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Elastic interactions of plastic events in strained amorphous solids before yield
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It has been widely accepted that the plastic events of amorphous solids after mechanical yield belong to a
highly correlated avalanche state. However, whether the plastic events before yield are correlated or not is still
unsettled, leaving their interactions largely unexplored. In this paper, by means of atomistic simulations, typical
Cu50Zr50 metallic glasses, as the model system, are sheared under athermal quasistatic limit to study these plastic
events. The statistical analysis of both stress drops and waiting times reveals that plastic events before yield
are in the correlated avalanche state and the interactions among them are mediated by the robust elasticity.
The temporal correlation analysis of the nonaffine displacement fields further reveals that the elastic interactions
are short-lived strong but long-standing weak, which results in the fractal morphology of potential energy
landscape. By introducing vibrational modes to explore plastic events, we clearly exhibit the way how the elastic
interactions organize the Eshelby-type shear transformations into avalanched plastic events. The correlation
matrix, with its component being the dot product of the vibrational modes at different configurations, is defined
to trace the evolution of vibrational modes during elastic deformation and across plastic events. Three reasons
accounting for the robust elasticity are identified: (i) the limited destruction of plastic events on global elasticity,
(ii) the persistent hard spots embedded in elastic matrix, and (iii) the self-recovery of elastic matrix during elastic
deformation. Our results clarify the atomic-scale nature of both elastic deformation and plastic instabilities before
yield in amorphous solids, providing fundamental information for the development of elastoplastic constitutive
models.
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I. INTRODUCTION

Amorphous solids are ubiquitous in nature and technology,
ranging from obsidian, colloidal, and metallic glasses, to gran-
ular materials. Unlike ordered solids or crystals residing in the
global energy minimum, long-range disordered amorphous
solids have complex rugged potential-energy landscape (PEL)
with hierarchical or fractal local minima [1–3]. Upon external
perturbations, such PEL responses have a wide spectrum of
vibrations or activations, consequently giving rise to a series
of plastic events that occur at different spatiotemporal scales.
Considerable efforts have been spent in the past decades to
demystify these sophisticated events, and thus to construct
constitutive laws for amorphous plasticity along mean-field or
mesoscale lines [4–11].

In amorphous solids, smallest component units of plastic
events have been identified as Eshelby-type shear transforma-
tions (STs) that are local cooperative rearrangements. These
events will incur elastic perturbations around them, which
in turn trigger other events. Via such nonlocal elasto-plastic
interactions, STs can organize into the plastic events oper-
ating on multiple scales in both time and space. Close to
mechanical yield or in the postyield regime, plastic events
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have been extensively studied [12–25], from which some im-
portant knowledge can be gleaned. First, most events belong
to a highly correlated avalanche state, as the probability dis-
tribution of the stress or energy drops released by avalanches
exhibits the universal power-law decay with the self-similar
character. Second, these avalanched events are extended, rep-
resenting metabasin-to-metabasin transitions on PEL, and the
avalanche sizes in general scale as the system sizes with a
fractal link. Third, the irreversible plastic events dominate
the mechanical response of the system after yield, whereas
event-induced elastic fields are dynamically transient in time.
In other words, the interaction between plastic events after
yield is transiently elastic.

It is intriguing that plastic events can be detected in the
apparently linear elastic stage much below the plastic yield.
Conventionally, such events are considered to be rare, highly
localized, and thus spatiotemporally uncorrelated. Since a
very limited number of STs are involved, they are often
taken as the touchstone of various predictors for amorphous
plasticity [26–36]. On the other hand, however, the statis-
tics of plastic events even at very small strains far below
yield still points to so-called elastic avalanches [37,38], but
with a power-law exponent (∼1.0) very different from that
(∼1.5) obtained in the steady-state flow regime. The underly-
ing physics is suggested to result from the marginally stable
state of metabasins with a hierarchy of fine basins [3,39,40].
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Under small strain perturbations, the elastic avalanches are
caused by self-organized basin-to-basin transitions but within
the initial metabasin. Thus, whether the plastic events before
yield are avalanched or not is still under debate and their inter-
actions are a fortiori unknown. In this work, we focus on these
across-basin events, because they bridge the gap between
fundamental STs and macroscopic plastic response such as
plastic yield [11,21,36,41–43] and shear banding [25,44–47].

Meanwhile, the situation that plastic events exist deep in
the elastic regime calls into question the existence of elas-
ticity of amorphous solids with some puzzles or anomalies
[39,48–51]. It is well accepted that solids in the continuum
limit can be approximated as a homogeneous elastic body, in
which low-frequency vibrational modes are extended phonons
that can be treated as linear elastic waves and follow the
Debye law. However, for all amorphous solids, the continuum
limit of their vibrational modes no longer follows the Debye
law [52–55], and instead there appear some localized modes
that follow another universal non-Debye scaling law [56–61].
More interestingly, some critical modes can evolve from these
low-frequency extended or localized modes to fingerprint up-
coming plastic events in the amorphous structure. It therefore
provides an efficient way to clarify the states and correlations
of plastic events by analyzing the event-associated vibrational
modes. In a recent work by some of us [62], the strain evo-
lution of low-frequency modes associated with the first four
ST events was carefully traced, preliminarily revealing strong,
elastic interactions among the neighboring events. But, the
universality and generality of such interactions urgently needs
further exploration by examining more plastic events beyond
pure STs.

In this paper, we aim to answer these questions: Are the
plastic events before yield correlated or not? And if yes, how
do they interact with each other? By means of molecular dy-
namic (MD) simulations, prototypical three-dimensional (3D)
Cu-Zr metallic glasses are selected as our model system to
study the plastic events of strained amorphous solids before
yield. By the statistical analysis of stress drops and waiting
times, we find that plastic events are in the avalanche state
and their interactions are mediated by the robust elasticity.
The temporal correlation analysis of nonaffine displacement
fields further indicates that these interactions are strong in
the short term, but weak in the long term. Finally, vibra-
tional modes, as the manifestation of transient elasticity in
the vibrational space, are studied to reveal how the interac-
tions are mediated by elasticity and why the elastic media are
robust.

The paper is organized as follows. Section II gives the
detailed protocol of the sample preparation and mechani-
cal loading. Section III presents the theoretical description
of the deformation dynamics of athermal quasistatic (AQS)
amorphous system. In Sec. IV, the statistical analysis of
stress drops and waiting times determines whether the plas-
tic events are correlated or not. In Sec. V, the evolution of
the elastic interactions between plastic events is revealed by
the temporal correlation analysis of the nonaffine displace-
ment fields. In Sec. VI, vibrational modes are introduced
to explore the way and cornerstone of these interactions.
At last, some conclusions and discussion are highlighted in
Sec. VII.

FIG. 1. Atomic model of Cu50Zr50 metallic glass: (a) the 3D
packing configuration; (b) the radial distribution function.

II. ATOMISTIC MODELING

A. Sample preparation

A prototypical Cu50Zr50 model metallic glass is adopted
as a representative of general amorphous solids. The struc-
ture and property of this binary glass have been well studied
previously by us [54,63–66]. The present model herein con-
tains 19 652 particles interacting with the Finnis-Sinclair–type
embedded-atom method potential [67]. During the sample
preparation and the mechanical loading processes, periodic
boundary conditions are applied on all three dimensions. All
atomistic simulations are performed using the LAMMPS code.

We prepare the glass sample from its melting state, which
has been equilibrated at 2000 K for 2 ns that is much longer
than its α-relaxation time. Then, the equilibrated liquid is
quenched to 0 K with a cooling rate of 1010 K/s. An additional
sub-Tg annealing during the cooling process is performed at
700 K for 60 ns to accelerate the aging dynamics, which drives
the inherent structure (IS) to the deeper basin on PEL [68]. Af-
ter being quenched to 0 K, the sample is additionally in-depth
relaxed to a local potential-energy minimum by conjugate
gradient algorithm. During the sample preparation process,
the external pressure maintains at zero. The temperature and
pressure are controlled with Nosé-Hoover thermostat and
Parrinello-Rahman barostat, respectively. Figure 1(a) shows
a typical sample with the 3D packing configuration of ∼7 ×
7 × 7 nm3. The amorphous nature of this sample is confirmed
by the radial distribution function as shown in Fig. 1(b).
Except for the short-to-medium-range order, there is a clear
long-range disorder beyond ∼1 nm. One can notice a split of
second peaks which indicates a typical feature of the glassy
solid.

B. Athermal quasistatic shear

AQS shear is adopted as our loading protocol to gather
plastic events. This loading protocol has been widely used
to study the deformation behavior of amorphous solids rang-
ing from metallic glasses to simple pairwise-potential glasses
[18,69,70]. The AQS algorithm consists of two repeated al-
ternating steps: (i) Apply an affine simple shear deformation
to the sample with a very small strain step δγ = 1 × 10−5;
(ii) Minimize the potential energy of the sample with the
fixed simulation box by conjugate gradient algorithm. In this
protocol, the glass configuration during deformation process
always resides in an IS and the plastic events are induced by
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FIG. 2. (a) Thirty stress-strain curves of five independent sam-
ples sheared in six different directions. The black thick one belongs
to the selected representative sample. (b) A partial magnification of
the black thick curve in (a). The curve consists of plastic events
and elastic portions, which are quantitatively characterized by stress
drops and waiting times, respectively.

shear strain, not by thermal activation. Therefore, the AQS
shear captures the plastic instabilities of athermal amorphous
solids, whose role is still crucial for thermal glasses in the
finite temperature and strain rate [15].

In order to obtain sufficient plastic events for statistical
analyses in Sec. IV, five independent samples are prepared
and each of the samples is then sheared along six different
directions, viz., ±xy, ±yz, and ±xz. But, a representative
sample sheared along the +xy direction is selected for the
analyses of nonaffine displacements in Sec. V and vibrational
modes in Sec. VI to save the computing expense. Figure 2(a)
shows the 30 stress-strain curves in total and the black thick
curve belongs to the selected representative sample. The ex-
tended and avalanched plastic events after yield, associated
with large stress drops, inhibit the increase of macroscopic
shear stress, leading to the steady-state flow state. In contrast,
the plastic events before yield are smaller and more local-
ized, which give rise to the slight deviation of mechanical
response from standard linear elasticity. These small events
are clearly shown by the partial magnification of stress-strain

curve in Fig. 2(b). The elastic deformation is interrupted by
intermittent plastic events, shown as discrete stress drops on
the stress-strain curve. Each event is complete in an individual
strain step. Therefore, the mechanical response of amorphous
solids under AQS condition can be clearly divided into two
parts: plastic events and elastic portions. A plastic event cor-
responds to a stress discontinuity on the stress-strain curve
and an elastic portion is the region between two adjacent
plastic events. The plastic event and the elastic portion can
be quantitatively characterized by the stress drop �τ (stress
reduction of the plastic event) and the waiting time tw (strain
interval of the elastic portion), respectively. The alternately in-
terspersed plastic events and elastic portions, corresponding to
the dissipation and accumulation of elastic energy, constitute
the whole deformation process.

III. DEFORMATION DYNAMICS OF
AQS AMORPHOUS SYSTEM

Under the AQS condition, the plastic instability of amor-
phous solids is a saddle-node bifurcation process (a minimum
in PEL hits a saddle) induced by applied strain [71,72]. To
describe the process from the perspective of the structure of
PEL, Maloney and Lemaître have constructed the decompo-
sition of deformation in vibrational space [72,73], which is
given in the following for the completeness of the description.

A 3D amorphous system of N particles under AQS simple
shear is taken into consideration. The system’s configuration
is represented by the position of all particles in the reference
state r, which is a 3N-dimensional vector. The 3D vector
ri, denoting the position of particle i, is the component of r
on particle i. The AQS system is constrained to follow the
deformation-induced changes of IS, so the configuration r is
only determined by the applied shear strain γ , that is, r(γ ).
The total potential energy U is a function of the system’s
configuration r(γ ) and the applied shear strain γ , that is,
U (r(γ ), γ ). According to the mechanical equilibrium condi-
tion, we have

∂U

∂r
= 0. (1)

Besides, the stability of IS during elastic deformation leads
to the continuous trajectory in configuration space. In other
words, r(γ ) is a continuous function of strain γ . Taking the
total derivative of Eq. (1) to γ , we further have

∂2U

∂r∂r
· dr

dγ
+ ∂2U

∂r∂γ
= 0. (2)

We reduce vector r by particles’ mass and get a 3N-
dimensional vector R. Ri is the component of R on particle
i, and it is related with ri by

Ri = √
mi · ri, (3)

where mi is the mass of particle i. Then, Eq. (2) can be
rewritten as

∂2U

∂R∂R
· dR

dγ
+ ∂2U

∂R∂γ
= 0. (4)
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Equation (4) includes the dynamical Hessian matrix:

H = ∂2U

∂R∂R
, (5)

and the nonaffine force field:

� = − ∂2U

∂R∂γ
. (6)

Hessian matrix H contains the vibrational information
of system, and its eigenvalues and eigenvectors correspond
to the square of vibrational frequencies ω2

p and vibrational
modes �p, respectively. Nonaffine force field � represents
the nonequilibrium forces on particles after applying a small
affine shear strain to the system. The existence of these
nonequilibrium forces results in the nonaffine displacements
during elastic deformation, which contributes to the compu-
tation of elastic constants. Substituting Eqs. (5) and (6) into
Eq. (4), we have

H · dR
dγ

= �. (7)

Inverting the Hessian matrix H and decomposing the non-
affine force field � on vibrational modes �p, the analytical
expression of elastic deformation that decomposes in the vi-
brational space is obtained:

dR
dγ

=H−1 · � =
⎛
⎝∑

p

�p �p

ω2
p

⎞
⎠ · � =

∑
p

(
� · �p

ωp
2

� p

)
.

(8)
The projection coefficient of elastic deformation dR/dγ

on vibrational mode �p is (� · �p)/ω2
p, where the numerator

� · �p and denominator ω2
p are the motivation and resis-

tance of the nonaffine elastic deformation in the direction of
vibrational mode �p, respectively. However, Eq. (8) breaks
down for plastic deformation. This is because r(γ ) is no
longer a continuous function of the strain γ at the strain
point where plastic instability occurs. Nevertheless, Eq. (8)
still provides much useful information for understanding the
plastic deformation. When approaching plastic instability,
the frequency of the lowest-frequency mode, excluding the
three Goldstein modes with zero frequency, tends to zero
and the corresponding projection coefficient diverges. This
indicates that plastic instability is signified by the lowest fre-
quency going to zero. Correspondingly, the initial instability
path is guided by this critical mode with zero frequency. Thus,
the vibrational modes approaching instability provide a set of
base directions for exploring the deformation path of plastic
events on PEL.

In atomistic simulations, the obtained configurations r(γ )
come from discrete strain points that are the integer mul-
tiples of strain step δγ = 1 × 10−5. The component of
mass-reduced nonaffine displacements on particle i between
configurations r(γ ′) and r(γ ′′) can be expressed as

�Ri(γ ′, γ ′′)=√
mi · �ri(γ ′, γ ′′) = √

mi · (ri(γ ′′) − ri(γ ′)),
(9)

where ri(γ ′) and ri(γ ′′) are, respectively, the position of
particle i at shear stain γ ′ and γ ′′ in reference configuration

r(γ ′). Then, the distance between r(γ ′) and r(γ ′′) in the
configuration space can be quantified as

‖�R(γ ′, γ ′′)‖=
(

N∑
i=1

‖�Ri(γ ′, γ ′′)‖2

)1/2

, (10)

where ‖...‖ denotes the 2-norm of a vector. When the con-
figurations r(γ ′) and r(γ ′′) are, respectively, designated as
the beginning and ending strain points of plastic events,
‖�R(γ ′, γ ′′)‖ can measure the magnitude of plastic events
and is abbreviated as ‖�Rplastic‖. The same treatment can be
performed for elastic portions, and the associated abbreviation
is ‖�Relastic‖.

Taking vibrational modes as a set of base directions,
�Rplastic can be decomposed on vibrational modes at the be-
ginning strain points of plastic events:

�Rplastic

‖�Rplastic‖ =
∑

p

αp
�p

‖�p‖ . (11)

However, note that coefficients αp are no longer determin-
istic like elastic deformation, but event dependent, which will
be clearly analyzed in Sec. VI A.

IV. STATISTICAL ANALYSES

A. Stress drop

Figure 3(a) plots the measured stress drops in 30 stress-
strain curves as a function of the applied strain. The stress
drops before yield exhibit an approximately linear dependence
on the applied stress [74]. Taking this linear dependence into
consideration, we normalize the stress drop �τ by the stress
level τ when the stress drop occurs and get a dimensionless
parameter called normalized stress drop:

S = �τ

τ
. (12)

The normalized stress drops as a function of the applied
strain are shown in Fig. 3(b). We can find that the normalized
stress drops are small and steady within the strain range of
0–0.1, suggesting that these plastic events are similar to some
extent and can be classified into one category. Thus, this strain
range, bounded by the vertical dashed line in Fig. 3(b), is
chosen to study the plastic events before yield. It is noted that
these events are very different from those beyond the strain
of 0.1 where the global yield occurs. This critical strain of
0.1 is very close to the yield point of a MD Cu50Zr50 sample
determined by the potential energy versus strain method under
oscillating shear [75].

We conduct the statistical analyses of the normalized stress
drops S at different deformation stages and the results are
shown in Fig. 4. The probability density function of S shows a
power-law distribution with the power-law exponents chang-
ing from about 1 in the initial strain range 0–0.02 to about
1.5 in the subsequent strain range 0.02–0.1. The power-law
distribution signifies that plastic events occur in the form
of avalanches and they are interacted with each other. The
avalanched plastic events have been widely found in the
postyield region of amorphous solids [12,13,24,76,77], but
rarely reported before mechanical yield [38,78–80]. Power-
law exponent of 1 suggests that the slightly perturbed system
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FIG. 3. (a) Stress drops and (b) normalized stress drops in 30
stress-strain curves as a function of the applied strain. The vertical
dashed line in (b) indicates the upper limit of the strain range 0–0.1,
within which plastic events are studied.

belongs to the marginally stable state where the bottom of the
initial metabasin is very rough with a hierarchy of subbasins
[3]. This exponent has been predicted by the mean-field theory
of marginally stable state in Gardner phase [37] and also
observed by the statistics of plastic events at the very small
applied strain [38]. In contrast, power-law exponent of 1.5
suggests a typical self-organized criticality [81], which has
been universally observed in the steady-state flow regime of
various amorphous solids [77,82] and predicted by the mean-
field depinning theory [83,84]. The same exponent 1.5 before
yield and in steady-flow regime is also observed in the sim-
ulation of two-dimensional Lennard-Jones glass under AQS,
and the authors ascribe it to the emergence of the criticality
with shear loading [79]. Thus, the change of the power-law
exponents may suggest a transition from marginally stable
state to self-organized critical state, resulting from the gradual
rise of the configuration’s positions in the initial metabasin
caused by mechanical loading.

FIG. 4. Probability density function of normalized stress drops
at different deformation stages shown by legend. The power-law
exponents changes from about 1 in strain range 0–0.02 to about 1.5
in strain range 0.02–0.1 with mechanical loading.

Next, we determine the number of particles involved in
these plastic events. The power-law distribution of the nor-
malized stress drops in Fig. 4 indicates that the size of plastic
events spans a wide range. It is thus unreasonable to judge
whether a particle participates in a plastic event by setting a
fixed cutoff of the nonaffine displacements of this particle.
Instead, the displacement participation number (DPN), based
on the localization of the nonaffine displacement fields of the
plastic event, is a more reasonable parameter [85], which is
defined as

DPN =
(∑

i ‖(�Ri )plastic‖2)2

∑
i ‖(�Ri )plastic‖4 . (13)

DPN ranges from 1 to N . If �Rplastic is concentrated on
a single particle, then DPN equals 1. If �Rplastic distributes
homogeneously on every particle, then DPN equals N . Fig-
ure 5 shows the relationship between DPN and ‖�Rplastic‖.
The increase of DPN with ‖�Rplastic‖ indicates that larger
plastic events contain more particles. The number of particles
involved in plastic events ranges from several to several hun-
dreds, shown by the wide range of the values of DPN . Plastic
events contain at least several particles, which is comparable
to the lower bound of a ST [41,86]. Many STs organize into
the avalanched plastic events by interactions, leading to the
plastic events containing several hundreds of particles.

The spatial organization of plastic events is also investi-
gated by the spatial autocorrelation analysis of shear strain
field. Figure 6(a) shows the 3D distribution of the cumulative
atomic shear strain γxy within applied strain range of 0–0.1,
which indicates that sample deforms homogeneously before
yield and plastic events are uniformly dispersed throughout
the sample. The 3D spatial autocorrelation function of the
cumulative γxy in Fig. 6(a) is defined as

C(δr) = 〈γxy(r)γxy(r + δr)〉, (14)
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FIG. 5. Relationship between DPN and ‖�Rplastic‖. DPN in-
creases with ‖�Rplastic‖ and has a wide range from several to several
hundreds.

where the angle bracket denotes the average over the 3D
space. Figure 6(b) shows the x-y cross section of the calcu-
lated C(δr). We observe an obvious quadrupole pattern that
is the typical characteristic of STs embedded in isotropic
elastic medium [25,87–89]. However, this pattern shows a

FIG. 6. (a) The 3D spatial distribution of the cumulative atomic
shear strain γxy within strain range 0–0.1. Sample is sheared along
xy direction. (b) Plot of the x-y cross section of the 3D spatial
autocorrelation function of the cumulative atomic shear strain γxy in
(a), exhibiting a characteristic quadrupole pattern.

FIG. 7. (a) Waiting times in 30 stress-strain curves as a function
of the applied strain. (b) Probability density function of waiting times
shows an obvious peak close to 25 strain steps.

preferential correlation along the shear (horizontal) direction.
The reason comes from the elastic interactions between these
plastic events, which will be discussed in Sec. V.

B. Waiting time

Figure 7(a) plots the measured waiting times tw in 30
stress-strain curves as a function of the applied strain. Dif-
ferent from stress drops [Fig. 3(a)], the waiting times show
no obvious dependence on the stress level within strain range
of 0–0.1 [74]. The result of the statistical analysis of waiting
times is shown in Fig. 7(b). The probability density function
of the waiting times shows an obvious peak at tw closes to
25 strain steps. The decrease of probability before the peak
indicates that the system becomes stable again after the oc-
currence of a plastic event, which signifies that the system
is solidlike and the elasticity is robust [90]. The decrease of
probability after the peak results from the instability of the
soft spots with mechanical loading. Thus, the appearance of
the characteristic peak is the combined effect of the robust
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FIG. 8. Correlation function of nonaffine displacement fields as a
function of strain interval. There are four categories of curves shown
by legend according to the properties of nonaffine displacement
fields.

elasticity and the plastic instability. Based on the statisti-
cal analyses of stress drops and waiting times, we conclude
that the interactions between avalanched plastic events before
yield are mediated by the robust elasticity.

V. NONAFFINE DISPLACEMENTS ANALYSIS

To explore the degree of interactions between plastic
events, we conduct the temporal correlation analysis of the
nonaffine displacement fields and the correlation function is
defined as

TC(�γ ) =
〈

�Rstep(γ )

‖�Rstep(γ )‖ · �Rstep(γ + �γ )

‖�Rstep(γ + �γ )‖
〉
, (15)

where �Rstep(γ ) denotes the nonaffine displacement fields
within a strain step, which is short for �R(γ , γ + δγ ). There
are two kinds of the nonaffine displacement fields: one is
from the elastic deformation step and the other from the
plastic event step. Therefore, the correlation function can
be divided into four categories based on the properties of
the nonaffine displacement fields of the terms �Rstep(γ ) and
�Rstep(γ + �γ ), which are labeled as elastic-elastic, elastic-
plastic, plastic-elastic, and plastic-plastic. 〈. . .〉 denotes the
average of each category within the applied strain range 0–0.1.
The correlation function (15) reflects the spatial similarity of
the nonaffine displacement fields separated by strain interval
�γ and the results are shown in Fig. 8.

The black curve shows the correlation function between
two elastic deformation steps separated by strain interval �γ .
With the increase of the strain interval, the correlation decays
slowly from about 1 and remains 0.6 when �γ approaches
500 strain steps. The large and slowly decaying correlation
indicates that the similarity of the elastic displacement fields
is relatively high over a long strain range. This reflects that
the elasticity is very robust and the elastic matrix as a skeleton
can support the whole deforming system. It is worth noting
that as the strain interval increases, two elastic fields would

span several plastic events, but their correlation is still high,
which signifies that the destruction of plastic events on elastic
matrix is limited. The red curve shows the correlation be-
tween the elastic displacement field and the subsequent plastic
displacement field. We find that the elastic-plastic correlation
value decays rapidly from a high value of nearly 0.6 to below
0.2 at the interval of 30 strain steps. This behavior implies
that there exists a short-term strong correlation between the
elastic deformation and subsequent plastic event. The correla-
tion between the elastic deformation and the previous plastic
events is shown by the blue curve. It has a quite low value
below 0.1 and is constantly decaying. The weak correlation
makes it difficult to infer previous plastic events based on
the current elasticity. In other words, the deforming elastic
media has little memory of the plastic events that previously
occurred in it. Either the red curve (elastic-plastic) or the blue
one (plastic-elastic) does not decay to zero over the studied
strain range (500δγ ). This long-term weak correlation be-
tween elasticity and plasticity also results from the robustness
of the elastic matrix before yield. The green points give the
correlation between arbitrary two plastic events separated by
strain interval �γ . The value of most green points fluctuates
around zero, but this does not mean that the plastic events are
uncorrelated with each other. It just means that they occur in
different locations and manners in 3D space, i.e., their detailed
configurations are not spatially similar, which is consistent
with the uniform macroscopic deformation before yield.

The underlying picture is that plastic events can stir the
elastic environment around them and thus the elastic envi-
ronment that carries the perturbations of the plastic events
will incubate the subsequent plastic events. Therefore, we can
draw a conclusion from the results of Fig. 8 that mediated
by the robust elasticity, there exist short-term strong interac-
tions and long-term weak interactions among plastic events,
although these events are not spatially similar. Furthermore,
the elastic-plastic correlation value of the red curve is greater
than 0.2 at the strain interval of 25δγ corresponding to the
characteristic waiting time in Fig. 7(b), also indicating that
there are relatively strong interactions between adjacent plas-
tic events, which is consistent with our previous work by
examining the first four events [62]. The strain interval of most
plastic events (not adjacent) before yield is large, so these
events are long-term weakly interacted. This explains why the
quadrupolar pattern appears in Fig. 6(b).

The AQS deformation of amorphous solids can also be un-
derstood by the morphology of PEL. We adopt the nonaffine
distance matrix to describe the morphology of PEL and its
expression is [77]

χ (γ ′, γ ′′) = ‖�R(γ ′, γ ′′)‖2

N
. (16)

As can be seen in Fig. 9(a), the pattern of the calculated
χ (γ ′, γ ′′) consists of many squares of varying sizes and nodes
that connect these squares. Dark blue squares represent the
basins within which the ISs are close with each other and
the nodes represent the barrier crossing processes. From the
lower-left corner to the upper-right corner of the pattern,
the squares become smaller and the nodes become denser.
This indicates that the system accelerates deformation and
surmounts the barrier faster with mechanical loading, which

013601-7



DUAN, WANG, DAI, AND JIANG PHYSICAL REVIEW MATERIALS 7, 013601 (2023)

FIG. 9. Nonaffine displacement matrix reflects fractal characteristics of PEL. (a) Nonaffine displacement matrix within the strain range
0–0.1. (b), (d) Magnification of two regions represented by dashed window in (a). (c) and (e) correspond to (b) and (d) with a more precise
color scale, respectively.

results from larger plastic events consisting of more STs.
Figures 9(b) and 9(d), respectively, show the magnification
of the selected regions of dashed window in Fig. 9(a), and the
corresponding precise patterns with a smaller color scale are
shown in Figs. 9(c) and 9(e). A dark blue square can consist
of many smaller squares with similar characteristics, clearly
demonstrating that some small basins can organize into a large
basin and the morphology of PEL is fractal [3]. The formation
of the fractal PEL pattern is consistent with the self-similar
avalanched plastic events with a power-law distribution of the
normalized stress drops in Fig. 4.

VI. VIBRATIONAL MODE ANALYSES

From the results in Secs. IV and V, we reveal that the
robust elasticity mediates the short-term strong, but long-term
weak interactions between plastic events before yield. How-
ever, two key questions remain not answered. One is,
how does elasticity mediate the interactions between plastic
events? The other is, why does elasticity remain robust with
the continuous occurrence of plastic events? As theoretically
derived in Sec. III, vibrational modes, as the manifestation of
transient elasticity in the vibrational space, closely relate to
the plastic events. Thus, the two questions should be resolved
by exploring the participation of vibrational modes in plastic
events (Sec. VI A) and the evolution of vibrational modes in
elastic portions and plastic events (Sec. VI B), respectively.

A. Participation of vibrational modes in plastic events

Firstly, we study the participation of vibrational modes in
plastic events. A parameter that is the square of the coefficient
αp in Eq. (11) is defined to measure the participation degree:

PDp = α2
p =

(
�Rplastic

‖�Rplastic‖ · �p

‖�p‖
)2

. (17)

The larger the participation degree, the more the vibrational
modes dominate the plastic events. Summation of PDp of all
modes equals 1 due to the orthogonality of vibrational modes.

Figure 10 shows the calculated participation degree of the
vibrational modes of three representative plastic events with
different ‖�Rplastic‖ scales. Their ‖�Rplastic‖ are 2.6, 10.7,
and 47.5 Å · (g/mol)1/2 and are labeled as small-, medium-,
and large-scale events, respectively. All three scale events
show that the participation degree decreases with the increase
of the frequency of vibrational modes, which is due to a
higher energy barrier in the direction of a higher frequency
mode [91]. The higher participation degree at lower frequency
indicates that plastic events are mainly controlled by the low-
frequency modes. To reveal the spatial characteristics of the
participation modes, both �Rplastic and dominant modes of the
three scale plastic events are presented in 3D real space.

For the small-scale event in Fig. 10(a), the lowest-
frequency mode �1 dominates the plastic event, and its
participation degree is up to 0.96. �Rplastic in Fig. 11(a) shows
that this event consists of a single ST with a characteristic
quadrupole pattern. Particles with large magnitude of the �1

polarization vectors undergo large nonaffine displacements;
see Fig. 11(b). It is clearly shown that this small ST event
can be predicted by the lowest-frequency mode �1.

For the medium-scale event in Fig. 10(b), both the lowest-
frequency mode �1 and the second-lowest frequency mode
�2 contribute greatly to the plastic event. Their corresponding
participation degrees are 0.36 and 0.49, respectively. Interest-
ingly, the second-lowest frequency mode �2 has even larger
participation ratio than the lowest one, �1. Figure 12(a) shows
the total potential energy as a function of the minimization
step during the energy minimization process. It is obvious that
this plastic event consists of two STs: the first ST is small
with a small energy drop near the 100th minimization step
and the second ST is large with a large energy drop near the
200th minimization step. The two STs are separated from

013601-8



ELASTIC INTERACTIONS OF PLASTIC EVENTS … PHYSICAL REVIEW MATERIALS 7, 013601 (2023)

FIG. 10. Participation degree of the vibrational modes of
three scale plastic events. (a)–(c) correspond to small-, medium-,
and large-scale events, whose ‖�Rplastic‖ is 2.6, 10.7, and 47.5 Å ·
(g/mol)1/2, respectively. The green circles in (a)–(c) correspond to
the lowest-frequency mode �1 and the orange triangle in (b) corre-
sponds to the second-lowest frequency mode �2.

FIG. 11. Nonaffine displacement field �Rplastic of the small-scale
event and its dominant vibrational mode. (a) �Rplastic of this event in
3D real space. Vector field in (b) is the slice of (a) in xy plane and
the radii of green circles are proportional to the magnitude of the
polarization vectors of the lowest-frequency mode �1.

FIG. 12. Nonaffine displacement field �Rplastic of the medium-
scale event and its dominant vibrational modes. (a) Plot of the total
potential energy as a function of the minimization step during the
energy minimization process. Two STs corresponding to the abrupt
energy drops can be clearly identified. (b) �Rplastic of this event in 3D
real space. Vector fields in (c)–(e) correspond to the xy-plane slice of
�Rplastic of this event, the first ST, and the second ST, respectively.
Radii of green circles in (c) and (d) are proportional to the magnitude
of the polarization vectors of the lowest-frequency mode �1, and the
radii of orange circles in (c) and (e) are proportional to the magnitude
of the polarization vectors of the second-lowest frequency mode �2.
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FIG. 13. Nonaffine displacement field �Rplastic of the large-scale
event and its dominant vibrational modes. (a) �Rplastic of this event
in 3D real space. Vector field in (b) is the slice of (a) in xy plane.
Radii of green circles are proportional to the magnitude of the po-
larization vectors of the lowest-frequency mode �1, which has the
largest participation degree. And, the radii of pink, orange, cyan, and
blue circles are, respectively, proportional to the magnitude of the
polarization vectors of the vibrational modes �7, �4, �10, and �23,
which have the second-, third-, fourth-, and fifth-largest participa-
tion degree. Vibrational modes are numbered in ascending order of
frequency.

each other in 3D space and can be easily distinguished by
the �Rplastic; see Fig. 12(b). The first ST indicated by �1

(green circles) is on the right and the second ST indicated
by �2 (orange circles) is on the left; see Fig. 12(c). Because
the second ST is larger than the first one, the �2 mode has a
larger participation degree than that of the �1 mode. Thus, the
most dominant mode of a plastic event, that is, the vibrational
mode with the largest participation degree, may not be the
critical mode that triggers the plastic event. After the first ST
taking place, the elastic disturbance incurred by the first ST
induces the plastic instability in the region of the second ST;
see Fig. 12(d), thereby leading to the occurrence of the second
ST; see Fig. 12(e). These pictures provide solid evidence for
the process in which STs self-organize into avalanched plastic
events by virtue of elastic interactions. In addition, it can be
seen from Fig. 12(c) that both �1 and �2 are localized at
the two STs that make up a plastic event. The entanglement
of the two vibrational modes signifies that there exist strong
elastic interactions between soft spots that are the candidates
for plastic events, as revealed by the across-event tracing of
vibrational modes [62].

For the large-scale event in Fig. 10(c), the lowest-
frequency mode �1 has the largest participation degree,
but the value is only 0.16, comparable to some other low-

frequency modes. Figure 13(a) shows that particles with large
nonaffine displacements are joined together in a system-
spanning region, indicating that this plastic event consists of
many correlated STs. Figure 13(b) shows that the �1 mode
indicates the initial ST in the lower-right corner and the subse-
quent STs are related to some other low-frequency modes (�7,
�4, �10, and �23) with the second-, third-, fourth-, and fifth-
largest participation degree. The entanglement between these
low-frequency modes is evidenced by observing the overlap
of the localized regions of their polarization vectors. Thus, the
small participation degree of the most dominant modes is due
to the fact that many highly correlated STs contribute to the
large-scale event and many highly entangled modes related to
these STs together control such avalanched events.

From Fig. 10, there always exists a most dominant mode
with the maximum participation degree:

PDmax = max
p

{PDp}. (18)

Its relation to the plastic event’s scale ‖�Rplastic‖ is shown
in Fig. 14. The decrease of PDmax with ‖�Rplastic‖ indicates
that the dominant degree of a single mode decreases with the
increase of the scale of plastic events. Furthermore, a critical
value (‖�Rplastic‖ ≈ 10 Å · (g/mol)1/2) can be clearly identi-
fied. The plastic events below this critical value have a large
PDmax with the upper boundary close to 1. The plastic events
above this critical value have a small and rapidly decreas-
ing PDmax. The critical value also appears in Fig. 5, which
distinguishes small plastic events containing few particles
from large events containing many more particles. The critical
phenomenon is caused by the avalanche behavior of plastic
events. Small plastic events consist of a few or even a single
ST. The number of the STs contained in the plastic events
increases with the increase of ‖�Rplastic‖. Large plastic events
occur in the form of avalanches, which consist of many STs,
resulting in more particles contained in it. Therefore, more
low-frequency modes with relatively low PDmax, associated
with the STs, participate in the large events.

B. How do plastic events influence the vibrational modes?

The influence of plastic events on vibrational modes in-
cludes two aspects: the direct influence is that plastic events
alter the vibrational modes, and the indirect effect is the sub-
sequent evolution of vibrational modes in elastic portions after
events. In order to quantitatively characterize the two aspects
of influence, we define a correlation matrix based on the dot
product of the vibrational modes between configuration r(γ ′)
and configuration r(γ ′′):

C(γ ′, γ ′′) =

⎡
⎢⎢⎢⎣

[�1(γ ′) · �1(γ ′′)]2 [�1(γ ′) · �2(γ ′′)]2 · · · [�1(γ ′) · �3N−3(γ ′′)]2

[�2(γ ′) · �1(γ ′′)]2 [�2(γ ′) · �2(γ ′′)]2 · · · [�2(γ ′) · �3N−3(γ ′′)]2

...
...

. . .
...

[�3N−3(γ ′) · �1(γ ′′)]2 [�3N−3(γ ′) · �2(γ ′′)]2 · · · [�3N−3(γ ′) · �3N−3(γ ′′)]2

⎤
⎥⎥⎥⎦, (19)

where �m(γ ′) denotes the vibrational mode m in configu-
ration r(γ ′) and �n(γ ′′) denotes the vibrational mode n in
configuration r(γ ′′). If �m(γ ′) and �n(γ ′′) correlate best with

each other, that is,

Cmn(γ ′, γ ′′)=max
p

{Cpn(γ ′, γ ′′)} = max
q

{Cmq(γ ′, γ ′′)}, (20)
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FIG. 14. Relationship between PDmax and ‖�Rplastic‖. Red solid
arrow is drawn as a guide for the eyes.

then �m(γ ′) and �n(γ ′′) can be identified as the same vibra-
tional mode at different deformation stages and is termed as
the identifiable mode. Based on this, the identification ratio
IR, defined as the ratio of identifiable modes to all vibrational
modes, is used to measure the similarity of the overall vibra-
tional modes between two configurations:

IR = Niden

3N − 3
, (21)

where Niden is the number of identifiable modes and 3N−3
is the number of all vibrational modes excluding three Gold-
stone modes. A high identification ratio represents that the
elasticity inheritance between two configurations is large.

Identification ratio of plastic events can be obtained by des-
ignating configurations r(γ ′) and r(γ ′′) as the beginning and
ending strain points of plastic events, and the same is taken
for elastic portions. The dependence of IR on ‖�Rplastic‖ and

FIG. 15. Dependence of identification ratio on ‖�R‖ for elastic
portions and plastic events.

FIG. 16. Comparison of ECC between plastic event (a) and elas-
tic portion (b) under equal ‖�R‖ of 8.3 Å · (g/mol)1/2. Green circle
in (a) denotes ECC of the critical mode.

‖�Relastic‖ is shown in Fig. 15. Identification ratio of both
plastic events and elastic portions decreases with the increase
of ‖�R‖, which presents the function relation of s-shaped
curve. During the loading process, elastic portions are always
interrupted by plastic events. So, the ‖�R‖ of elastic portions
is relatively small compared to that of plastic events, and only
the first half of the s-shaped curve is observed. The decrease of
identification ratio indicates that the overall vibrational modes
continually evolve with either elastic or plastic deformation.
A convergent and obvious function relation between IR and
‖�R‖ indicates that the identification ratio of plastic events
or elastic portions is only related to the ‖�R‖, independent of
the detailed cause of it, such as the number, size, and spatial
organization of the STs in the plastic events, or the loading
stress level. For all studied plastic events, IR is larger than
0.5 and shows the slow decline at large ‖�R‖. For elastic
deformation, IR exceeds 0.7 and can reach about 1 at small
‖�R‖. These results indicate that most vibrational modes can
survive with the elastic deformation or even plastic events, and
the destructive ability of plastic events on elasticity is limited
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FIG. 17. Comparison of the frequency variation of identifiable modes between plastic event and elastic portion with equal ‖�R‖ of 8.3
Å · (g/mol)1/2; the chosen cases are the same as that in Figs. 16(a) and 16(c) and correspond to the increase and decrease of the frequencies of
plastic event, respectively. (b) and (d) correspond to the increase and decrease of the frequencies of elastic portion, respectively.

before yield. It is intriguing to observe that although the shape
of these two curves is similar, the curve of elastic portions has
a slight downward shift compared with that of plastic events.
So, at the same ‖�R‖, the IR in the former is smaller than
that in the latter. This means that the overall vibrational modes
in elastic deformation evolve more significantly than that in
plastic deformation.

In the following, we explore the detailed evolution of each
vibrational mode by defining the evolutionary correlation co-
efficient as

ECCm = max
q

{Cmq(γ ′, γ ′′)}. (22)

This coefficient denotes the correlation between the vi-
brational mode �m(γ ′) in configuration r(γ ′) and its most
relevant mode in configuration r(γ ′′). In other words, the
former is most likely to evolve into the latter. A large ECC
indicates a little change in the polarization vectors of the
vibrational mode. Plastic event and elastic portion with equal
‖�R‖ of 8.3 Å · (g/mol)1/2 are selected as cases for com-
parison and the result is shown in Fig. 16. We find that the
ECC of plastic event and elastic portion is quite different.
The deformation of plastic events is localized, and only parts
of the soft spots are destructed, while the rest of the soft
spots can be preserved. Thus, it is shown in Fig. 16(a) that
the low-frequency modes corresponding to the destructed soft
spots have small ECC, e.g., the critical mode. However, the
low-frequency modes corresponding to the preserved soft

spots have large ECC. In contrast, the deformation of elas-
tic portions is uniform, and the strong elastic interactions
between soft spots cause the entanglement and violent evolu-
tion among the low-frequency modes, leading to small ECC
of the low-frequency modes in Fig. 16(b). The polarization
vectors fields of medium-frequency modes are extended and
more closely related to the uniform elastic deformation. Thus,
the uniform elastic deformation causes the evolution of the
medium-frequency modes more significantly than the local-
ized plastic events. This is quantitatively reflected by the
smaller ECC of the medium-frequency modes in Fig. 16(b)
than that in Fig. 16(a). Therefore, under the same ‖�R‖, the
identification ratio of the elastic portions smaller than that
of the plastic events is caused by the larger evolution of the
low- and medium-frequency modes. Besides, for both plastic
events and elastic portions, the high-frequency modes are
essentially unchanged, which means that the hard spots cor-
responding by the high-frequency modes are very robust and
correspond to some stable structural units in the system, such
as Cu-centered 〈0, 0, 12, 0〉 and Zr-centered 〈0, 0, 12, 4〉
Voronoi clusters [27]. These hard spots are embedded in the
elastic matrix, acting as backbones to increase robustness of
the elasticity.

In addition to the variation of polarization vectors as
analyzed by ECC above, the evolution of the vibrational
modes can also be measured by the variation of vibrational
frequencies. Note that the frequency variation should be es-
tablished on the identifiable modes that are considered as
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the same modes during elastic deformation or plastic events.
The results are shown in Fig. 17. Plastic events can cause
both the increase and decrease of the vibrational frequencies
[see Figs. 17(a) and 17(c)], producing random perturbance
to the elasticity. It should be noted that although the polar-
ization vectors of the high-frequency modes are essentially
unchanged [Fig. 16(a)], their frequencies change greatly.
This indicates that the topology of the hard spots, related
to polarization vectors, remains under plastic deformation,
while their hardness, related to vibrational frequencies, has
changed. For elastic portions, an interesting phenomenon is
discovered in Figs. 17(b) and 17(d): the frequencies of the
low-frequency modes become lower and the frequencies of
the high-frequency modes become higher. This means that
the soft spots in the system become softer and eventually
destabilize, causing plastic events to occur; meanwhile, the
elastic matrix becomes stronger, enhancing the robustness of
the elasticity. The elastic matrix becoming stronger is also
reflected by a significant gap around 40 THz in Fig. 17(d)
where the vibrational frequencies reject decline and become
higher.

By the analyses of the variation of the polarization vectors
and frequencies of the vibrational modes, the robust elasticity
can be attributed to three factors: (i) the destruction of plastic
events on elasticity is spatially limited; (ii) the hard spots
embedded in elastic matrix can maintain both in the plastic
events and the elastic portions; (iii) the elastic matrix gradu-
ally recovers its strength, which is diminished by the previous
plastic events, during the elastic deformation. It is such robust
but constant-evolving elasticity that leads to the long-standing
but fast-decaying elastic interactions between plastic events.

VII. CONCLUSION AND DISCUSSION

Our results in this paper can be summarized as follows.
(i) Mediated by the robust elasticity, there are short-term
strong interactions and long-term weak interactions between
plastic events before yield, which lead to the plastic events
belong to the correlated avalanche state. (ii) The avalanched
plastic events are consistent with the fractal morphology of
PEL, which suggests a transition from marginally stable state
to self-organized state with mechanical loading. (iii) Clearly
evidenced by the entangled low-frequency dominant modes,
the picture that STs self-organized into the avalanched plastic
events by virtue of elastic interactions is obtained. (iv) The
robust elasticity results from the limited destructive ability of
plastic events on elasticity, the hard spots acting as backbones
to strengthen the elastic matrix and the self-recovery of elastic
matrix during elastic deformation.

There is a great deal of work aimed at predicting plastic
events, and part of it is based on vibrational modes [26,92,93].
But, their predictive ability is limited and still ongoing to im-
prove, which can be explained by our results. The short-term
strong correlation between elasticity and plasticity indicates
that the short-term prediction of plastic events can be easily
realized, and many works have achieved this goal even for
the deterministic prediction [32,73,93]. The predictive ability
diminishes as the increase of predictive range [34,36]. Thus,
the long-term prediction of plastic events is challenged and

only the probabilistic prediction is achieved [26,34,92]. This
is due to the long-term weak correlation between elasticity
and plasticity. Nevertheless, the existence of long-term weak
correlation lays the foundation for long-term prediction. By
extracting key information hidden in the elasticity, sophisti-
cated but effective machine-learning methods greatly improve
the ability of long-term prediction [33,94].

Our results also provide some important insights into the
construction of constitutive laws for amorphous plasticity.
Avalanched plastic events before yield, acting as precursors
to mechanical yielding and shear-band nucleation [21,95], are
closely related to the macroscopic mechanical response of the
material. The cause of the avalanches, that is, the elastoplas-
tic interaction, is usually neglected in mean-field theory, or
greatly simplified in mesoscale model [10]. It has been found
that disorder-induced inhomogeneity in amorphous solids
gives rise to rich phenomena in various mechanical behav-
iors such as yielding, shear banding, fatigue, and fracture.
For many mesoscale models, only inhomogeneity of local
yield threshold, described by spatially uncorrelated probabil-
ity distribution, is considered, while inhomogeneity of elastic
constants is usually neglected [10,20,83,96]. This leads to
the deviation of elastic consequences of a pure ST from the
ideal Eshelby field, as confirmed by the comparison of the
deformation fields of atomistic simulations and finite-element
calculations [70], which will significantly affect the avalanche
behavior [97]. Thus, elastic inhomogeneity is necessary to be
incorporated into the mesoscale models, including its distri-
bution and evolution. And, they are partly reflected by our
findings: the random disturbance induced by plastic events,
the self-recovery in elastic deformation, and the stable hard
spots.

With further mechanical loading, the system undergoes
yielding transition and enters into steady flow stage finally.
During the transition, the system quickly loses its stability by
the destruction of stable structural units [98] and the accu-
mulation of free volume [45,99]. Thus, the robust elasticity
transforms into the transient elasticity, which is consistent
with the significant increase of avalanche size and the as-
sociated fractal dimension after yield in the simulation of
Lennard-Jones glass [79,80].The transient elasticity is also ev-
idenced by the decreasing correlation between plastic events
after yield in the creep test [96].

At last, we address that the present research under AQS is
still crucial even in the finite temperatures and strain rates. It
can be anticipated that the introduction of thermal effect will
soften the elastic matrix and reduce the interactions between
plastic events, but these effects need further investigations.
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