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Hundreds of new, stable, one-dimensional materials from a generative machine learning model
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We use a generative neural network model to create thousands of new one-dimensional (1D) materials. The
model is trained using 508 stable one-dimensional materials from the Computational 1D Materials Database
(C1DB) database. More than 500 of the new materials are shown with density-functional theory calculations to
be dynamically stable and with heats of formation within 0.2 eV of the convex hull of known materials. Some of
the new materials could also have been obtained by chemical element substitution in the training materials, but
completely new classes of materials are also produced. The band structures, electronic densities of states, work
functions, effective masses, and phonon spectra of the new materials are calculated, and the data are added to the
C1DB.
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I. INTRODUCTION

Low-dimensional materials are gaining considerable atten-
tion due to their distinctive physical and chemical properties,
as well as a variety of possible applications, including light-
absorbers, single-photon emitters, and catalysts [1–3]. A
number of one- and two-dimensional materials have been
identified and their properties have been calculated and stored
in publicly available databases [3–9]. The materials have
mostly been identified based on experimental databases like
the inorganic crystal structure database (ICSD) [10] or the
crystallography open database (COD) [11], and new materials
have been suggested using substitution of chemical elements
with a high degree of similarity [8,9]. However, the question
arises whether there could be many more low-dimensional
materials with interesting properties, which just wait to be
discovered and synthesized.

One-dimensional materials exhibit interesting behavior
and show promise for use in several fields. The reduced
dimensionality results in modified band structures, charge
screening, and electron-phonon coupling [12,13]. This opens
the door to novel material properties like Luttinger liq-
uid behavior [14,15] and the formation of Majorana bound
states [16,17]. Applications could include small metallic wires
[18,19], batteries [20], or transistors [21].

Recently, a generative machine-learning model was used to
create new periodic materials [22], and the approach was sub-
sequently adapted for two-dimensional materials [23]. Here
we apply the same methodology to generate one-dimensional
materials. We investigate their stability and classify the ma-
terials using clustering based on a distance measure between
materials. Furthermore, we calculate a number of electronic
properties and provide an overview. The materials are added
to the C1DB database.

The paper is organized as follows. In Sec. II we describe
the computational methods used for the electronic structure
calculations, the machine-learning model, the dimensionality

classification, and the structure classification. In Sec. III we
describe the results including geometric classification of the
new materials and a number of their properties.

II. COMPUTATIONAL METHODS

In the following we describe the computational techniques
applied in this work. This includes electronic structure calcu-
lations, the machine-learning model and the classifications of
dimensionality and structure.

A. Electronic structure calculations

1. Structure and ground-state properties

We use density-functional theory (DFT) calculations as im-
plemented in the GPAW electronic structure code [24,25] based
on the projector augmented wave method [26]. We apply the
Atomic Simulation Environment (ASE) [27] for setting up the
one-dimensional structures. For our high-throughput work-
flow we make use of the Atomic Simulation Recipes (ASR)
[28], which offers a straightforward and modular frame-
work for creating Python workflow scripts, and its automated
caching mechanism monitors data provenance and keeps track
of task status, which are used in conjunction with MYQUEUE

[29,30] to control the workflow. For all calculations we use
the Perdew, Burke, and Ernzerhof (PBE) xc-functional [31],
and a plane-wave basis set with a cutoff energy of 800 eV.

All one-dimensional components are placed with the z axis
in the direction of the one-dimensional (1D) component and
a square unit cell in the xy plane. It is ensured that at least
16 Å of vacuum separates components in neighboring cells.
The atomic structures are relaxed using a Monkhorst-Pack
k-point grid with a sampling density of 6.0 Å, and with
a Fermi temperature for smearing the electronic occupancy
numbers set to 0.05 eV. The relaxation is stopped when the
maximum force and maximum stress are less than 0.01 eV/Å
and 0.002 eV/Å3, respectively. For subsequent calculations of
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ground-state properties, the k-point sampling is increased to a
density of 12.0 Å.

We use the elemental, binary, and ternary materials from
the OQMD [32] database as a reference to calculate the con-
vex hull for the one-dimensional materials. The energies of
the materials are recalculated with the GPAW code with the
same settings as for the other total-energy calculations in this
work in order to ensure consistency. When investigating the
thermodynamic stability, we only consider the energetics and
neglect vibrational and configurational entropy.

2. Phonons and dynamical stability

We calculate the phonon frequencies at the � and X point
of the reciprocal unit cell. We do this using the frozen phonon
technique in a unit cell, which is doubled along the direction
of the 1D structure. The frequencies are calculated by diag-
onalizing the mass-weighted force constant matrix, which is
obtained using finite displacements of the atoms by 0.01 Å.
The primary goal of the phonon computations is to determine
whether imaginary frequencies, which correspond to negative
eigenvalues for the dynamical matrix, are present. In such
cases the obtained structure is not a minimum-energy struc-
ture and therefore dynamically unstable.

3. Band structures

The band structures of the one-dimensional materials are
calculated from the Kohn-Sham eigenvalues using PBE and
non-self-consistent HSE06 [33]. The reciprocal space is one-
dimensional because we use large supercells with negligible
interaction between neighboring one-dimensional compo-
nents. The band structures are calculated using the density
obtained in the ground-state calculation and using 400 k points
in the first Brillouin zone. The calculations includes non-self-
consistent spin-orbit coupling.

4. Effective masses

The effective masses of electrons and holes are calculated
for bands that are within 100 meV of the valence-band max-
imum and conduction-band minimum, respectively, for all
materials having a finite band gap. By fitting parabolas to the
band structure adjacent to the VBM and CBM, the effective
masses of the one-dimensional components are computed.
The possibility of several bands, which might cross each other
near to the extrema, constitute a hurdle for the fitting proce-
dure. We distinguish between the various bands by defining
for each electronic state at a certain k point and energy a
“fingerprint” made up of the states’ projections onto the PAW
projectors. The electronic states at various k points are then
connected into bands using that the fingerprint should change
gradually throughout a band. As a result, nearby states get
fingerprints that are as close as possible.

B. Generative machine-learning model

The generative model of choice is the recently developed
Crystal Diffusion Variational AutoEncoder [22] (CDVAE)
which is a variational autoencoder for generating stable pe-
riodic materials. The model is only trained on stable materials
from which it learns the data distribution of the given stable

materials and, thus, the generated materials are biased towards
stability. CDVAE omits the need of intermediate states like
descriptors or fingerprints, which has proved difficult to use
for generative models for periodic materials [34], and instead
works directly on the atomic coordinates in the generation
process by using a diffusion model as the decoder. After
training the CDVAE, new materials are generated by sampling
from the latent space from which a neural network predicts
a unit cell, the number of atoms and the composition. The
predicted atoms are then randomly initialized in the predicted
unit cell and the diffusion decoder then gradually unscrambles
the random structure into a stable structure according to the
model. Equivariant graph neural networks are used for both
the encoder and decoder, which ensures that the model is
invariant to rotations and translations.

CDVAE is designed to create crystals that are periodic in all
three dimensions, however, our goal is to generate 1D materi-
als which are only periodic in one direction. In analogy with
Ref. [23], where the method is applied to two-dimensional
materials, we fix this by introducing an artificial periodic-
ity in the two nonperiodic directions, but with a periodicity
length scale that is much larger than the length scale along
the 1D materials. Thus the graph neural networks of CDVAE
only connects atoms within the 1D structure and it learns
to create 1D structures. All the training materials consist of
well-separated one-dimensional structures, and the machine
also generate materials with large separations perpendicular
to the direction of the structure.

We use the same hyperparameters for the model as used
for the MP-20 dataset in Ref. [22], except that we increase
the cutoff radius from 7 Å to 14 Å for the graph network
in the decoder. This is to account for the reduced amount of
neighboring atoms in a 1D structure compared with a three-
dimensional (3D) structure.

C. Dimensionality classification

We express the dimensionality of a material using the
approach of Ref. [35], where a scoring parameter, sX is calcu-
lated for each dimensionality X , where X can be for example
1D, 2D, or 3D, but also mixed dimensionalities like a com-
bination of zero- and one-dimensional components (denoted
01D). The classification is aimed at identifying covalently
bonded materials components within a material with possible
weak bonding between components. It is based exclusively on
bond distances. A bond between two atoms i and j is defined
to exist if

di j < k
(
rcov

i + rcov
j

)
, (1)

where di j is the distance between the two atoms, rcov
i and

rcov
j are the two covalent radii, and k is a continuous param-

eter. For small values of k no bonds exist and the material
consists of single, isolated atoms, i.e., it is zero dimensional,
while for very large values of k all atoms are connected by
bonds, and the material is three dimensional. For a given
dimension X , an interval [kmin

X , kmax
X ] may exist in which

the material has the dimensionality X . This allows for the
definition of a scoring parameter, sX = f (kmax

X ) − f (kmin
X ),

where f (x) = c max(0, x − 1)2/[1 + c max(0, x − 1)2] with
c = 1/0.152. The scoring parameters are between 0 and 1 for
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FIG. 1. The figure shows the computational workflow applied in this work. The left column shows the steps involved in the training of the
CDVAE and the generation and filtering of the new materials. The center column shows the steps applied in the analysis of the stability of the
new materials and their geometric classification. Finally, the right column shows the additional properties calculated and stored in the updated
C1DB database. The numbers indicate the number of materials considered in each step. The different steps are described in more detail in the
text.

all dimensionalities, and they sum up to one. A high value
of sX indicates a high degree of likelihood that the material
has the dimension X , i.e., that the X -dimensional components
are only weakly bound to each other. The reader is referred to
Ref. [35] for further details on the approach.

In this study we consider isolated one-dimensional com-
ponents. For convenience they are described within supercells
with large separation between the different components and
they cannot form two- or three-dimensional materials. The
dimensionality analysis is therefore used here only to eval-
uate whether a potentially one-dimensional system is in fact
separated into zero-dimensional clusters or a combination of
zero- and one-dimensional components.

D. Geometric classification

We use a clustering algorithm based on the root-mean-
square-distance (RMSD) to geometrically classify the ma-
terials similar to the analysis in Ref. [9]. The RMSD
between two different structures with atomic coordinates �Ri,
i = 1, 2, . . . , N and �R′

i, i = 1, 2, . . . , N is defined as

RMSD =
√√√√ 1

N

N∑
i=1

| �Ri − �R′
i|2, (2)

where the ordering of the atoms in the two systems and their
relative translation and rotation are chosen so as to minimize
the RMSD. The chemical identity of the atoms is ignored.
The application of RMSD to the one-dimensional components

involves a few further considerations. First, we merely take
into account the atomic positions and disregard the atoms’
chemical identities. Second, in the event that two distinct
1D components have differing atom counts, the systems are
repeated along the z-direction to ensure that the two systems
have the same number of atoms. Third, to achieve the same
length, the two unit cells are subsequently scaled in the z
direction. The coordinates in the perpendicular directions are
not scaled differently.

The RMSD is used as the distance measure in single-
linkage clustering and graphically expressed in dendrograms.
Introducing a cutoff distance leads to an equivalence relation:
Two materials are related if they can be connected by a chain
of materials, which all have distances smaller than the cutoff
distance to their neighbors in the chain. The resulting equiva-
lence classes constitute the clustering of the materials.

III. RESULTS

Figure 1 depicts our computational workflow. The work-
flow contains both the generation of new materials, their
selection, and the calculation of their properties. The work-
flow consists of three subworkflows indicated by the three
columns in the figure. The first subworkflow (left column in
Fig. 1) contains the generation of new materials using the
CDVAE and an initial filtering to remove materials, which
are unphysical or which are clearly not one-dimensional. The
second subworkflow (middle column in Fig. 1) involves the
study of the stability of the new materials and their structural
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classification, and finally the third subworkflow (right column
in Fig. 1) consists of the calculation of a number of elec-
tronic properties of the materials to be included in the C1DB
database.

A. Materials generation

The CDVAE is trained on 508 one-dimensional materials
from the C1DB database [9,36], which are found to be sta-
ble. The thermodynamic stability of the training materials are
evaluated by requiring the heat of formation to be less than 0.2
eV/atom above the convex hull. Furthermore, the dynamical
stability is evaluated by considering the phonon calculations at
� and X. All eigenvalues of the mass-weighted force-constant
matrix are required to be larger than −0.01 meV/Å2. The
small negative value is chosen to remove the translation modes
and to allow for small numerical errors. These criteria are also
those used in C1DB to signify a high degree of stability.

After training, the CDVAE is used to generate 10 000 struc-
tures out of which 2003 fail the validity check of CDVAE,
which checks that the bonds are above 0.5 Å. Moreover, the
validity checker requires that a charge neutral combination of
the elements can be formed based on the possible oxidation
states of the elements, except if all the elements are metallic
in which case the material is always accepted. Afterwards, the
generated materials are checked for duplicate structures based
on Pymatgens StructureMatcher [37], and we find that a large
fraction of the generated structures are duplicate structures
where out of the remaining 7997 structures only 2157 are
unique. We believe that one reason for the large fraction of
duplicate structures is the small size of our training set.

The resulting 2157 materials are analyzed using the scor-
ing parameter approach of Ref. [35] as implemented in the
ase.geometry.dimensionality module of ASE [27]. Materials,
which consist of one-dimensional components are selected,
while materials with only zero-dimensional components are
removed. If both one- and zero-dimensional components are
present, the one-dimensional components are extracted and
also considered in the following steps. This leaves in total
1912 materials for further analysis. As a final step in the initial
filtering we remove the materials, which are duplicates of
materials already in C1DB, but not included in the training set,
because they are not considered sufficiently stable. There are
only 17 materials in this class, so the final number of materials
to be considered further is 1895.

B. Structure optimization

The first step in the analysis of the generated materials
is to perform a relaxation of the atomic coordinates and the
length of the unit cell to minimize the electronic ground-state
energy using DFT. A significant number of the calculations
(416) fail, mainly due to lack of convergence of the Kohn-
Sham self-consistent field cycle in the initial structure, which
might include unusual bond lengths. All calculations are spin-
polarized and the convergence problems are in many cases
probably related to the determination of the magnetic structure
of the materials. We discard these nonconverged calculations
and focus on the 1479 well-optimized materials.

FIG. 2. Histogram of the energy difference per atom between the
initial and final configurations of the successfully relaxed materials.

Figure 2 shows how much the energy (per atom) decreases
during the structural relaxation. A typical relaxation energy is
in the range 0.1–0.3 eV indicating that the machine-generated
initial structures are in fact quite reasonable. However, in
some cases a more dramatic restructuring is taking place.
There are 22 materials with a relaxation energy lower than
−2 eV/atom, which are outside the boundaries of the figure.
One example is TiZr2Cl7 with an initial structure where the
Ti and Zr atoms are very close, resulting in a huge relaxation
energy of −39.5 eV/atom.

C. Dimensionality

After relaxation we reconsider the dimensionality of the
materials based on the scoring parameters. 1250 materials
remain 1D in the sense that the scoring parameter s1 is the
largest one. A total of 174 materials disintegrate into zero-
dimensional components, while 55 materials disintegrate into
both zero- and one-dimensional components. In the workflow
we discard the two latter categories. Figure 3 shows examples
of structures before and after relaxation together with the
associated scoring parameters s1, s0, and s01.

D. Thermodynamic stability and convex hull

Figure 4 displays a histogram of the heat of forma-
tion relative to the elements in their standard states for the
machine-generated materials. For comparison, we also show
the result from two classes of materials from the C1DB
database: The core and shell materials. The core materials
are extracted from the inorganic crystal structure database
(ICSD) [10] or the crystallography open database (COD)
[11], while the shell materials are obtained by substitution of
chemically similar elements in the core materials. As can be
seen from Fig. 4, the machine-generated materials have heats
of formations quite comparable to the core and shell materi-
als. The average heat of formation of the machine-generated
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FIG. 3. Examples of atomic structures before (left) and after
(right) relaxation together with the calculated scoring parameters.
The upper panel is showing MoRuBr6, which remains one-
dimensional during relaxation. The middle panel shows TeTiZrI7,
which decomposes into molecular, zero-dimensional components.
The lower panel shows SSeSnTaZr2I12, which after relaxation ex-
hibits both zero- and one-dimensional components. Only the upper
class of materials is included in the further workflow.

materials is −0.68 eV/atom, while it is −0.70 eV/atom and
−0.42 eV/atom for the core and shell materials, respectively.

The stability of the materials relative to the convex hull
are illustrated in Fig. 5, where the distribution of energies per
atom above the convex hull are shown. The above-the-hull

FIG. 4. Distribution of the heats of formation for all the machine-
learning structures, and for the core and shell materials of C1DB.

FIG. 5. Distribution of the energy per atom above the convex hull
for all the machine-learning structures, and for the core and shell
materials.

energies for the machine-generated materials are seen to be
typically in the range −0.1–0.3 eV/atom, with an average
value of 0.13 eV/atom. This is not much higher than for
the core and shell materials, which have average values of
0.06 eV/atom and 0.09 eV/atom, respectively. In C2DB and
C1DB the materials with energies relative to the convex hull
below a value of 0.2 eV/atom are classified as potentially
(meta-)stable, because the error in PBE is typically of that
order of magnitude. Furthermore, two-dimensional materials,
which can be exfoliated typically have an energy for the
monolayer of the order 0.2 eV/atom or less above the convex
hull [8]. Using the same convention of 0.2 eV/atom here, we
see that a large fraction of the machine-generated materials
(81% or 1008 out of 1250 materials) may in fact be considered
stable or metastable.

The CDVAE generates materials with varying number of
atoms and different number of chemical elements. The train-
ing set only contains materials with up to four different
chemical elements, but materials with up to eight different
elements are generated. The distribution of the energy above
the convex hull for the materials with different number of
chemical elements can be seen in Fig. 6. It is seen that a
large fraction of the materials have three (35.9%) or four
(37.6%) different chemical elements. The distribution of the
above-the-hull-energies are rather similar independent on the
number of different chemical elements.

E. Dynamical stability—phonons

As a further characterization of the stability of the mate-
rials, we calculate the phonon frequencies at � and X for
the materials with energies above the convex hull less than
0.2 eV/atom. Imaginary phonon frequencies (i.e., negative
eigenvalues of the dynamical matrix) are an indication that
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FIG. 6. The distribution of the energies above the convex hull
is shown for the machine-generated structures. Each distribution
corresponds to a given number of different chemical elements.

the material will restructure and therefore not be stable in
the form obtained in the original unit cell. To allow for the
three zero-frequency translational modes and some numerical
uncertainty, we consider a material dynamically stable if we
do not find modes with eigenvalues less than −0.01 meV/Å2.
About half of the materials (529 out of 1008) survive this
criterion. As can be seen from Fig. 7 there is a tendency
for the more thermodynamically stable materials to also be
dynamically stable, but the correlation is not very strong.

So to sum up at this stage of the workflow, the 10 000
materials originally generated by the CDVAE leads to 529

FIG. 7. The energy above convex hull distribution and dynamic
stability.

FIG. 8. The database’s stable 1D materials’ structural distance
matrix. The dark squares on the diagonal represent groups of sim-
ilar materials since the constructions have been arranged using the
rearrangement clustering approach [38].

new one-dimensional materials with energy above the convex
hull below 0.2 eV/atom and an apparent dynamical stability
at least in the doubled unit cell. We now proceed by charac-
terizing the geometries of the new materials.

F. Geometric classification

Figure 8 shows the RMSD distance matrix between all
of the 529 materials that are classified as 1D components in
the database and that are stable. Utilizing the rearrangement
clustering technique [38], the materials have been permuted
so that clusters with comparable structural characteristics look
dark along the diagonal.

We now proceed to classify the new materials geomet-
rically using RMSD and single-linkage clustering. Figure 8
visualizes the distance matrix, which is obtained by calcu-
lating the RMSD between all the 529 stable materials, as
a heat map. The materials have been reorganized to reveal
the existence of clear clusters in the space of materials. We
investigate the clustering further by constructing a dendro-
gram as shown in Fig. 9. The inset in the figure shows a
histogram of all distances in the distance matrix. The presence
of a double-peak distribution suggests that it makes sense
to separate the distances into two groups, those that repre-
sent materials, which are close by, and those that are further
apart. In a similar analysis of the core materials in C1DB,
the double-peak structure was very pronounced with a clear
minimum in the distribution at a distance of about R0 = 0.7 Å
[9]. In the present case the separation is less clear, but we
choose the distance of R0 = 0.4 Å to be used as a cutoff in the
dendrogram. With this cutoff we identify 42 different classes
of materials.

It turns out that ten of the classes contain five or more
materials and they are listed in Table I.

For several of the classes, there is an obvious connection
between the class and the position of the elements in the
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FIG. 9. Dendrogram showing the single-linkage clusters based
on the RMSD metric. A histogram of all distances in the distance
matrix is displayed in the inset, which also shows the cutoff distance
of 0.4 Å with a vertical line. The clusters identified with a cutoff
distance of 0.4 Å are displayed in different colors in the dendrogram.

periodic table. For example, for the largest group (Group 1)
with 34 materials the materials typically have two transition-
metal atoms and six halogen atoms. In some cases the halogen
atoms are substituted by chalcogen atoms. Around a row of
transition-metal atoms, the halogens or chalcogens position
themselves with an approximate threefold symmetry. There
are also some exceptions as for example Bi2I6 and Bi2Br6,
where Bi substitutes the transition-metal atoms. There is of
course some variation in bond distances and symmetry, but
the overall structure of the compounds remain the same.

Group 3 seems to be a generalization of Group 1 but now
with two transition-metal atoms and eight halogen atoms per
unit cell. The transition-metal atoms now are not directly
bound to each other, but the binding is mediated by the extra
halogen atoms.

Group 5 is also similar to group 1 but with two chains
of transition-metal atoms and with four halogen atoms and
one chalcogen atom per two transition-metal atoms. The
transition-metal atoms are again surrounded by halogen and
chalcogen atoms with an approximate threefold symmetry,
where the halogen atoms are bound to a single transition-metal
atom, while the divalent chalcogen atoms bonding to two
transition-metal atoms thereby connecting the two chains.

Group 7 can also be derived from Group 1, but with an
interesting substitution where one of the halogen or chalcogen
atoms is replaced by a dimer of chalcogen atoms. Since the
dimer is expected to be divalent it can substitute a single
chalcogen atom.

It is interesting to analyze in which ways the machine-
generated structures differ from already know structures from
C1DB. As mentioned above C1DB consists of two parts,
the core, which is obtained by exfoliation of experimentally
known structures, and the shell, which is generated by element
substitution in the core systems. The element substitutions are
performed in such a way that all atoms of a given element are

TABLE I. Clusters of crystal structures discovered using the den-
drogram. The table displays all clusters with more than five materials.

Structure formula z direction y direction

Group 1:HfI3S3Ti, Br6RuTi, Br-
ClI4Ti2, I5STaTi, Br6MoRu, Br6NbV,
I6MoZr, BrCl5HfMo, I6VZr, BrHf2I5,
I4Pd2Se2, HfI4S2Ti, HfI4Se2Ti, I4Se2Zr2,
Cl6PdRe, GeI6Ru, GeI6Ti, BeBr6Pt,
Bi2I6, Bi2Br6, GeI5TaTe, Cl4S2Ti2,
Br3ISe2Ti2, Cl4O2Ti2, Br6SiTi, I6SiTi,
Br6HfPt, Br6HfPd, Br6PdTi, Br6Pt2,
BrCl5PdPt, HfI6Pd, BrCl5CuTi,
BrI5PtTi

Group 2:I5Nb3Te2, I5Nb3SeTe,
I4SeSiTe2TiZr, I4Se3SiZr2,
Cl4HfRuS3Ti, I4SeTe2TiZr2,
AlCl3S4Ti2, Br3ClNbS3Ta2,
AlBr4CuS3Ti, AlBrI4S2Ti2,
Br4ClNb3S2, GeI5Se2VZr, I4SnTe3TiZr,
Br4GeS3SiTa, Br7GeMoNb

Group 3:Br8TiZr, HfI8Zr, Br5HfI3Zr,
Br8PtZr, Cl8PtZr, Br6Cl2PtTi,
Cl8PdTi, Cl8PdPt, BrI7Pt2, Br7ClPtTa,
Cl8OsW, Br3Cl5MoW

Group 4:Br3ClMo, BrCl7W2, C2I2W,
Br3ClPt, Br4Pt, BrCl7Pt2, Cl8OsPt,
Br4I4PtW, Cl8OsSn, I3TaTe

Group 5:Br8Hf4Se2, Br8S2Ti4,
Hf4I8Se2, Cl8SSeTi4, Br8Hf4SeTe,
Br8Hf4Te2, Cl8RuSe2Ti3, Br2Cl8Hf2Zr2,
I8NbSeTa3Te

Group 6:I8SW3, BrI7Mo3Se, I8STa3,
BrI7STa3, Br7ClNbSTa2, Hf3I8S,
Cl8Mo2OW, ClI6S2Ta3

Group 7:I5MoS2Ti, I5MoS2V,
Br5MoSe2V, Br5MoSe2Ti, Br5MoS2V,
Br5NbS2Ta, Cl5MoS2W

Group 8:Br5HfI3SeTiZr, I8SeTi2V,
I7MoSe2Ti2, Br7Nb3Te2, Cl9PtW2

Group 9:Cl9HfMoTi, Br9HfMoTa,
Cl8Mo2SSi, BeCl8Mo2S, AlCl9Ti2

Group 10:Br8ClHfPtSn, BiBr7Hf2Se2,
Cl9OsPtSn, Br2I4Pt3Se3, Cl9TiW2

substituted at the same time, i.e., if three sulfur atoms appear
in a certain material, then all three atoms may be substituted
by, say, selenium, but only at the same time. This also means
that symmetries, where for example three sulfur atoms are
rotated onto each other, will be conserved in the materials with
the substitutions.

The machine clearly generates new materials by a more
general substitution of chemical elements. The largest group
of materials in this study (Group 1) clearly resemble the
largest group of materials in the core of C1DB (named Group
1 in Ref. [9]), which contains materials like ZrI3, TiCl3, and
MoBr3. These materials also consist of chains of transition-
metal atoms surrounded by halogen atoms in a triangular
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FIG. 10. The energy gaps distribution as determined by PBE and
HSE

pattern, but because the halogen atoms are identical the three-
fold rotational symmetry is perfect. The Group 1 materials
generated by the machine can be obtained by element substi-
tution in the core materials from C1DB, but where individual
atoms of the same chemical element can now be substituted
by different atoms thereby breaking some symmetries. How-
ever, by using the RMSD as a structural distance measure the
similarity of the structures appears independent of symmetry
breaking.

We have investigated the connection between the geometri-
cally classified groups in Table I and the groups in the core of
C1DB more systematically by again applying RMSD similar-
ity with single-linkage clustering and a cutoff of R0 = 0.75Å
as used in the previous work. The analysis shows that Group
1 is in fact close to the Group 1 of Ref. [9]. Furthermore
Group 3 is similar to Group 6 for the core materials, and
Group 4 is similar to Group 4 of Ref. [9]. Groups 3 and 4
could therefore possibly have been obtained by a more general
chemical element substitution than the one performed in the
previous work. However, some of the other groups, like Group
5, do not have any similar materials in C1DB as an indication
that the machine is also able to generate completely new
structures and not only perform element substitution. Some
of the new groups might be obtained by substituting single
atoms by more complex radicals, but Group 5 is an example
of a new and highly symmetric class not seen before.

G. Band structure

We have calculated the band structures of all the new ma-
terials with both PBE and non-self-consistent HSE06. These
are all available in the new addition to C1DB [36], so here we
shall only show some statistics for the calculated band gaps.
Figure 10 displays the distribution of band gaps for the one-
dimensional components as calculated by PBE and HSE06.
Data are shown for both the core and shell of C1DB and for
the new machine-generated materials. Only the materials with

FIG. 11. The top of the valence band in Cl8Pt2S. The colors of
the circles indicate the size of the x component of the spin. The hole
mass is determined by a parabolic fit as illustrated in the figure. A
large spin-orbit splitting is clearly observed.

nonvanishing band gaps are shown in the figure. Among the
new materials, there are 46 (40) metallic systems according to
the PBE (HSE06) calculations.

Figure 10 shows the expected shift to larger band gaps
when comparing HSE06 to PBE. PBE is known to generally
underestimate the band gaps, while HSE06 provides values
closer to experiment. Interestingly, the machine-generated
materials are seen to have on the average lower band gaps
than those in the core and shell of C1DB. This results in
many new materials with band gaps in the visible range of the
electromagnetic spectrum. Some of the new materials might
therefore be relevant as light-absorbers. Our analysis suggests
that the lower average band gap of the machine-generated ma-
terials is due to the fact the composition of the ML generated
materials is different than the core and shell materials, and
certain elements like Cl, Br, I, Ti, Hf, and Pt are much more
prevalent in the ML generated structures.

H. Effective masses

The effective electron and hole masses, m∗
e and m∗

h are
calculated for all systems with a band gap using parabolic
fits as described in the methods section. Again, all calculated
data are available in the new version of C1DB. Figure 11
illustrates in the case of the system Cl8Pt2S the upper part of
the valence band and the determination of the hole mass. The
band structure is seen to exhibit a significant Rashba splitting.

As discussed in Ref. [9] atomically thin one-dimensional
systems with large Rashba splittings may potentially ex-
hibit Majorana bound states. We therefore also calculate the
wave vector kR at the band edge and the Rashba parameter
αR = h̄2kR/(2m∗) and include them in the database. For holes
in Cl8Pt2S shown in Fig. 11, the values are kR = 0.26 Å−1,
m∗ = 4.4 me, and α = 0.46 eV Å.
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IV. CONCLUSIONS

The machine-learning method applied in this work is
shown to be quite efficient in generating new, stable materials.
Out of the 1895 unique, new one-dimensional materials sug-
gested by the generator, 529 materials fulfill the two stability
criteria of less than 0.2 eV above the convex hull and positive
phonon frequencies.

A part of the new materials can be viewed as generaliza-
tions of the materials already present in C1DB, where the
core materials come from experimental databases, and where
the shell is constructed by element substitution. In C1DB no
materials have more than four different elements, while no
such limitation exists for the new materials, which have up
to eight different elements. Some of the new materials have
clearly the same basic atomic structure as materials already
present in C1DB, but with more general substitution of similar
elements.

However, the CDVAE also generates completely new
classes of materials with structures not seen before. Some of
these structures are even geometrically rather simple with an
understandable chemistry. A nice example of this is Group
5 in Table I where two transition-metal chains decorated by
halogen atoms are combined through the substitution of two
halogen atoms by a bonding divalent chalcogen atom.

It is an open question to which extent the new materials
will be experimentally synthesizable either in bulk form with
weakly bound one-dimensional components or as individual
one-dimensional chains, which could potentially be formed
at a substrate. According to the calculations, many of the
new materials would have the sufficient thermodynamic and
dynamical stability to exist, but the calculations give no in-
dication of realistic synthesis paths. Additional information
about entropic effects can be obtained through further analysis

of the phonon spectra, but it is an outstanding challenge to
computationally address possible synthesis procedures.

Another open question is how large the space of stable
1D materials is and therefore how many there are left to be
discovered. To at least partly address this question we generate
even more new materials using CDVAE. If we sample another
10,000 structures we get an additional 1560 unique structures,
which are not part of the initial 2157 structures generated in
this work. If we furthermore expand the training data with the
529 new stable materials found in this work and train a new
CDVAE model based on the now 1037 stable 1D materials, we
get 2600 new unique structures out of a sample of 10 000. This
shows that more materials can be found by generating addi-
tional structures and that adding new training data increase the
number of new materials even further. However, the stability
of these materials are at present unknown and would require a
substantial number of new DFT calculations.

The new materials are added to the C1DB [36] database
with the keyword Source set to “Machine learning generated.”
This keyword distinguishes them from materials in the core
(Source = “COD” or “ICSD”) and the shell (Source = “De-
rived by element substitution”) of the database.
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