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Network approach for the analysis of the irreversible deformation of solids with soft heterogeneities
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We introduce the concept of shear band network (SBN) in ductile solids containing soft particles to investigate
their irreversible deformation. Drawing on network science tools, we show that the evolution of the SBN explains
the material strength at the coarse scale. To gain physical understanding of the activation order of the SBN
links during tensile loading, we develop an analytical model based on the continuum theory of irreversible
deformation. The results are used to construct an efficient, parameter-free indicator of the material strength that
is solely based on the particle size and spatial distribution, thus proving that network science can advance the
understanding of strength mechanisms in ductile solids.
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Most solid materials are heterogeneous at scales larger
than the atomic, yet considerably smaller than the size of
the objects or components the materials are used for. The
heterogeneity can stem from the subdivision into well-defined
domains, e.g., crystals in polycrystalline metals, as well as
from the presence of secondary phase particles and porosities
[1]. This second type of heterogeneity is very common, and
it is often of high concern due to its dramatic impact on the
material behavior at the coarse scale. The effect can be either
beneficial and purposely pursued, like in particle-reinforced
composites and porous orthopedic implants [2,3], or heavily
detrimental and cause for unpredicted failures, like undesired
porosity in 3D printed metal parts [4]. Consequently, the
development of reliable and efficient scale-bridging tools to
predict the impact of such heterogeneity on the mechanical
strength is imperative.

In ductile materials, the mechanical strength is defined by
the stress σS at which irreversible deformation is observed
at the coarse scale. The effect of particles and porosities—
henceforth simply called particles—on σS can be estimated by
assuming the material to be a continuum and applying meth-
ods based on continuum mechanics. Analytical approaches
are fast but with limited applicability, as they use highly sim-
plified assumptions about the particle size, shape, and spatial
distributions [5–7]. Direct numerical simulation techniques do
not suffer from this limitation, as they are based on numerical
models of the whole material microstructure [8]. However,
the maximum number of particles that can be included in a
finite-element model is now a few hundred [9], which is still
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much smaller than the number of micrometer-sized particles
forming the microstructure of real parts. A workaround is
to limit the analysis to a representative element (RE) of the
microstructure and to estimate the σS via computational ho-
mogenization techniques [10,11]. However, as the RE must
be sufficiently large to be statistically representative, this ap-
proach can still be computationally very expensive [12].

The absence of a technique that is both accurate enough to
account for microstructural heterogeneity and efficient enough
to enable predictions based on a large number of particles
has two adverse consequences. First, it precludes a synergistic
coupling with modern, data-intensive characterization tools,
e.g., x-ray tomography, which can provide accurate quantifi-
cations of the distribution of micrometer-sized particles in
solids [13,14]. Second, it delays the development of new func-
tionally graded materials with tailored particle distribution
throughout the microstructure [15–19], as it prevents under-
standing the mechanisms governing the σS in the presence of
many unevenly distributed particles.

In this Letter, we propose an approach to understand and
predict the irreversible deformation that controls the strength
of ductile materials containing soft particles. The key idea is
to model the material as a network rather than as a contin-
uum. Experimental and theoretical studies show that, in the
presence of micrometer-sized soft particles, the irreversible
deformation localizes in so-called shear bands (SBs) con-
necting the particles [20–23] (see Supplemental Fig. 1 in
the Supplemental Material [24] and the associated references
[9,25]). This suggests that the irreversible deformation can be
modeled as a time-evolving network where the nodes repre-
sent the particles and the links represent the SBs. Network
approaches have been successfully applied to investigate the
deformation of granular materials [26–28]. In the following,
we demonstrate that their application realm can also be ex-
tended to heterogeneous solids.

Consider a solid whose microstructure consists of particles
embedded in a homogeneous isotropic matrix. The particles
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FIG. 1. (a) Mechanical response of the RE model (green solid
line); σ̄ is normalized by the matrix strength σ m

S . Dotted lines indicate
the min-max range across the RE set. The red line indicates the
second derivative. (b) Statistical box plots showing the ε̄id vs σ̄S

data for all REs (red line: median; box: interquartile range; whiskers:
2.5 and 97.5% percentiles). ε̄id only takes discrete values due to the
incremental solution strategy; see the Supplemental Material [24].

are assumed “soft,” i.e., with negligible stiffness compared
to the matrix, e.g., voids. Following Ref. [29], we assume
that such microstructure can be represented by a 2D square
RE containing a uniform spatial distribution of circular holes
generated via a random sequential absorption algorithm. The
holes (particles) have radius R and the side length of the
RE is L = 60R. The number of particles np is such that a
particle area fraction of fp = 20% is attained, which is often
used as the reference for random heterogeneous media [30].
In total, 100 REs with different random realizations of the
particle distribution are generated and subsequently subjected
to uniaxial tension, simulated with the finite-element model
described in the Supplemental Material [24,31], in which the
matrix material is modeled as linear elastic-perfectly plastic
[32] with strength σ m

S . The effective deformation is measured
by the scalar strain ε̄ = �L/L, which corresponds to the rel-
ative elongation of the RE. The scalar effective stress needed
to attain a certain value of ε̄ is computed as σ̄ = F/L, where
F is the overall reaction force on the RE.

The curve σ̄ vs ε̄ predicted by the model for one single RE
is shown in Fig. 1(a). After an initial linear stage, the slope of
the curve decreases gradually until the curve becomes almost
flat. The reason is the irreversible deformation developing in
the ductile matrix, which causes the nonlinear response. The
point where the irreversible deformation is detectable in the
effective response is identified by a nonzero zero value of the
second-order derivative of the σ̄ vs ε̄ curve and it is marked
with the symbol ε̄id . The effective stress at which the final
plateau is reached corresponds to the material strength σ̄S ,
which we quantify following the 0.2% residual strain conven-
tion [1].

The spatial distribution of the particles has an impact on
σ̄S [33]. This effect is captured by the two dotted lines in
Fig. 1(a), which represent the maximum and minimum values
of the effective stress across the RE set. The variation in terms
of σ̄S is on the order of 10–15%. Although both ε̄id and σ̄S

are influenced by the particle distribution, a statistical t test
performed on the ε̄id vs σ̄S data—reported as boxplots in
Fig. 1(b)—reveals that larger ε̄id does not imply higher σ̄S

FIG. 2. (a) Example of irreversible deformation pattern in the
matrix at ε̄ = 0.1% tensile strain in the horizontal direction, re-
sulting from an RE simulation. Brown: particles; Blue: matrix
undergoing irreversible deformation (ẇi > 0); White: matrix under-
going reversible deformation only (ẇi = 0). (b) SBN associated with
the irreversible deformation pattern in (a).

on average (p value = 0.38). This indicates that σ̄S is mostly
determined by the progressive evolution of the SBs inside
the microstructure, rather than by the onset of the local irre-
versible deformation at the microscale.

To investigate the formation of SBs at strains larger than
ε̄id , the output of the RE model in terms of the rate of local
irreversible work per unit area ẇi is used to define a time-
dependent, unweighted, undirected spatial network [34] that
represents the instantaneous pattern of irreversible deforma-
tion in the microstructure. This shear band network (SBN)
is computed at discrete time points during the deformation
process as follows. First, pairs of particles connected by SBs
are identified from the scalar field ẇi using the methodology
described in the Supplemental Material [24], which, essen-
tially, consists of subdividing the region where ẇi > 0 into
domains of irreversible deformation, each associated with
one particle. A SB exists between two particles if the cor-
responding domains are adjacent. Subsequently, the SBN is
constructed by associating a node with each particle and a
link with each pair of nodes for which the corresponding
particles are connected by a SB. Figure 2 shows an example
of the irreversible deformation pattern resulting from the RE
simulation and the corresponding SBN.

An analysis of the evolution of the basic metrics of the SBN
reveals its strong correlation with the macroscopic response
of the material past ε̄id . Figure 3 compares the evolution of
the number of connected components ncc, i.e., the number
of subnetworks in which any two nodes are reachable via a
sequence of links [35], with the evolution of ∂2σ̄ /∂ε̄2, which
can be interpreted as the rate at which the material stiffness
varies (reduces) due to irreversible deformation. These two
quantities are reported as average values across the RE set. In
addition, the values of ncc are normalized by np and ∂2σ̄ /∂ε̄2

is scaled to facilitate visual comparison. The figure clearly
shows correlation between these two quantities. This fact is
confirmed by the value of the Spearman rank coefficient ρ

and its p value, which are 0.96 and 4.2 × 10−16, respectively,
as indicated in the figure. Remarkably, as demonstrated in
Supplemental Fig. 4 [24], such correlation holds true also if
the particle area fraction in the RE is 10% instead of 20%, if
the particle spatial distribution is clustered instead of uniform,
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FIG. 3. Comparison between the evolution of the number of con-
nected components ncc (blue squares) and the evolution of ∂2σ̄ /∂ε̄2

(red triangles). The curves represent average values across the RE
set, while the error bars indicate the corresponding max-min range.

or if the RE is subjected to other deformation modes, i.e.,
equibiaxial or shear, suggesting that the correlation has a
general validity. Similar correlations can also be established
with other SBN metrics; see Supplemental Fig. 5 [24].

Importantly, the findings from Fig. 3 hint that it is possible
to estimate the material strength, σ̄S, based on properties of
the SBN. The SBN, however, is not known a priori. Ac-
cordingly, we propose a method to identify a set of potential
SBN links (the SBs) from the spatial distribution of particles
alone, i.e., without performing computationally expensive RE
simulations. Noticing that the SBN is planar, i.e., its links
do not cross each other as discussed in the Supplemental
Material [24], we compared the SBN with a prototypical
planar network model, the Delaunay network defined by the
particle centers [34]. The Delaunay network has a number
of desirable properties including that all pairs of nearest-
neighbor nodes are connected [36]. Considering the evolution
of the SBNs for all simulations, we found that more than 95%
of the SBN links exist in the corresponding Delaunay network
(see Supplemental Fig. 6 [24]), regardless of the specific type
of particle distribution, area fraction, and deformation mode.
This implies that the SBN is essentially a subset of the Delau-
nay network. Consequently, we can henceforth consider the
evolution of the former as a progressive activation of the links
of the latter.

To investigate which links of the Delaunay network are
active in the SBN, we examined the activation order of the
Delaunay links by classifying them into bins based on their
length �, defined as the distance between the particle centers
minus 2R, and their orientation θ with respect to the direction
of the tensile loading applied to the RE. For each bin and
increment of ε̄, the average fraction fAL of active links was
then computed across the RE set. The outcome is reported in
Fig. 4. It can be noticed that the shortest links oriented at an
angle between approximately 30º and 90º are the first to ac-
tivate (ε̄ = 0.05%). However, their fraction quickly saturates
and longer links become active soon after (ε̄ = 0.07%). This

FIG. 4. Heatmaps showing the average fraction fAL of Delaunay
links with normalized length �/R and orientation θ relative to the
loading direction. Results are shown for several values of ε̄. The
value of fAL corresponding to each color is shown in the colorbar;
white corresponds to zero links.

process continues until the distribution of fAL stabilizes and
reaches a nearly steady state at ε̄ = 0.30%.

While the early activation of the shortest links is explained
by higher local stresses in the matrix due to stress concentra-
tions [5], the dependence of the link activation sequence on θ

is not intutive. To justify it, we developed an analytical model,
which considers the rate of irreversible work ẆSB associated
with a single SB. As detailed in the Supplemental Material
[24], we assimilate the process of SB development in the REs
to the mechanism of SB formation in a slab subjected to a
biaxial stress state, where the ratio ξ between the principal
stresses governs the SB orientation. By assuming that ẆSB is
done over an area proportional to �R, where � indicates the SB
length, we show that

ẆSB ∝ �Rσ̄ ˙̄ε

(
1 + ξ (θ )

2ξ (θ ) − 1

2 − ξ (θ )

)
, (1)

where ˙̄ε is the rate of macroscopic strain and the function ξ (θ )
is implicitly defined by the equation

cos (2θ ) = 1 + ξ

3(ξ − 1)
. (2)

The estimate (1) holds at an early stage of irreversible de-
formation, when only few noninteracting SBs exist. Since the
formation of SBs in solids can be regarded as a process where
generalized rate of work is minimized [37], we expect the SBs
requiring the least amount of mechanical work to form first.
Accordingly, we assume the mean number of SBs of length
� and orientation θ at a given ε̄ to be inversely proportional
to ẆSB(�, θ ). This leads, based on Eq. (1), to the following
form of the function fSB(�, θ ) describing the distribution of
the number of SBs per unit area:

fSB(�, θ ) ∝ R

�
χ (θ ), (3)

with

χ (θ ) =
{

2−ξ (θ )
ξ (θ )2−ξ (θ )+1

if θ > θ cr

0 if θ � θ cr
. (4)

In Eq. (4) the condition on θ compared to θ cr =
(1/2)cos−1(1/3) ≈ 35◦ is introduced because the present
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FIG. 5. Comparison between the function χ (θ ) (normalized to
obtain unit area under the curve) and the angular distribution of the
SBs obtained from SBN data at ε̄ = 0.05%.

model rules out the possibility that SBs form at an angle θ �
θ cr (see the Supplemental Material [24]). To verify Eq. (3), we
used the SBN data to compute the mean angular distribution
of the SBs of any length at ε̄ = 0.05%. According to Eq. (3),
such distribution is expected to be proportional to χ (θ ):

fSB(θ ) =
∫ �max

�min

fSB(�, θ )d� ∝ χ (θ ). (5)

Figure 5 demonstrates that this is indeed the case, regard-
less of the specific type of particle spatial distribution and
particle area fraction within the investigated range.

Therefore, Eq. (3) and the fact that the SBN is a sub-
set of the Delaunay network can be exploited to construct
an inexpensive and parameter-free indicator of the material
strength that is solely based on the particle size and spatial
distribution. First, given a distribution of particles in a mi-
crostructure (e.g., from microscopy or x-ray tomography), the
set of potential SBs are identified with the set of links of the
Delaunay network. Next, the Delaunay links are classified into
bins, based on their length � and orientation θ . Finally, the
strength indicator IS is computed as follows:

IS = 1

ntot
L

∑
i, j fSB(�i, θ j )nL(i, j),∑

i, j fSB(�i, θ j )
(6)

where �i and θ j denote the mean values of � and θ in the
bin (i, j), nL(i, j) is the number of Delaunay links in the
bin (i, j), ntot

L is the total number of Delaunay links and
fSB(�i, θ j ) is computed via Eqs. (3) and (4). For higher IS , a
lower material strength is expected, because large IS means
that the Delaunay network contains many links with low
ẆSB, which activate early upon loading, thereby generating
more irreversible deformation that reduces σ̄S . To support this
argument, we computed IS for all REs and analyzed its cor-
relation with the values of σ̄S predicted by the finite-element
simulations. Table I lists the coefficient of determination R2

and p value obtained from a linear regression of the σ̄S vs
IS data, for different values of fp and two types of particle
spatial distribution. The p values are always below 1 × 10−4,
indicating a significant correlation between the two quantities.

TABLE I. Outcome of linear regressions between the material
strength σ̄S and our strength indicator IS and between σ̄S and the
disorder parameter ID.

fp σ̄S vs IS σ̄S vs ID

(%) Particle distribution R2 p value R2 p value

20 Uniform 0.33 3.8 × 10−10 0.17 1.5 × 10−5

15 Uniform 0.29 1.4 × 10−8 0.07 7.1 × 10−3

10 Uniform 0.21 1.5 × 10−6 0.11 7.2 × 10−4

10 Clustered 0.15 9.5 × 10−5 0.03 8.8 × 10−2

However, the scatter is high (see the Supplemental Material
[24]), leading to values of R2 between 0.15 and 0.33. Yet,
such values are 2–5 times larger than those associated with
the correlation between σ̄S and the state-of-the-art disorder
parameter ID used to estimate the strength of porous brittle
materials [38]. This supports the earlier statement that if the
matrix is ductile, the strength is not controlled by the onset of
the irreversible deformation like in the brittle case, but rather
by its evolution through the SBs.

Finally, we tested the ability of our strength indicator to
capture the effect of the particle area fraction fp, besides that
of the particle spatial distribution. We found that within the
considered range of fp (see Fig. 6) the strength indicator IS

captures very well the inverse proportionality between σ̄S and
fp. Indeed, if fp increases, � decreases and the irreversible
deformation can propagate more easily because shorter SBs
need to be formed. This feature of IS looks appealing, because,
in contrast to, e.g., the disorder parameter ID or available
analytical models focusing on the effect of fp [6], it allows
comparing the strength of materials where both the particle
spatial distribution and fp vary simultaneously.

In conclusion, this Letter demonstrates that network analy-
sis approaches are powerful tools to understand and predict
the irreversible deformation that controls the strength of
heterogeneous solids containing particles and pores. The pro-
posed concept of SBN is the key in this respect, as it provides
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FIG. 6. Correlation between σ̄S and IS , considering data for three
values of fp and 100 realizations of the RE particle distribution for
each fp. The σ̄S values are normalized by their mean, σ̄ avg

S . The linear
fit is meant to be a guide for the eyes only.
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the connection between network and materials sciences. The
present investigation can be extended along multiple direc-
tions, including a comprehensive study of the SBN properties
for different deformation modes and of the effect of particles
with stiffness greater than that of the matrix. Drawing on
network science tools, our work opens an avenue towards

developing models that account for the material heterogeneity
while being more efficient and easier to evaluate than classical
continuum mechanics and finite-element models.

T.A. thanks R. Aghababaei from Aarhus University for
fruitful scientific discussions.
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