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Dynamic length scale and weakest link behavior in crystal plasticity
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Irreversible deformation of crystals is often characterized by stochastic scale-free distributed intermittent local
plastic bursts. Quenched obstacles with short-range interaction were found to limit the size of these events, which
was termed as a transition from wild to mild fluctuations. Here, we show by analyzing the local yield thresholds in
a discrete dislocation model that a dynamic length scale can be introduced based on weakest link principles, and
this scale characterizes the extension of plastic events. The interplay between long-range dislocation interactions
and short-range quenched disorder is found to destroy scale-free dynamical correlations, thus leading to event
localization (that is, shortening of the length scale) which explains the crossover between the wild and mild
regimes. Several methods are presented to determine the dynamic length scale which can be generalized to other
types of heterogeneous materials.
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I. INTRODUCTION

Plastic behavior at micron and submicron scales differs
profoundly from that of bulk materials: Significant size-
related hardening [1–3] and intermittent stochastic strain
bursts [4,5] can be observed. The latter causes unpre-
dictable plasticity and staircaselike patterns in the stress-strain
curves in contrast to the smooth curves of bulk speci-
mens. In crystalline materials, plastic events are avalanchelike
rearrangements of topological crystallographic defects (dis-
locations). These events are also present in bulk materials,
as shown by studies investigating acoustic signals emit-
ted by these avalanches [6–10]. In amorphous solids and
foams, deformation is characterized by similar fluctuations,
but the irreversible units of plasticity are shear transformation
zones [11,12] and T1 events [13–15], respectively. Thus, one
may conclude that all these heterogeneous materials exhibit
substantially analogous stochastic plastic response.

Indeed, some authors have advanced the idea that plasticity
exhibits universality in a wide range of materials and scales
up to that of earthquakes [16–18]. In crystalline solids, the
picture is more complex since microstructure has a crucial
impact on the critical behavior. On the one hand, materi-
als with hexagonal close-packed structure, where practically
single-slip deformation takes place, exhibit large, scale-free
fluctuations [7,9,10]. On the other hand, when the dynamics
of dislocations gets more complex, e.g., at multiple slip in
face-centered cubic or body-centered cubic structures or by
the addition of solute atoms that hinder the motion of disloca-
tions with short-range forces, fluctuations may get bounded
or may even disappear (however, we note that long-tailed
criticality is not always destroyed by defects [19]). This phe-
nomenon, observed with the help of acoustic emission as
well as micropillar compression experiments, was termed a
wild-to-mild transition [9,20,21]. Clearly, the situation is even
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more complex, as it is also affected by specimen size, as
smaller is wider, and it was found to be the result of the
competition of an external length scale (due to the finite
specimen size) and some internal length scale (due to mi-
crostructural disorder) [20,21]. It has been shown recently
that further enrichment of the phenomenon is caused by ad-
ditional mechanisms, such as the effect of grain structure or
the Portevin–Le Chatelier effect [22]. Analogous conclusions
were drawn from simulation of the dynamics of straight-edge
dislocation ensembles in single slip. With the absence of
quenched disorder, the system exhibits criticality even at zero
applied stress [23,24]; however, the inclusion of point defects
with short-range interaction leads to a subcritical state with
bounded avalanches at small applied stresses and changes the
universality class of the yielding transition [25,26]. Although
a lot of modeling activities, involving dislocation dynamics
simulations, cellular automaton plasticity simulations, as well
as stochastic crystal plasticity simulations, were devoted to the
issue of dislocation avalanches and the corresponding univer-
sality classes (see, e.g., Refs. [27–30]), the precise definition
of the length scale that controls fluctuations remains elusive.
In this paper, therefore, we intend to analyze the wild-to-mild
transition on the model system of edge dislocations and aim
at providing a proper definition of the dynamic length scale
that controls fluctuations, linking this scale to microstructural
features, and understanding its role in the localization of plas-
tic slip. The focus will be on the microplastic regime, that is,
plasticity taking place at small loads below the yield stress;
thus, investigating the critical behavior associated with the
yielding transition is out of the scope of this paper.

Microplasticity is often explained based on weakest link
theory, both for crystalline [31–35] and amorphous mat-
ter [36,37]. The general assumption is that, as load increases,
the weakest spots of the material get subsequently activated.
It can be assumed that microstructural heterogeneity affects
plasticity through the variations in local strength, and this idea
led to the development of mesoscopic elastoplastic models for
both amorphous [38–45] and crystalline [46,47] materials. In
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these models, whenever the local stress at a given cell exceeds
the local threshold, plastic strain is accumulated, giving rise to
the anisotropic redistribution of the internal stress, which may
lead to subsequent activation of another cell. These general
models can, among others, account for the avalanche dynam-
ics characteristic of heterogeneous materials.

The weakest link argument is straightforward if plasticity
is local; however, its possible nonlocality was pointed out
both for crystalline [23,48] and amorphous solids [49]. Thus,
a fundamental question is how to select the size of the sub-
volume [the representative volume element (RVE)] which is
represented by a local yield stress value (i.e., the stress thresh-
old of plastic yielding). In this paper, we address precisely
this issue, that is, the dependence of the local yield stress
statistics on the size of the local subvolume using a general
model for crystalline plasticity (general here refers to the fact
that this model focuses on the most general properties of
dislocation dynamics such as long-range mutual interactions
and dissipative motion of dislocations; and specific properties
dependent on the crystal structure or temperature, such as
cross-slip or core effects, are not considered). The analysis
will allow us to identify the corresponding dynamic length
scale and to test whether and how the weakest link picture is
realized. To this end, we will study the statistical properties
of the local yield stress since it has been shown to have a
profound connection to the loci of plastic events during global
loading of model amorphous solids [50,51] and has also been
adapted for crystalline materials [52].

II. NUMERICAL MODEL OF DISLOCATION DYNAMICS

To investigate the problem at hand, a two-dimensional (2D)
discrete dislocation dynamics (DDD) model is used. The sys-
tem consists of N = 1024 edge dislocations that are straight,
parallel, and lie on parallel slip planes. The positions ri

of the dislocations are tracked on the xy plane perpendicular
to the dislocation lines. Let the Burgers vectors be parallel
with the axis x: bi = (±b, 0) with the same number of types
+ and −. The simulation cell is square shaped with periodic
boundary conditions [53,54] and contains varying number
Np of immobile point defects. Let Q denote the ratio of
these constituents: Q = Np/N . Here, 0 � Q � 10. The motion
of dislocations is determined by the forces acting on them
caused by long-range dislocation-dislocation and short-range
dislocation-point defect interactions and an empirical mobility
law [55,56]. This model focuses primarily on the effect of
the long-range elastic interaction between dislocations and its
interplay with the quenched disorder and the related physics.
We emphasize that the model certainly cannot account for
several three-dimensional (3D) dislocation mechanisms, such
as dislocation source truncation or starvation that may play
an important role at small specimen sizes. Other models have
also been used to model 2D crystal plasticity, such as one
based on Landau theory [57].

In this paper, stresses will be measured in units of τ0 =
μb

√
ρ

2π (1−ν) , the interaction stress between two dislocations at a
distance of the average dislocation spacing. Here, μ, ρ =
N/L2, and ν are the shear modulus, the dislocation density,
and Poisson’s ratio, respectively. Initial configurations were

obtained by letting systems of randomly positioned disloca-
tions (sampled from 2D uniform distribution) relax at zero
applied stress. (We note that choosing the initial configura-
tion according to a restricted random configuration proposed
by Wilkens [58] does not affect the results, for details see
Ref. [56].) To determine the local yield stresses, subsystems
were then locally loaded with a slowly increasing homoge-
neous external stress acting on dislocations within the box,
while the outer ones were kept fixed. The plastic event is con-
sidered to set on if any individual dislocation exceeds a certain
velocity threshold [56]. The 2D DDD is a strongly simplified
model of crystal plasticity; thus, it is not meant to reproduce
precise values of stresses measured in experiments for real
materials; however, it may still be of interest to compare these
values. One way to test that is to compare the flow stresses of
the same 2D DDD systems obtained earlier [59] with experi-
mental values of single crystals. On the experimental side, the
yield stress is expressed by the Taylor relation τy = αμb

√
ρ,

with the dimensionless parameter α found to be ∼0.1–0.4 for
single crystals [60]. In the 2D DDD systems, a flow stress of
(0.9 ± 0.3)τ0 was obtained (see Figs. 4 and 5 in Ref. [59]).
Assuming ν = 0.35, the α parameter from the simulations is
0.22 ± 0.07. This means the values are, in fact, in surprisingly
good accordance. However, we stress again that providing
exact yield stress values is not expected from this toy model.

III. LOADING PROTOCOL TO DETERMINE LOCAL
YIELD STRESSES

In previous works focusing on amorphous solids, spherical
regions were loaded [50,51,61]. These spheres were centered
on atoms and may overlap. Another method used for crys-
talline solids is loading dislocations individually [52]. In our
simulations, the subsystems are chosen differently: Square
grids of different resolutions are created, and the (disjoint)
grid cells are loaded separately; that is, external load is only
applied to dislocations that are within the given cell, and the
other dislocations are kept fixed (see the two representative
systems of Q = 0 and 10 in Fig. 1). This external stress
applied is the same for all dislocations within the box, and it is
increased quasistatically until the onset of the first avalanche.
Three factors led to this choice: Firstly, equilibrium dislo-
cation densities are much more heterogeneous than atomic
density in amorphous solids; thus, locating the centers on
dislocations (or selecting individual dislocations) necessarily
weights the local yield threshold statistics quite unevenly.
Secondly, this selection is also motivated by nanoindentation
experiments commonly used for measuring local hardness.
Here, a local volume is loaded (although unevenly); thus,
loading of a finite local volume (being of spherical, rect-
angular, or any other simple shape) seems a more natural
choice then exciting individual dislocations. (Note that, here,
we do not intend to model nanoindentation; this experimen-
tal technique merely serves as a motivation for our loading
protocol in the simulations.) Thirdly, local yield stress is an
important variable in mesoscale simulations [38–41,44] and
in continuum dislocation field theories as well [48,62–66], and
the numerical solutions of these models are performed on rect-
angular grids with lattice spacing (that is, spatial resolution)
as a parameter. Thus, local yield stress statistics (distribution,
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FIG. 1. The initial state of the first avalanche under global (B = 0) and local (B = 1, 2) loading of the red box in a pure (Q = 0) dislocation
system (upper row) and a system rich in point defects (Q = 10, bottom row). Subsystems (boxes) are obtained by recursive division of the
simulation cell. The active dislocations are colored according to the magnitude and direction of the velocity v: red-colored dislocations are
moving to the right, blue ones are moving to the left, and the white ones are almost still. Note the similarities in the dislocation velocities and
the local yield stresses between boxes at levels B = 0 and 1 in the case of Q = 0. Local yield stresses are even more similar in the case of
Q = 10 where the localized event is not affected much by the box division.

spatial correlations) computed on such grids could be directly
applied as input for such continuum models. The grid is ob-
tained starting from the whole simulation cell which is then
cut in half recursively both vertically and horizontally. The
number of subsequent division steps is denoted by B (see
Fig. 1). This procedure is continued until empty boxes (with-
out dislocations) start to appear (after B = 3 in our case) [56].

IV. LOCAL YIELD STRESS STATISTICS

Figure 2 shows the distributions of local yield stresses
obtained for different sizes B at Q = 10 (for other values of
Q, see Ref. [56]). Since the strength of the weakest links is
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FIG. 2. The cumulative distribution function (CDF) F of the
local yield stress τy at different B values at Q = 10. The inset shows
scaling collapse and the fitted Weibull distribution (turquoise) ac-
cording to Eqs. (1) and (2). Collapse obtained with α = 1.8 ± 0.1.

assumed to determine the yield threshold in boxes containing
numerous links, one may expect to get an extremal probability
distribution. If in the small strength limit Flink(τy) ∝ τ k

y , Flink

being the cumulative distribution function (CDF) of the yield
threshold τy, then the emergent extremal probability distribu-
tion is of Weibull type [34,48,67–69] with a CDF:

F (τy) = 1 − exp

[
−

(τy

λ

)k
]
. (1)

Here, k and λ are the so-called shape and scale parameters,
respectively. As seen in Fig. 2, these Weibull distributions
are reproduced by our simulations (with a shape parameter
tending from k = 1.6 ± 0.05 at Q = 0 to k = 1.3 ± 0.03 at
Q = 10). Additionally, the scaling collapse seen in the inset
shows that the scale parameter (proportional to the average
yield stress) scales with the linear subbox size Lbox = 2−BL
with an exponent α:

λ ∝ L−α
box. (2)

If the weakest link picture is realized (as assumed in the
mesoscale plasticity models described above), the yield stress
of each box is equal to that of its softest subbox. To test
whether it is indeed the case here, box-subbox modified Pear-
son correlations are computed according to

Cm,n=
〈
τ i

y,mτ i
y,m,n

〉−〈
τ i

y,m

〉〈
τ i

y,m,n

〉
√〈(

τ i
y,m

)2〉−〈
τ i

y,m

〉2√〈(
τ i

y,m,n

)2〉−〈
τ i

y,m,n

〉2 , (3)
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(a) (b)

(c) (d)

FIG. 3. Yield stresses of single systems at (a) Q = 0 and (b) Q =
10. One resolution B corresponds to one ring in the pie chart. The
box-subbox relations are represented by radial adjacency. The corre-
lation of yield stresses of parent boxes and their softest subboxes is
remarkably high, particularly in the Q = 10 case. A sequence of the
softest subboxes at different levels is highlighted with blue contour
in (b). (c) Pearson correlations Cm,n defined by Eq. (3) for different
values of Q. (d) The link-dimension D defined by Eq. (4) against
point defect concentration Q. The dashed curve is just a guide to the
eye.

where τ i
y,m denotes the local yield threshold of parent box i at

level B = m, and τ i
y,m,n stands for the minimum of the yield

stresses of the subboxes at level B = n > m of the parent box
i. The angle brackets denote expected value over parent boxes
i averaged over all systems at given Q. There are indeed high
correlations, as seen in Fig. 3(c). This is particularly true in
systems rich in point defects with values >0.9. At Q = 0,
however, the correlations are somewhat lower, especially in
the case of distant levels m and n.

Figures 3(a) and 3(b) also clearly show how systems with
point defects outperform the pure dislocation systems. The
yield stress maps of two representative systems with Q = 0
and 10 are condensed into single pie charts. In the latter, a
very prominent chain of weakest links is highlighted with
blue contour. In the pure system, however, the weakest link
behavior is not that apparent.

According to extreme value theory, the scale parameter λ

is related to the number Nlink of links as λ ∝ N−1/k
link [48]. This

with Eq. (2) yields

Nlink (Lbox) ∝ LD
box = Lkα

box, (4)

where the link-dimension D was introduced as D = kα.
According to Fig. 3(d), the systems show an anomalous,
super-extensive scaling of the number of links with D typi-
cally being between 2 and 3. The highest values of D occur
in systems at low Q, and as Q increases, D tends to 2,
corresponding to extensive scaling. This together with the
particularly high correlations suggests that the introduction of
quenched disorder localizes the plastic events.
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FIG. 4. The probability distribution function PLbox of link size
a/L for pure (Q = 0) and defect-rich (Q = 10) systems. At Q = 0,
the characteristic link size varies with box size, while at Q = 10,
different-sized boxes behave similarly. The inset shows curve col-
lapse, indicating the extensive scaling of link size at Q = 0.

V. DISTRIBUTION OF EVENT SIZES
AND THE EMERGENT LENGTH SCALE

To quantify localization, the velocities of dislocations at
the onset of the first plastic event were computed. As shown in
the representative cases of Fig. 1, the most active dislocations
are located in a finite region. The corresponding linear size a
was estimated by the semimajor axis of an ellipse fitted to the
active region [56] (which is shown in the Q = 0 cases of Fig. 1
where the ellipses are large enough to be visible). Figure 4
plots the distribution PLbox (a/L) of the event size for different
box sizes Lbox and concentration Q. As seen, for Q = 0, the
distribution strongly depends on the box size as size a can
always approach Lbox. In addition, the distributions obey a
simple scaling property:

PLbox (a) = p
(

a
Lbox

)
Lbox

, (Q = 0), (5)

with a suitable function p. This suggests that, in the Q = 0
limit, there is no length scale associated with the distributions,
and the link sizes may take any value with comparable prob-
ability. On the other hand, in the high density limit (Q = 10),
the distributions cut off at smaller link sizes and do not depend
on the box size:

PLbox (a) = p′(a), (Q = 10), (6)

with p′ being a suitable function. This is also evident from
the analysis of the median ãLbox of the link size distributions
in Fig. 6(a): For Q = 0, ãLbox ∝ Lbox, and for Q = 10, ãLbox ≈
const. Consequently, ãL, the median computed for the whole
simulation cell, characterizes the typical extent of the active
region at event onset. This quantity will be referred to as a
dynamic correlation length ξd := ãL.
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(a) (b)

FIG. 5. (a) Schematic representation of link sizes. (b) Sketch of
the emergent fundamental dynamic length scale determined by the
competition of the length scales introduced by the system size and
short-range interactions (point defects). Where the two lengths are
comparable, a smooth crossover describes the realized length scale.

The picture that emerges is as follows. Pure systems are
governed by long-range (∝ 1/r) interactions and lack natural
length scale. Consequently, avalanches may span the whole
system, and as was shown earlier, they have a scale-free size
distribution only cut off by the obvious limit posed by the
system size [23]. By adding short-range interactions, a natural
length scale is introduced that limits the extension of the
avalanches [see the sketch of Fig. 5(a)]. One, thus, concludes
that the lower values of the Pearson correlation coefficients
in Q = 0 systems are due to the fact that, if the particular
weakest link has large spatial extent, it is likely to get inter-

(a)

(b)

FIG. 6. (a) Median ãLbox against the box size Lbox/L for different
concentrations Q. Note that ãLbox is proportional with the subbox size
Lbox for Q = 0 and saturates for larger Q values. Inset: The dynamic
correlation length ξd, that is, the values highlighted in the main panel.
(b) Two-point correlation d (0, y/L) of +-type dislocations along axis
y. Inset: The cutoff ξs obtained by fitting as a function of the average
point defect distance dp. For a representative two-dimensional (2D)
d (r), see Fig. 3 in Ref. [56].

sected during the subbox division; thus, it cannot be activated
at the lower level (see transition B = 1 → 2 in the Q = 0
system in Fig. 1). At high Q, however, the link sizes are much
smaller; thus, such intersections have a much smaller proba-
bility, yielding larger correlation values. If fraction 0 < f � 1
is intersected at a transition B → B + 1, then Nlink (Lbox/2) =
(1 − f )Nlink (Lbox)/4, together with Eq. (4) yields dimension
D = 2 − log2(1 − f ). Hence, f = 1

2 (uniform distribution of
link sizes) leads to D = 3, whereas f = 0 (pointlike links)
yields D = 2. These two limits are quite closely realized in
pure (Q = 0) and defect-rich (Q = 10) systems [Fig. 3(d)].

The results indicate that the inclusion of short-range in-
teraction introduces a length scale to the otherwise scale-free
system. A natural candidate for this length scale is the average
spacing of point defects dp = L/

√
Np. Indeed, according to

the inset of Fig. 6(a), ξd ∝ dp holds, except for small Q where
the typical event size approaches the system size L.

It is known that dislocations in pure equilibrium 2D sys-
tems exhibit spatial correlations that are long range along
axis y [70–72] and have a cutoff if point defects are intro-
duced [73]. Here, we test whether this static correlation length
ξs is related to the dynamic correlation length ξd. To this
end, the two-point correlation functions, defined as d (r) =
ρ2(r)/ρ2 − 1, are determined from the discrete configurations
with ρ and ρ2(r) being the one- and two-point densities,
respectively [70,71]. Due to translational invariance, ρ2 only
depends on the relative coordinate r of the two dislocations
and ρ = N/L2. Figure 6(b) plots these correlation functions
along the axis y for different values of Q as well as the
fitted functions of the form d (0, y/L) ∝ (y/L)−γ exp(−y/ξs ).
The inset yields ξs ∝ dp, that is, ξs ∝ ξd; thus, the static and
dynamic correlation lengths are practically identical.

VI. SUMMARY AND OUTLOOK

In this paper, we investigated the local yield stress statistics
in discrete dislocation systems with and without short-range
quenched pinning. The spatial extent of the corresponding
plastic events was also analyzed. It was found that the active
regions are localized if pinning points are present and can
be characterized with a dynamic correlation length ξd being
proportional with the average distance of the pinning points.
In systems without point defects, however, no such scale
exists, and plastic events may span the whole system; that
is, here, ξd → L [see sketch in Fig. 5(b)]. On a scale above
ξd, a conventional weakest link picture is realized: The yield
stress of a larger volume is inherited from its weakest sub-
volume. As such, a cell size equal to the dynamic correlation
length can be considered as the RVE. Below ξd (i.e., always
in point-defect-free systems), division of the subvolume may
lead to the inactivation of the weakest link. However, we
emphasize that, in pure systems, it is not the weakest link
picture that is violated, as also inferred from the obtained
Weibull statistics [48]; rather, the weakest links simply do
not have a maximum size. Therefore, the RVE is the whole
simulation cell in this case.

From a broader perspective, we first note that yield stress
in crystalline materials has always been considered a local
quantity. Here, we investigated how local it is. We found that,
if only long-range dislocation interactions are present, then
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yielding is not at all local, and yield stress distributions depend
on the size of the region the yield stress represents. Short-
range effects, however, introduce an RVE of reduced size that
makes yielding indeed local. Similar short-range effects to
the one considered here are ubiquitously present in crystals:
Dislocation reactions, cross-slip, precipitates, solute atoms, or
various phase or grain boundaries are all expected to introduce
a dynamic length scale in an analogous manner. This idea
echoes on the long-standing debate on the dominance of either
short-range [74–77] or long-range interactions [64,65,78,79]
in the appearance of dislocation patterns with a characteristic
scale. The length scale ξd may also be related to the concept
of dislocation mean free path introduced in phenomenological
plasticity models [80]. Here, we conclude that the appearance
of the length scale is, in fact, the result of the competition
between long- and short-range effects. The potential in the
method of consecutive subbox divisions introduced here is its
generalizability to more complex cases to determine the exact

value of the dynamic correlation length and, consequently, the
size of the RVE. This possibility also applies to other types of
heterogeneous materials, such as glasses, and is expected to
tackle the issue of RVE selection in the multiscale modeling
of complex materials.
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