contribution from the k SOI to the orbital
momentum in Eq. (10) can be written as

e| G +lul+ > (S—dk
m (k) = £— < K,

f 282 s - +and

as)

which has precisely the wave-vector dependence expected for
a Weyl fermion, as discussed in Eq. (14). Here, the + signs are
associated to the two possible space groups of tellurium, either
Dj for right-handed (+) or D for left-handed (—) screw axis
[33], and the k, dependence in the amplitude of mffrb(k) is a
consequence of the k-dependent spin-orbit interaction.

V. ONSAGER’S RELATIONS IN LINEAR RESPONSE

Ordinary matter, when unperturbed, flows toward an equi-
librium state [35]. Such an equilibrium state depends on the
temperature and pressure, as well as several other external
parameters such as regions of space, containing a certain con-
centration of particles, mechanical stress, intensity of applied
electric and magnetic fields, among others. When such pa-
rameters vary slowly, the system can return to its equilibrium
state almost instantaneously and such a process is said to
be reversible; see, for example, Fig. 4(a). When, instead, the
variation is so fast that the system fails to adapt, it will remain
out of equilibrium and the process is said to be irreversible.
For example, when an external AC electric field varies so
rapidly that the charge carriers contained inside micrometric
regions in the sample fail to relax instantaneously through
some relaxation process such as scattering by impurities or
by the lattice, then retardation will occur; see, for example,
Fig. 4(b). This is most commonly achieved in the presence
of dissipation or strong correlations [36]. Retardation can
be calculated in linear approximation and several relations
for generalized susceptibilities can be derived, irrespective
of the specific type of Hamiltonian, such as Kramers-Kronig
relations, fluctuation-dissipation theorem, the second law of

E<O0 E>0 E<O E>0
— - - =

FIG. 4. (a) Reciprocal response: the electric field varies slowly
and the system follows the perturbation adiabatically via several
relaxation processes such as impurity or lattice scattering. (b) Non-
reciprocal response: the electric field varies rapidly and the system
fails to follow the perturbation adiabatically, independent of the
various relaxation processes available. Nonreciprocal responses are
very common in dissipative or strongly correlated systems, as well
as in the case of gyrotropic media with natural optical activity, and
lead to microscopic charge accumulation and spatial dispersion [36].

thermodynamics, and Onsager’s relations. These relations in
turn allow us to describe several transport, electro-optical,
and magneto-optical effects, including Pockels effect, Faraday
effect, Kerr effect, chiral magnetic effect, and AHE [35],
and if we also includespatial dispersion, these relations can
be readily generalized to also include natural optical activ-
ity, gyrotropic birrefringence, and several other nonreciprocal
phenomena.

The response of a system in equilibrium to external
perturbations can be expressed in terms of generalized suscep-
tibilities, o0;;(w), which are matrices connecting the response
i to the perturbation j [35]. In the case of adiabatic processes,
when the external parameters vary very slowly, the system will
return to equilibrium. In these static, w = 0, cases we have

O’,'j(()) = CT]','(O). (16)

This is Onsager’s original relation for the case of generalized,
static susceptibilities, such as the one depicted in Fig. 4(a). To
extend such a relation to the case of fast processes, @ # 0, one
needs the concept of time reversal [35].

A. Reciprocity and space homogeneity

Let us discuss the behavior of the generalized susceptibili-
ties, 0;;(w), for the electric field

E(w) = Eg e, (17)

describing a homogeneous perturbation in space. This approx-
imation is valid when atomic dimensions, a, are negligible
when compared to the wavelength, X, of the electric field,
a < A. The requirement that the Hamiltonian should be even
under time reversal [35] implies that, for fast processes and in
the presence of an external magnetic field, one should have

Uij(a), B) = O’j,’((,(), —B) (18)

We see that the symmetries restrict the components of the gen-
eralized susceptibility matrices and that, in the Ohmic regime
of an isotropic, homogeneous system, they can be written as
an expansion in powers of the applied magnetic field

oij(a), B) = a(a))Bij + h(a))eijkBk + ..., (19)
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where §;; Kronecker’s delta and ¢ is the totally antisymmet-
ric Levi-Civita symbol. The first term describes the electrical
conductivity inside the material in the absence of external
magnetic fields. The second term needs to be antisymmetric
in i, j due to the linear coupling to B, so the Hamiltonian
remains even under time-reversal symmetry. The resulting
electric current is thus necessarily perpendicular to both the
applied magnetic field and to the applied external current, and
this is the geometry that defines the conventional Hall effect.

B. Nonreciprocity and spatial dispersion

Up to this point, Onsager’s relations have been discussed
in the regime where atomic dimensions are negligible when
compared to the wavelength of the electric field, a <« X, with

E(q, ©) = Eg 4% (20)

The homogeneous limit, q = 0, corresponds to zeroth order
in a a/A expansion, with A = 27 /|q| [37]. However, in the
macroscopic theory of electrodynamics, the power expansion
in a/) corresponds to an expansion in the displacement vector,
D, and not only in the electric field, E, but also in its deriva-
tives [37]

JOE}

D; = € By + Vike — (21

a)Cg
where €; and yj¢ are functions of the frequency, w, and
these tensors follow the symmetry principles of the kinetic
coefficients in such a way that [37]

€ik = €kis  Vike = —Vikit- (22)

This expansion can be extended to the conductivity tensor and
should satisfy the extended Onsager’s relations [35]:

0ij(q, w, B) = 0ji(—q, w, —B). (23)

Once again, power expansion of the external magnetic field
and electromagnetic wave vector gives us

0i;(q, w,B) =aP(q, w)8;j + Xijx(@)qx + h(w)e;jx By
+ gGijre(@)gBe +..., 24
—_——

nonreciprocal gyrotropy

where 0P (q, ) is Drude’s conductivity for an isotropic sys-
tem and the tensors x;jx and €;j; are antisymmetric in i, j. We
have seen before that the term h(w)e;j By describes the con-
ventional Hall effect while the new term ;jx(w)g describes
the phenomenon of natural optical activity.

Most remarkable is the nonreciprocal gyrotropy contribu-
tion appearing in the second line of Eq. (24). Here the tensor
gijke 1s symmetric in the first two indices, i, j, in such a way
that the new contribution g; jx¢(@)qx B¢ allows for a linear term
in the magnetic field contributing to the conductivity without
the necessity of being simultaneously perpendicular to the
applied current and applied magnetic field. This contribu-
tion was already known to give rise to the phenomenon of
the gyrotropic birefringence, the nonreciprocal propagation
of waves inside the material. As we shall soon see, this is
precisely the q-dependent term that also makes room for a
nonreciprocal linear PHE in tellurium.

VI. TRANSPORT PROPERTIES

A. General inhomogeneous Weyl systems

As we have learned from the previous discussion, nonre-
ciprocity allows for the observation of a range of phenomena
that would otherwise be forbidden in the reciprocal regime.
Two such phenomena are precisely the anomalous and the lin-
ear, antisymmetric PHEs. Both are forbidden by time-reversal
symmetry in the reciprocal response, but may arise in the non-
reciprocal response for spatially dispersive or inhomogeneous
media. To see how this generally comes about, let us revisit the
problem of Weyl fermions in the presence of inhomogeneities.
This is usually done by minimally coupling Weyl fermions
to spatially dispersive background gauge fields [38], A(r) for
the electromagnetic and A(r) for the chiral, and whose r
dependence is characterized by a modulation wave vector,
q # 0[39]. By moving from the laboratory to a local reference
frame through a local gauge transformation, one ends up with
a Wequ Hamiltonian [39]

(t;/2)0 - q

7P } (25)
o-p

HWCqu = [ (Tz/z)a q

where 7, is a pseudospin Pauli matrix. Once again, the spec-
trum and eigenstates can be calculated straightforwardly, from
which the Berry curvature reads

1p¥q/2

b(p) =+

2 IE(PIP’ 20

with E(p) = +/p? + ¢?/4 £ |p - q| [39] and, in what fol-
lows, we shall choose, for simplicity, q = (0, 0, g).

The above Berry curvature corresponds to magnetic
monopoles shifted from the origin toward p = (0, 0, £4/2),
with opposite signs for the two chiral screw axis, see Fig. 5.
This simple and general result demonstrates that spatial dis-
persion does indeed produce Weyl nodes that become shifted
in momentum, breaking time-reversal symmetry, and thus al-
lowing for both a q-dependent AHE as well as a q-dependent
chiral anomaly, which has already been acknowledged to be
responsible for the PHE [24].

B. Spatially dispersive, gyrotropic tellurium

To check whether or not the above general argument ap-
plies to tellurium, we must do a proper calculation, taking into
account the full fourfold valence band structure calculated
in k - p-perturbation theory. Differently from the previous ar-
gument, we shall remain in the laboratory reference frame,
in which both the Berry curvature and hedgehog texture re-
main centered at the high-symmetry points, and introduce the
spatial dispersion by extending the traditional, semiclassical
approach of Boltzmann transport equations to the case of
nonreciprocal transport.

The current density, j(r), the carrier distribution, f(k, r),
and the velocity, F, satisfy j(r)=—(e/V)) , f(k, ).
Boltzmann’s equation in the steady-state relaxation time, Ty,
approximation for f(k, r) reads [24,29-31]

BV, +kVf k1) = —(r " £7,)[f (k. 1) = fog (K, 1)),
27
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(a) Homogeneous background
AN /
Q=+1 Q0=-1 k>
L N
(b)Inhomogeneous background
N V| [ Vi
>< k

L o0o- 1 \|/L0- 1\

FIG. 5. (a) For a homogeneous background, q = 0, the Weyl
cones associated to the two topological charges, Q = +1 (right-
handed screw axis) and Q = —1 (left-handed screw axis) are located
at the kg high-symmetry points in the Brillouin zone. Here,
reciprocity forbids any antisymmetric anomalous or planar Hall
responses, as imposed by time-reversal symmetry. (b) For an in-
homogeneous background, q # 0, however, the two Weyl cones
become shifted in momentum, k; = ky £ %. Nonreciprocity thus
allows for nonzero, antisymmetric anomalous, and PHEs.

where feq(K,r) is the equilibrium distribution and +14 !

(—rqj 1 represents the contribution from weak-localization
(antilocalization) due to multiple impurity collisions [30]. The
equations of motion in the presence of Berry curvature are

1 . . e e
r = —Viey+ (K Ik x 2, k=-E+ —r xB. (28
= - Ve (k) + ik x CE4 i xB. (28)

For a homogeneous system and as discussed in detail in the
previous section, Eq. (27) can be expanded in powers of E and
B to provide us with

. e _1(~ e e ~
i=-y 2 (o G @0t Fi- 90B)

44 XB)'V"}(eAk.E)},

h

. 3 feq(K)
X {feq(k)+ aE‘(k) [1

(29)

where ny = 1 + eS2 - B/ is the curvature-modified density of
states accounting for Fermi surface volume changes [29] and
feq(K) is the Fermi-Dirac equilibrium distribution function for
E(k) = ey (k) — Mo (K) - B.

1. Chiral velocity shift—Berry curvature

The induced Berry curvature, 2y, calculated in Eq. (7) will
provide a nontrivial contribution to the mean-free path

e [V + e(Ru - Vi)B/]

Ax = ———
(Tk ! +1, 1)

) (30)

which is given in terms of the relaxation time i and the chiral
velocity shift e(S2 - Vx)B/A. This is the mechanism behind

several chiral anomaly-related phenomena, such as the chiral-
magnetic and planar-Hall effects [24].

2. Group velocity shift—hedgehog texture

The 3D hedgehog orbital texture calculated in Eq. (10) will
provide a contribution to the group velocity shift

1
Vo= 2 V(e () — mon (k) - B) = vic+- 6w (31)

for the charge carriers at the valence band. The group velocity
shift vk = —V(mgy, - B) has been previously considered in
the description of the magnetochiral anisotropy in p-type tel-
lurium [40]. For B L j || Z, there is an energy splitting arising
from the breakdown of the degeneracy between valence band
states with k and —k [27,28] that needs to be enantioselective
to be symmetry allowed. For this reason, in Ref. [40] it was
proposed, heuristically, that such energy splitting should be
Ae(k) = xP/'k - B, with x? = —x!. Our Eq. (31), together
with Egs. (9) and (10), thus places such a heuristic argument
on solid theoretical grounds since the coupling myy, - B is
inherently enantioselective.

C. Reciprocal conventional Hall effect

The Lorentz force generates a reciprocal Hall current
corresponding to the totally antisymmetric linear-in-B term,
h(w)ei By from Eq. (19) for the Onsager’s reciprocal
relations

& MoV feq®) -
b= r o v g B Vi E)
X (rk t, ) (k)
(32)
and a Hall conductivity tensor
0£ ~ i€yBy, ~ Bcoso. (33)

Because of tim- reversal symmetry, however, a reciprocal
anomalous Hall current,

. e _ ~
i=-y ; (B x Q) feg(K) = 0, (34)

vanishes. The reason for the vanishing of Eq. (34) is very sim-
ple. Time-reversal symmetry ensures that the Berry curvature
is odd under k — —k:

Q_y = —Q. (35)

Since the sum in Eq. (34) is for the entire Brillouin zone,
including positive as well as negative values for the Berry
curvature, then Eq. (34) vanishes identically. The same holds
for the reciprocal PHE [31], or simply

j= _3 ; M Vi (R - 910 foq(K)/IEK)(B - E) = 0.

(36)

Once again, not only £ is odd under time reversal but so
is the velocity, V_x = —Vk. As a result, the overall parity of
the term Vi (2 - V) is odd and for that reason Eq. (36) also
vanishes identically. Time-reversal symmetry forbids both re-
ciprocal AHE and reciprocal PHE.
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FIG. 6. (a) Hall geometry j || 2 L B JJE || . (b) Theoretical curves for the conventional 4+ anomalous and planar Hall responses. Inset:
Effects of B at 6 = 0, top left, and & = 7 /2, bottom right, to the orbital texture.

It is important to emphasize, at this point, that the ab-
sence of a reciprocal, q = 0, AHE occurs only at linear order
in the electric field, E, see Eq. (34). However, reciprocal,
q = 0, anomalous Hall-like currents do indeed arise as quan-
tum nonlinear effects, E?, induced by Berry curvature dipole
tensor, D, = fk Seq(K)9,£24(K) # 0, in noncentrosymmetric
materials, even in the presence of time-reversal symmetry
[41]. This remarkable reciprocal, nonlinear Hall effect has a
purely quantum origin and produces an anomalous velocity
shift when the system is in a current-carrying state [41].

D. Nonreciprocal response

In what follows, we shall demonstrate that both the anoma-
lous and PHEs arise in the linear electric field regime, E, and
nonreciprocal response, q # 0. For gyrotropic media such as
tellurium, two nonreciprocal Hall responses are possible. The
electrical acceleration §k imposed to the carriers by an AC
current follows the same ¢/(47~*") dependence [42], so

. eE/h
Sk = - — .
1 —iwt +i(Vk - q)x

37

1. AHE—group velocity shift—hedgehog texture

This leads to an anomalous Hall contribution at zeroth
order in the expansion of the distribution function [43] orig-
inated from the group velocity shift vy = —Vi(mey, - B) /7,

. 62 . 8Vk-q
J= o

Vi . M ](E x ) feq(k),  (38)
whose linear-in-B dependence at small fields is stabilized by
the wave-vector components g, = wn,/c for the spatially
dispersive, anisotropic media with refraction index n. Differ-
ently from the vanishing reciprocal AHE in Eq. (34), now
the q-dependent term inside the brackets in Eq. (38) brings a
second odd quantity, the group velocity shift, §v_g = —vg, to
the sum in the Brillouin zone, ensuring that the nonreciprocal
anomalous Hall response does not vanish in the presence of
the Berry curvature, 2, which is also odd under k — —k.
We shall neglect corrections from the density of states,
Nk, and drop all integral over occupied states of (2 - ¥x)B,

because these are known to vanish (absence of equilibrium
chiral magnetic effects) even in the presence of monopole
singularities [43]. For gyrotropic, spatially dispersive media
Eq. (38) can be rewritten in terms of the constitutive equations
Ji = VikedeEx = —i€ire8em(B)Erqm [37]., Because the tensor
Yike 18 antisymmetric, y¢ = —Vki¢, one often makes use of
the dual pseudotensor, €;x,,8me = @Wyike/c, Where
ie

2
gne(B) = oo ; M feq(K)SUE (B (39)

is only nonzero for systems lacking an inversion center [43].

For j||z LB JE | X, as in Fig. 6(a), the nonreciprocal
AHE requires that both the induced hedgehog orbital tex-
ture, m , (k) # 0, as well as the Berry curvature, Q2 # 0,
have nonzero y components, which can only be the case due
to the presence of a k-dependent spin-orbit interaction. In this
case, for small B, thenonreciprocal AHE reads

&2 ~ Bcos 6, (40)

and adds up to the reciprocal contribution from the conven-
tional (Lorentz force) Hall effect given in Eq. (33).

2. PHE—chiral velocity shift—Berry curvature

Since we are looking for the possibility of a linear-in-
B PHE, from the start we have intentionally chosen j L B
(or ¢ = m/2) to remove any possible symmetric B sin(2¢)
PHE contribution from the Hall response [12]. In this case,
a nonreciprocal, antisymmetric PHE can also be stabilized in
spatially dispersive media by the chiral velocity shift vy =
e(y - Vi.)B/ A,

_i M >V I:vk'qj|afeq(k)
Vi g 2 o ]38k

i= (2 - W)B-E),

(41)

and provides us with ji = gikimBﬁq;ﬂEk = D,-W,Snggquk,
where the even-rank chiral diffusion pseudotensor [25]

3 feq(k)

e Ny
Dy = .
" Vho Xk: o' 7, 9EK)

3 -2

v (R - Vi, (42)
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FIG. 7. (a) Experimental and (b) theoretical curves for the antysimmetric AC magnetoconductance as a function of the magnetic field, B,

for various angles 0 < 0 < 2m.

Once again, the q-dependent term in Eq. (41) ensures the
sum over k in the Brillouin zone not to vanish, because
even though vi and €2 individually are odd, the four-product
vf((SZk - Vi)V, is even under time reversal. In this case, for
jllz LB |E | X as in Fig. 6(a), a nonreciprocal PHE re-
quires that Ql((x'y ) = 0 and is therefore our second evidence of
a hedgehog texture with

61‘;1'[ ~ Bsinf. 43)
Most importantly, the nonreciprocal PHE has a different phase
than both the reciprocal Hall and nonreciprocal AHE. The
PHE is distinguishable from the other two and will leave
unambiguous signatures in transport, to be discussed below.

VII. COMPARISON WITH EXPERIMENTS

To test our predictions, we performed magnetoconductance
(MC) measurements at room temperature on p-type Sn-doped
tellurium and extracted the antisymmetric component Gu
from the data. The sample was grown by slow cooling from a
fine tellurium powder with 0.04% added antimony. We mea-
sured the response for different orientations of the external
field, been rotated within the xy plane. Contacts with platinum
wires were glued with silver ink and prepared in a classical

four-point setup. As a measurement device, we used a com-
mercial PPMS Dynacool with a maximum field of 9 T and a
minimum temperature of 1.8 K from Quantum Design. The
samples were installed on the horizontal rotator stage. The
current direction was always along the z-axis direction and
the Quantum Design ETO-option was used for AC-transport
data acquisition. Naturally, the antisymmetric MC component
was proportional to the Hall response as in a Hall geometry
shown in Fig. 6(a).

In Fig. 6(b), we show our predictions for the conventional,
anomalous, and planar Hall responses. For 8 = 0, the almost
linear behavior originates from the conventional (reciprocal)
and anomalous (nonreciprocal) Hall signals (both indistin-
guishable) in the regime w.7 < 1, where w, = eB/m*c is
the cyclotron frequency and 7! = 17 "'+ 7-1 is a lower
bound for the multiple-impurity collision, weak-localization
relaxation time. For 8 = 7 /2, however, the nonmonotonic
behavior corresponds to the planar (nonreciprocal) Hall effect
in the regime w.T ~ 1, where ¥ = 1 is an upper bound for
the single-impurity, rq;l — 0, relaxation time [30]. Clearly
the alignment of the orbital magnetic moments, my || X,
promoted by an applied field B || X, results in the phase co-
herence among the scattering states with k, k in the relevant
zx Hall geometry of Fig. 6(a), suppressing multiple-impurity

B (T)
@) 1.0f L—9|) 1 ol ics .
Theory ! 8 ) Ny Experiment
7 \] A
0.5] 6 0.5/ oo*—ot
n 5 ) /
% 0.0 HE ooleee e o . ./
I 3 Q : e 000T ’z
QO 2 0) 1.00T 4
—05/ 1 o 2.00T A
= 3.00T >
0 -0.5 —e 4.00T
500T ‘
-1.0/ ‘ ‘ o 70t
0 100 200 300 —1.0[ * o1
Angle (deg) 0 100 200 300
Angle (deg)

FIG. 8. (a) Theoretical and (b) experimental curves for the antysimmetric AC magnetoconductance as a function of the angle, 6, for various

intensities of the applied magnetic field, 0 < B < 9T.
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scattering and enlarging the relaxation time. Obviously, the
Hall response at planar field orientation should be zero, with-
out any nontrivial effects. This becomes even clearer when
taking the derivative of G4 for different external field strengths
and plotting it versus the applied field angle, as shown in
Fig. 6(b). As the magnetic field rotates from 0 < 6 < 2, the
antisymmetric contribution to the zx Hall conductivity, 0;},
shown in Figs. 7 and 8 can be remarkably well described by

~pH @cT sin 6
Ozx ~\2°
I+ (wcT)

g

;}C _ (O’H n ~aH) w.T cosf

44
o x l+(a)c‘l.')2 ( )

where the ratios @ = (o1 +&21) /68" and g = /7 are the

same for all curves. For tan6 > 0, we find o*zﬁ =0 only at
w, = 0, that is, at zero field, B = 0. For tan6 < 0, how-
ever, besides w, = 0, the conductivity ozAx =0 also at w. ~
+/Bltanf|/a — 1/t for w.T K 1, see Fig. 8.

It is remarkable that the quantum corrections to conductiv-
ity, encoded in the weak-localization relaxation time 74, B >
1, are accessible to our AC measurements even at 7 = 300 K.
By looking at the graph, we see that for high fields the phase
is located around zero degrees, proving that within this field
range the perpendicular Hall signal dominates. Unfortunately,
the contributions from the conventional Hall and nonrecipro-
cal AHEs are not distinguishable within the sample set we
used. In the low field, on the other hand, the phase is shifted
by about 50°, proving the existence of the planar component
in the data. Here the existence of an antisymmetric component
for the planar Hall current is evident. The field dependence of
the phase shift is not due to any misalignment of the contacts
that would produce an overall constant phase shift irrespec-
tive of the field intensity. Finally, the two nonreciprocal Hall

responses reported in this paper are linear in B for small fields,
since for carrier concentrations of the order n ~ 10'%/cm?, the
Fermi energy calculated from the free-electron model gives us
Er ~ 0.1 meV, which corresponds to a Zeeman field of 10T.

VIII. CONCLUSIONS

In conclusion, our paper unveils the true origin of the Weyl
physics observed in gyrotropic, p-type tellurium by demon-
strating how a 3D hedgehog chiral magnetic texture is induced
at the topologically trivial top valence bands by their k SOI to
two Weyl-node-containing bands. Therewith, our findings not
only clarify the origin of previous experimental observations
of Weyl signatures in tellurium [12], even though Weyls nodes
are not directly accessible [26], but also bring to light two
nonreciprocal and antisymmetric Hall responses allowed in
spatially dispersive media with natural optical activity and
accessed via AC measurements. Finally, our paper opens av-
enues for scientific and technological research by including
nonreciprocity in the holography dictionary as a candidate
route for generating axial components to dual gauge fields
[11], lays the foundations for tellurium-based nonreciprocal
topological field effect transistors (FETs) [44], and also in-
troduces alternative controlling mechanisms for AC electron
transfer in enantioselective molecules [23].
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